

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SMART PARKING SYSTEM USING IOT FOR SECURITY

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering Technology (Telecommunication) with Honours.

by

MUHAMAD HASHIM BIN RUSLI B071610001 950729-11-5021

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: SMART PARKING SYSTEM USING IOT FOR SECURITY

Sesi Pengajian: 2019

Saya **MUHAMAD HASHIM BIN RUSLI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

_	

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

MUHAMAD HASHIM BIN RUSLI	PUAN SITI ASMA BINTI CHE AZIZ
Alamat Tetap:	Cop Rasmi Penyelia
NO 12A KAMPUNG TOK BINTANG,	
21700 KUALA BERANG,	
HULU TERENGGANU,	
TERENGGANU	
Tarikh:	Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled **SMART PARKING SYSTEM USING IOT FOR SECURITY** is the results of my own research except as cited in references.

Signature:	
Author:	MUHAMAD HASHIM BIN RUSLI
Date:	

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor :	PUAN SITI ASMA BINTI CHE AZIZ

Signature:	
Co-supervisor:	ENCIK FAKHRULLAH BIN IDRIS

v

ABSTRAK

Sistem letak kereta pintar adalah penyelesaian ideal untuk mengatasi masalah dalam mencari tempat letak kereta yang kosong dan kecurian kereta. Dengan ini, sistem dengan kos rendah diciptakan di mana pengguna dengan mudah mendapatkan tempat letak kereta dan memastikan keselamatan kereta mereka hanya dengan menggunakan telefon pintar mereka. Di samping itu, pihak pengurusan tempat letak kereta juga boleh melihat maklumat tempat letak kereta mereka. Penyelidikan ini bertujuan untuk membina sebuah sistem yang boleh memantau jumlah tempat letak kereta dan pengguna dengan mudah dapat mencari tempat letak kereta yang kosong disamping menjaga keselamatan kereta mereka. Kajian ini mempunyai tiga sistem yang telah diciptakan. Sistem pertama mengandungi penggunaan Modul RFID, motor, dan mikrokontroler Arduino sebagai system utama untuk menjaga keselamatan kereta pengguna. Selain itu, kawasan tempat letak kereta juga dapat diawasi menggunakan kamera ESP32 dan dapat dilihat melalui aplikasi di telefon pintar pengguna. Sistem kedua ialah memantau jumlah ruang letak kereta. Sistem ini termasuk penggunaan pengesan IR dan mikrokontroler NodeMcuESP8266. Data daripada sistem ini diperhatikan dalam penggunaan Internet of Things (IoT) yang membolehkan pengguna mendapatkan maklumat mengenai jumlah kekosongan tempat letak kereta.

ABSTRACT

Smart parking systems are an ideal solution to address the problem of finding available parking lots and to prevent car thefts. With the development of this project, a low-cost system was created where users could easily find parking and ensure the safety of their cars by using only their own smartphones. In addition, the parking management can also view their parking information. The research aims to develop a system that can monitor the amount of parking and users can easily find empty parking lots while keeping their cars safe. This study has two systems that have been created. The first system involved the use of the Arduino RFID Module, motor, and microcontroller as the main system for safeguarding the user's car. In addition, parking areas can also be monitored using the ESP32 camera and can be viewed through applications on the user's smartphone. The second system is to monitor the amount of parking space. This system includes the use of the IR detector and the NodeMcuESP8266 microcontroller. Data from this system is observed using the Internet of Things (IoT) that allows users to get information about the amount of parking space.

DEDICATION

To my beloved parents, I acknowledge my sincere obligation and appreciation to them for their love, vision and sacrifice throughout my life. I am humble my thankful for their sacrifice, tolerance and considerate that were inevitable to make this effort thinkable. Their sacrifice had inspired me from the day I learned how to read, write, and think until what I have become now. I disable to bargain the appropriate words that could properly describe my appreciation for their devotion, support and faith in my ability to reach my dreams. Lastly, I would like to lead my gratitude to any person that contributes to my final year project either it is directly or indirectly. I would like to acknowledge their comments and suggestions, which are crucial for the successful completion of this research.

ACKNOWLEDGEMENTS

First of all, all prise to Allah the Almighty for giving me the strength, health and patience to complete this project. I would like to express my gratitude to my supervisor, Puan Siti Asma Binti Che Aziz for her supervision and guidance that have guide me in accomplishing this project. I have to thank my parents for their unstop support throughout entire life. Besides that, I am grateful for having my housemates and beloved friend as my companion along the way while working on this project. Finally, thanks a lot to everyone that directly and indirectly involved in helping me to finish this project successfully. Thank you so much.

TABLE OF CONTENTS

		PAGE
LIST	OF TABLES	xiv
LIST OF FIGURES		
LIST	OF APPENDICES	xviii
LIST	OF ABBREVIATIONS	XX
СНА	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background	1
1.3	Problem Statement	2
1.4	Aims and objective	3
1.5	Work scope	3
1.6	Gantt chart	5
СНА	APTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Wireless Sensor Network	6
2.3	RFID Technology	7
2.4	Android Application	9
2.5	IoT Technologies	10
2.6	Context Aware System	12

2.7	LoRa System		
2.8	Short Massage Services (SMS)		
2.9	Programmable Logical Controller (PLC)		
2.10	Near Field	Communication (NFC)	16
2.11	Cyber Phys	sical System (CPS)	16
2.12	Parking Lo	ot System with Theft Detection and Image Processing	17
2.13	Smart Park	king System with Cloud MIMO	18
2.14	Visible Lig	ght Communication Using MSP430 for Parking System	19
2.15	Geographie	c Information System (GIS)	21
2.16	Compariso	on Between Articles.	23
СНА	PTER 3	METHODOLOGY	31
3.1	Introductio	on and a second s	31
3.2	Project Me	ethodology	31
	3.2.1	Finding	31
	3.2.1 3.2.2	Finding Design	31 32
	3.2.13.2.23.2.3	Finding Design Simulation	31 32 33
	3.2.13.2.23.2.33.2.4	Finding Design Simulation Testing	31 32 33 33
	 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 	Finding Design Simulation Testing Data Identification	31 32 33 33 34
	 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 	Finding Design Simulation Testing Data Identification Conclusion	31 32 33 33 34 34

xi

3.4	Project Overview		
3.5	Hardw	vare Development	41
	3.5.1	NodeMCU ESP8266 Breakout Board	41
	3.5.2	Arduino UNO	45
	3.5.3	RC522 RFID Module	47
	3.5.4	IR Transceiver (Generic)	49
	3.5.5	Servo Motor SG90	50
	3.5.6	ESP-32 Camera	51
3.6	Softwa	are Development	51
	3.6.1	Arduino Software IDE (Integration Development Environment)	52
	3.6.2	Blynk Application	53
3.7	Overal	ll Project and Operation of the Parking System	53
3.8	Softwa	are testing and Circuit Design	55
3.9	Expec	ted Result	59
СНАР	TER 4	RESULTS AND DISCUSSION	61
4.1	Introd	uction	61
4.2	Projec	t Design and Prototype	61
4.3	Hardware Testing and Results		61
4.4	Analysis of Data		69
	4.4.1	Analysis of data of radio Frequency Identification	69
	4.4.2	Analysis of Data Based on the Infrared Sensor (IR) Through Blynk	
		Application (IoT) Platform	70

xii

2	1.4.3	Analysis of Data Based on the Time Taken for notification shows by	
		Blynk Application	71
CHAPT	TER 5	CONCLUSION AND RECOMMENDATION	75
5.1	Intro	duction	75
5.2	Conc	lusion	75
5.3	Reco	mmendation	76
REFER	RENCI	ES	77
APPEN	DIX		79

xiii

LIST OF TABLES

TABLE	TITLE PA	GE	
Table 2.1	Comparison between articles	23	
Table 3.1	NodeMCU Dev Kit IO pins and ESP8266 internal GF	PIO	
	Pins Mapping	43	
Table 3.2	Pin Description	44	
Table 3.3	Arduino Uno specification	46	
Table 3.4	Pin description	50	
Table 3.5	Data information of the parking using IoT platform	60	
Table 4.1	The range of RFID card that can detected by RFID		
	Reader	69	
Table 4.2	The range of IR sensor can detect the presence of a ca	The range of IR sensor can detect the presence of a car 71	
Table 4.3	Time taken for Blynk notification alert the free parki	ng	
	When only one (1) car presence in the parking slot	72	
Table 4.4	Time taken for Blynk notification alert the free parki	ng	
	When only two (2) car presence in the parking slot	73	
Table 4.5	Time taken for Blynk notification alert the free parkir	ıg	
	When only three (3) car presence in the parking slot	74	

xiv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Architecture of check-in parking system	8
Figure 2.2	Basic Hardware Modules in a pm-mode	9
Figure 2.3	System Architecture of parking system	10
Figure 2.	Local unit of the system	11
Figure 2.5	Prototype of IoT based car parking management	12
Figure 2.6	System architecture of parking system using BLE	
	technologies	13
Figure 2.7	TTGO LoRa Module	14
Figure 2.8	Parking reservation flow chart	15
Figure 2.9	Architecture of the parking system	17
Figure 2.10	Parking system	18
Figure 2.11	Smart parking system deployment	19
Figure 2.12	Block diagram of parking slot enquiry module	20
Figure 2.13	Block diagram of parking slot monitoring module	e 20
Figure 2.14	Block diagram of parking slot detector module	20
Figure 2.15	Flowchart of the system	22
Figure 3.1	Basic stages in this project	31
Figure 3.2	Overview on project planning for PSM	35
Figure 3.3	Flowchart for PSM 1	36

Figure 3.4	Flowchart for developing the hardware or prototype	37
Figure 3.5	Flowchart for entering and monitoring car parking	
	system.	38
Figure 3.6	Flowchart for exiting and monitoring car parking	
	system	39
Figure 3.7	Block diagram for gate opening system	40
Figure 3.8	Block diagram for monitoring system	40
Figure 3.9	Block diagram for monitoring system using ESP-32	
	Camera	40
Figure 3.10	NodeMCU ESP8266 board	41
Figure 3.11	NodeMCU ESP8266 PinOut Reference	41
Figure 3.12	Arduino UNO microcontroller board	45
Figure 3.13	RFID Module	47
Figure 3.14	RC522 RFID Module Pinout	48
Figure 3.15	IR Transceiver / IR Sensor Module	49
Figure 3.16	Servo Motor SG90	50
Figure 3.17	ESP-32 Camera Module	51
Figure 3.18	Arduino Website	52
Figure 3.19	Arduino IDE coding example	52
Figure 3.20	Blynk Application for IoT platform	53
Figure 3.21	The schematic circuit in Fritzing for RFID module	
	and ESP-32 Camera system	56
Figure 3.22	The schematic circuit in Fritzing for NodeMCU ESF	8266
	Connection with Infrared sensor (IR sensor)	57

Figure 4.1	The prototype of the parking system	62
Figure 4.2	RFID card get attached to the RFID reader to open the	
	Gate	63
Figure 4.3	Notification alert when parking slot 1 and 2 are empty	
	Shows by Blynk application	64
Figure 4.4	Notification alert when parking slot 3 and 4 are empty	
	Shows by Blynk application	64
Figure 4.5	LED light up (ON) when no car enter the parking slot	
	Shows by Blynk application	65
Figure 4.6	LED goes OFF when car enter the parking shows by	
	Blynk application	65
Figure 4.7	A condition of LED when car enter parking slot 1 and	2
	Shows by Blynk application	66
Figure 4.8	IP address obtained from serial monitor in Arduino ID	E
	Software	68
Figure 4.9	Video streaming captured by ESP-32 camera in the Bl	ynk
	Application	68

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
1	Coding for NodeMCU ESP8266 interface with Infrared	
	Sensor and Blynk application	79
2	Coding for RFID and Servo motor	80
3	Coding for activate the camera ESP-32	81

xviii

LIST OF SYMBOLS

%	-	Percentage
5G	-	Fifth generation
MiB	-	Mebibyte
V	-	Voltage (Volt)
Cm	-	Centimetre
mA	-	milliampere
KB	-	Kilobyte
MHz	-	Megahertz (Frequency)
mm	-	millimetre
Kb/s	-	Kilobytes per second
VCC	-	Power supply
GND	-	Power supply ground
OUT	-	Active High Output

xix

LIST OF ABBREVIATIONS

IoT	Internet of Things	
RFID	Radio Frequency Identification	
GSM	Global System for Mobile	
BLE	Bluetooth Low Energy	
LED	Light Emitting Diode	
PC	Personal Computer	
CO2	Carbon Dioxide	
WSN	Wireless Sensor Network	
OCR	Optical Character Recognition	
QR Code	Quick Response Code	
SMS	Short Messaging Services	
LCD	Liquid Crystal Display	
GPS	Global Positioning System	
MMS	Multimedia Messaging Services	
RTU	Remote Terminal Unit	
PIC	Peripheral Interface Controller	
PLC	Programmable Logical Controller	
NFC	Near Field Communication	
CPS	Cyber Physical Syatem	
MIMO	Multi-Input Multi-Output	
BS	Base Station	

XX

MMSE	Minimum Mean Square Error
------	---------------------------

- VLC Visible Light Communication
- GIS Geographic Information System
- **IEEE** Institute Electrical and Electronic Engineers
- **IDE** Integration Development Environment
- PSM Projek Sarjana Muda
- SOC System On Chip
- **ROM** Read Only Memory
- RAM Random Access Memory
- USB Universal Serial Bus
- **EN** Enable
- **PWM** Pulse Width Modulation

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter will explain the background of this project in designing a Smart Parking System Using IoT for Security. This will act as a sensor that need to try towards a smart parking system that secure with a security system. This chapter include background, problem statement, objective and scope of the project.

1.2 Background

Finding an unoccupied parking space in larger parking spaces is one of driver problem. It is because every year the car on the road increases. On the other hand, finding the parking space during peak hour and holidays is more difficult because this is the time people want to relieve stress and spend time with family. Furthermore, the parking problem is also faced by students and staff in somewhere institution. In other hand, people also want to secure their vehicles from been stolen. Thus, it is useful to have some solutions that can provide information on parking space occupancy. The efficient parking monitoring system must be designed to overcome the problem.

The tittle of this project is "Smart Parking System Using IoT for Security". The technical problem to be addressed in this project is to find the closest parking spot for a car and to secure the vehicles within the parking area. The proposed system will provide faster, cheap, reliable and efficient system. The idea came about observing the efficiency of current methods of parking system. The parking problem also has been observed in this faculty and also other place that had faced the same problem such as mall and shopping complex where people mostly come. There is also a lot of cases about vehicle has been stolen nowadays.

Basically, this project it equip with several hardware components such as NodeMCU ESP8266 Breakout Board, Arduino, IR Transceiver, RFID Module, Servo Motor, and ESP-32 Camera. This system also use some software programme and online service or application to configure the system. Arduino IDE will be used to configure the microcontroller with some coding then the system will work smoothly as expected. The main part of this system or this project is the IoT (Internet of Things) that will be use. Some research has been done to find out the online services that suitable to use for the IoT in this system. Blynk application will be used in this system because it is suitable to display the data that expected from this project. In previous system in the world, manufacture used GSM (Global System for Mobile) in some model of telecommunication to send or receive some data or information. But nowadays, IoT was quite popular rather than GSM. Before proceed to the hardware display or manufacture, this project will be constructed on breadboard and jumper wires will be used to make a connection between the equipment. For the security system, it will be used Arduino to configure the system with the RFID Module. Then, Servos (Tower Pro MG996R) will be used as a security gate and to make the system more advanced, this security system also equip with camera which is ESP32 to monitoring the car parking area.

Before the cars get into the parking system, it need to go through a security system. User or the driver need to scan their ID through the RFID module or system then, the gate that that controlled by the Servos (Tower Pro MG996R) will be open and the car can pass through into the parking system. Then, in the parking system, IR transceiver generic sensor will be interface with microcontroller as brain of this system. The sensor is design to detect the presence of the car and sent data to the microcontroller. The data from microcontroller will also display on mobile phone by using online application which is Internet of Things (IoT).

1.3 Problem Statement

There is an ever-increasing number of vehicles in modern society. This leads to problems such as inefficient large urban parking lots, increasing difficulties in finding open spaces in busy parking lots, and increasing need for additional parking spaces to be committed to larger areas of land. According to this, drivers will difficult of looking for parking lots to park their car. The process of looking for a parking lot will cause time wasting because driver will spent time waiting for empty space in the parking lot. At this point, someone may miss or late for their important event.

Other than that, more fuel consumed while idling or driving around parking lots, leading to more CO2 emission being produced. Otherwise, once the vehicles are in the parking area, they will slow down their vehicles to find an empty parking space. This slow moving traffic will make the car queue longer. Eventually, when the car park is crowded, traffic jam will occur, which will also lead to some accident cases.

While the country and nation's development is growing rapidly, crime rates are also rising daily. Security has therefore become one of the company's main concerns in everyday life. Parking is also one of the places where people are frequently attacked. Theft and robbery occur in the car park as it is considered a quiet place where there would be not many people in the car park all the time. Then, it may easier some individuals to steal a car in somewhere parking area. All these problem is very serious and need a better solution to handle it.

1.4 Aims and objective

This project aim is to develop a smart parking system with security and has a few objective to be achieved. These objective are:

- 1. To design and develop a prototype of a smart parking system using IoT for security.
- 2. To develop a security system for car parking and to monitor car parking system through IoT.
- 3. To analyse car parking entry and their performance.

1.5 Work scope

The scope of this project is to make a prototype of a smart parking system using IoT for security which is user can determine whether there is a free space for parking and secure their car. The movement of the gate security system are controlled by the Servos (Tower Pro MG996R) after a driver scan or attached their ID to a RFID Module (Generic) which allow a user pass through within their car. Both hardware components are follow