

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

QUIZU BOARD: DEVELOPMENT OF EDUCATIONAL BOARD THAT TEST STUDENT KNOWLEDGE ON SIGNAL BLOCK DIAGRAM

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering

Technology (Telecommunication) with Honours.

by

NUR ALIA LIANA BINTI DAUD B071610744 950422-03-5940

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Quizu Board: Development of Educational Board That Test Student Knowledge on Signal Block Diagram

Sesi Pengajian: 2019

Saya **Nur Alia Liana Binti Daud** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
П	SULIT*	kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
		RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi organisasi/bada					oleh
\boxtimes	TIDAK						
<u> </u>	TERHAD						
Yang benar,			Disa	ıhkan o	leh penyelia	a:	
NUR	ALIA LIANA	BINTI DAUD	EN.	MUH	AMMAD IZ	ZZAT ZAKW <i>A</i>	λN
Lot 1207, Kampung Tapang,		BIN	BIN MOHD ZABIDI				
Jalah Hospital, 15200 Kota Bharu		Cop	Rasmi	Penyelia			
Kelantan.							
Tarikh	ı: 15 Disember	2019	Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled Quizu Board: Development of Educational Board That Test Student Knowledge on Signal Block Diagram is the results of my own research except as cited in references.

Signature:	 	
	 · ·	

Author: Nur Alia Liana Binti Daud

Date: 15 Disember 2019

iv

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

2181101101	
Supervisor:	En Muhammad Izzat Zakwan Bin Mohd
	Zabidi
	Cop Rasmi Penyelia
Signature:	
Co-supervisor:	En Amar Faiz Bin Zainal Abidin

Signature:

ABSTRAK

Tercetusnya kotak pembelajaran (Quizu Board) adalah untuk menguji pemahaman pelajar mengenai gambarajah signal yang berkaitan dengan subjek Pemprosesan Isyarat Digital. Pemprosesan Isyarat Digital (DSP) adalah salah satu topik komunikasi elektronik. Matlamat Quizu ini adalah untuk mereka bentuk dan membina teknik pembelajaran yang menguji pengetahuan pelajar mengenai konsep gambarajah signal yang menguji pelajar untuk menukar persamaan kepada gambarajah blok signal. Quizu ini telah dihasilkan dengan menggunakan Arduino Mega sebagai komponen utama kerana penghasilan Quizu ini mengandungi banyak input untuk dikendalikan. Penghasilan Quizu juga akan disambungkan ke Aplikasi MIT yang menggunakan bluetooth yang menjadikan pembelajaran menjadi lebih menarik dan menyeronokkan. Keberkesanan Quizu diuji dengan melakukan ujian kepada pelajar fakulti FTKEE (Fakulti Teknologi Kejuruteraan Elektrik Elektronik). Matlamat projek juga adalah untuk mewujudkan sesuatu yang lebih menarik, bijak dan menyeronokkan untuk belajar DSP.

ABSTRACT

Development of the educational board (Quizu Board) is to measure student understanding on Signal Block Diagram that relate to the subject Digital Signal Processing. Digital Signal Processing (DSP) is one of the electronic communication subject. This Quizu Board aim is to design and built an educational board which tests student knowledge on concept of signal block diagram which is how the student convert an equation to the block diagram. This board's architecture is using Arduino Mega as a main component because this Quizu Board contains a lot of input to handle. The Quizu Board also will connected to the MIT App Inventor using bluetooth which make the learning become more attractive and fun. The Quizu Board effectiveness is measured by conducting a survey towards student FTKEE (Faculty of Electric Electronic Engineering Technology). The project aim is also to create something that is more interesting, thoughtful and enjoyable to learn DSP.

vii

DEDICATION

This report is dedicated to my beloved parents who educated and supported me throughout the process of doing this project. I am also wanted to say thank you to my supervisor and my friends who have encouraged, guided and inspired me to complete this project.

viii

ACKNOWLEDGEMENTS

Special thanks to Allah S.W.T for His blissful and gift because giving me this ability to finish my Projek Sarjana Muda (PSM). This report is as a mark of my sincere appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for giving me this chance to further study on Bachelor's Degree in Electronic Communication Engineering Technology (Telecommunication) in Faculty of Electrical and Electronic Engineering Technology (FTKEE). I also would like to thanks to my supervisor, En. Muhammad Izzat bin Mohd Zabidi and my co-supervisor En. Amar Faiz bin Zainal Abidin for the guidance, advices, encouragement, inspiration and attention given throughout the day in development of my final year project and while writing this report entitled as Quizu Board: Development of Electronic Quiz Board that test student knowledge on Signal Block Diagram. With this continuous support and interest, he was guiding me to complete this project with full commitment and dedication. My gratitude goes to my beloved family and my friends that always give courage and support me to achieve the goal of my project. Thanks to their moral support and care they had given to me up until this project done. May your charity and goodwill will be blessed.

TABLE OF CONTENTS

TAE	BLE OF CONTENTS	PAGE x
LIS	T OF TABLES	xvi
LIS	T OF FIGURES	xvii
LIS	T OF APPENDICES	xxi
LIS	T OF ABBREVIATIONS	xxiii
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Background Study	1
1.3	Statement of the Purpose	3
1.4	Problem Statement	3
1.5	Objectives	4
1.6	Scope of Work	4
1.7	Project Contribution	6
СНА	APTER 2 LITERATURE REVIEW	7
2.1	Introduction	7
2.2	Past Related Research	7

2.2.1	The Development of an Electronic Educational Quiz Board	
	That Test Student Knowledge on Control Principle's Second	ł
	Order Transient Response by Using Dc Motor Speed Contro	ol
	as Application	8
2.2.2	E-Tester: The Development of an Electronic Board That	
	Check Commonly Used Arduino-Based Electronic	
	Components and Modules	9
2.2.3	E-Flowchart: An Electronic Educational Quiz Board That T	ſest
	Student Knowledge on C Programming Concept Using	
	Flowchart Command	10
2.2.4	E-Congkak: The Development of an Electronic Congkak	
	Board Game to Promote Traditional Board Game to Young	er
	Malaysian Generation	11
2.2.5	Educational Quiz Board Games for Adaptive E-Learning	12
2.2.6	Resducational Kit the Development of an Electronic Quiz	
	Board That Test Engineering Students Knowledge on Resist	tors
	Concept in Electrical Circuit	13
2.2.7	Engaging Students through Board Games: Measuring Its	
	Effectiveness on Academic Performance	14
2.2.8	Kalèdo, a New Educational Board-Game, Gives Nutritional	
	Rudiments and Encourages Healthy Eating In Children: A	
	Pilot Cluster Randomized Trial	15

2.2.9	Development of a Digital Game-Based Learning System wi	ith
	Graduated Prompting Strategy for Math Course	16
2.2.10	Increasing Anti-Tobacco Industry Attitudes among Youth	: A
	Pilot Study of a Multiplayer Educational Board Game	17
2.2.11	Development of A Mathematics Learning Tool Using	
	InventivePrinciple	18
2.2.12	Design and Implementation of Electronic Chess Set	19
2.2.13	Board Games in the Computer Science Class To Improve	
	Students' Knowledge of the Python Programming	
	Language	20
2.2.14	Using Game-Based Learning in Virtual Worlds to Teach	
	Electronic and Electrical Engineering	21
2.2.15	Askme: A Feature-Based Approach to Develop Multiplatfo	orm
	Quiz Games	22
2.2.16	Use Of the Arduino Platform in Teaching Programming	23
2.2.17	Design of a Game-Based Intelligent Learning Environmen	t for
	Elementary Geometry	24
2.2.18	Educational Digital Game Integrated Into a Remote	
	Laboratory for Learning Physic Concepts	25
2.2.19	Andruino-A1: Low-Cost Educational Mobile Robot Based	on
	Android and Arduino	26

2.2.20	Using the Android Platform to control Robots	27
2.3	Differences between the Articles	28
СНАР	PTER 3 METHODOLOGY	34
3.1	Introduction	34
3.2	Flow of the Project	34
3.3	Hardware Implementation	40
3.3.1	Arduino Mega	40
3.3.2	Bluetooth Module HC-05	41
3.3.3	Resistor 22 Ohm	41
3.3.4	Jumper	42
3.3.5	Light Emitting Diode (LED)	42
3.3.6	Strip Board	43
3.4	Software Description	43
3.4.1	Arduino IDE	44
3.4.2	MIT App Inventor	44
3.5	Block Diagram	45
3.6	Project Layout	46
3.7	Circuit Layout	47
3.8	Strip Board Layout	50

3.9	Flow Chart of	of Program	51
3.10	Bill of Mater	rial	54
СНАІ	PTER 4	RESULT AND DISCUSSION	55
4.1	Introduction		55
4.2	Reliability T	est	55
4.2.1		Drop Test	56
4.2.2		Aging Test	57
4.3	Functionality	y Testing	58
4.3.1		Boundary Testing	58
4.4	Comparison	between Expected Result with Actual Result	59
4.4.1		Project Design	59
4.4.2		Application Design	60
4.4.3		Design Flow of the Program Based On Scenario	62
4.4.4		Simulation Result	65
4.5	Result Analy	vsis and Survey Question	71
СНАІ	PTER 5	CONCLUSION	78
5.1	Introduction		78
5.2	Conclusion		78
5.3	Recommend	ation xiv	79

REFERENCES	80
APPENDIX	85
APPENDIX 1: ARDUINO MEGA DATASHEET	85
APPENDIX 2: SURVEY QUESTIONS	86

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1: Pins Co	onnection Table	49
Table 3.2: Table of	of Project Costing	54
Table 4.1: Table of	of Project Costing	56
Table 4.2: Aging	Test table	57
Table 4.3: Bounda	ary Testing Table	58
Table 4.4: Compa	arison of Expected and Actual Project Design	59
Table 4.5: Compa	arison of Expected and Actual Application Design	61
Table 4.6: Table I	Design Flow of the Program for Expected and Actu	al Result Based On
the Scenario		64
Table 4.7: Result	Simulation for Correct Connection	67
Table 4.8: Result	Simulation for Wrong Connection	70

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Pr	oject Layout	8
Figure 2.2: To	op View of E-TESTER Prototype	9
Figure 2.3: Pr	oject Prototype	10
Figure 2.4: E-	Congkak's Hardware Implementation	11
Figure 2.5: Th	ne Design of the Educational Board	13
Figure 2.6: M	EGO Robot	18
Figure 2.7: Vi	rtual and Numerical Chess Piece	19
Figure 2.8: Vi	rtual Circuit/Arena in Virtual Worl	21
Figure 2.9: Aı	duino AsKME Client Running	22
Figure 2.10: F	Remote Experiment Manipulation	25
Figure 2.11: <i>A</i>	Andruino-A1 Mobile Robot	26
Figure 2.12: L	LEGO Mind Storms XNT	27
Figure 3.1: Ga	antt Chart for PSM 1	37
Figure 3.2: Ga	antt Chart for PSM 2	37
Figure 3.3: Flo	owchart of the Final Year Project 1	38
Figure 3.4: Flo	owchart of the Final Year Project xvii	39

Figure 3.5: The Front View of the Arduino Mega Board	40
Figure 3.6: The Back View of the Arduino Mega Board	40
Figure 3.7: Bluetooth Module HC-05	41
Figure 3.8: The Figure of Resistor	41
Figure 3.9: The Figure of Jumper	42
Figure 3.10: The Figure of LED	42
Figure 3.11: Figure of Strip Board	43
Figure 3.12: Arduino IDE	44
Figure 3.13: MIT App Inventor	44
Figure 3.14: Block Diagram of the Project	45
Figure 3.15: The Actual Prototype of Quizu Board	46
Figure 3.16: Circuit Layout of Quizu Board	47
Figure 3.17: Front View of the Circuit on Strip Board	50
Figure 3.18: Back View of the Circuit on Strip Board	50
Figure 3.19: Flowchart of Quizu Board	53
Figure 4.1: Drop Test For 0.5m	50
Figure 4.2: Drop Test For 1.0m	56
Figure 4.3: Before Temperature Test At Outside.	57
Figure 4.4: After Temperature Test At Outside.	57
Figure 4.5: Before Temperature Test In Refrigerator.	57

Figure 4.6: After Temperature Test In Refrigerator.		
Figure 4.7: Expected Design Layout For The Top Of The Quizu Board.	59	
Figure 4.8: Actual Design Layout For The Top Of The Quizu Board.	59	
Figure 4.9: Expected Circuit	59	
Figure 4.10: Actual Circuit Design For The Quizu Board.	59	
Figure 4.11: Expected Design For Main Screen Of The Application	60	
Figure 4.12: Actual Design For Main Screen Of The Application	60	
Figure 4.13: Expected Design For Questions Screen Of The Application	60	
Figure 4.14: Actual Design For Questions Screen Of The Application	60	
Figure 4.15: Expected Design For Wrong Answer	61	
Figure 4.16: Actual Design For Wrong Answer	61	
Figure 4.17: Expected Design For Correct Answer	61	
Figure 4.18: Expected Design For Correct Answer	61	
Figure 4.19: Expected Design For Main Screen Of The Application	62	
Figure 4.20: Actual Design For Main Screen Of The Application	62	
Figure 4.21: Expected Result When User Click Button Bluetooth	62	
Figure 4.22: Actual Result when user click button Bluetooth	62	
Figure 4.23: Expected Design For The Question	63	
Figure 4.24: Actual Design For The Question	63	
Figure 4.25: Expected Result For Next Question	64	
xix		

Figure 4.26: Actual Result For Next Question	64
Figure 4.27: Expected Result For Total Marks	64
Figure 4.28: Actual Result For Total Marks	64
Figure 4.29: Pie Chart Question 1	71
Figure 4.30: Pie Chart Question 2	72
Figure 4.31: Pie Chart Question 3	73
Figure 4.32: Pie Chart Question 4	73
Figure 4.33: Pie Chart Question 5	74
Figure 4.34: Pie Chart Question 6	75
Figure 4.35: Pie Chart Question 7	75
Figure 4.36: Pie Chart Question 8	76
Figure 4.37: Pie Chart Question 9	77
Figure 4.38: Pie Chart Question 10	77

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Arduino Mega Data Sheet	84
Appendix 2	Survey Questions	85

LIST OF ABBREVIATIONS

DSP Principal Component Analysis

FYP Final Year Project

LED Light Emitting Diode

LCD Liquid Crystal Display

LAN Local Area Network

ICT Information and Communication Technology

USB Universal Serial Bus

GILE Game Based Intelligent Learning Environment

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter purposes to create the framework and introduces the project's idea. It focused on the project overview, detailing the goals, briefly explaining the problem, scope, and providing the project result. Therefore, the structure of the overall project can be visualized accurately.

1.2 Background Study

Educational board is a teaching tool used to assist learning methods on users while in the class where it helps bridge the gap between theory and practical measurements among students. According to Aashari (1999), educational board is described as a teaching equipment that functions as an introduction to the student's in their learning session. The use of educational board in tertiary education is lower because most of the educational methods are depending on theory only. Games are a very effective way to attract attention and retain interest, and at the same time can be fun, educational and cognitive. Thus one of the new e-learning trends is the development of different approaches which complement with educational games to make the learning more interesting. These educational games can be seen as a means of determining multiple learning activities for one or more players with predictable outcomes, objectives,

constraints, payoff rules and consequences are precisely defined in school education, universities and professional training courses.

The design for Quizu Board is to evaluate student knowledge of Signal Block Diagram. Signal Block Diagram is a subtopic in DSP subject for an electronic communication bachelor student. This subtopic is include in topic introduction to DSP. Students will also learn in this Quizu Board about how to convert the signal equation to the signal block diagram. That's why the Quizu Board is being developed to test student understanding on the equation being converted.

Development of Quizu Board is used to measure student understanding of the DSP Block Diagram concept. The board was created to attract the interest of students in the basic block diagram for primary, secondary and a beginner as well. An android application which is MIT Inventor were used in this project. An equation will be displayed on the Android and student need to do a connection of the block diagram on the Quizu Board. So students can check whether their block diagram relate to the equation is correct or not. If the connection are true, the android will produce the correct sound and green LED will be turned on. If the answer is wrong, the android will produce wrong sound and the red LED will be turned on. This educational kit is a method for students to study the DSP block diagram process. If the first approach is fun and interesting, the student's interest in a subject will be easier. It will make it easy for the student to understand how to learn it. Furthermore, the practical application of the knowledge obtained from the textbooks makes the learning process much more fun.