

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CAMPUS NETWORK MULTICAST USING HUAWEI ENSP NETWORK SIMULATOR

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

by

MUHAMMAD AMIN KHUSAIRIE BIN MOHD SHUIB B071610789 950831-14-5147

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: CAMPUS NETWORK MULTICAST USING HUAWEI ENSP NETWORK SIMULATOR

Sesi Pengajian: 2019

Saya **MUHAMMAD AMIN KHUSAIRIE BIN MOHD SHUIB** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

ii

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
		kepentingan M	alaysia seba	gaiman	a yang term	aktub dalam A	KTA
	SULIT*	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat 7	ΓERHA	D yang tel	lah ditentukan	oleh
		organisasi/bada	an di mana p	enyelic	likan dijalar	ıkan.	
\square	TIDAK						
	TERHAD						
Yang	benar,		Disa	ahkan o	leh penyelia	a:	
			•••••				
MUH	AMMAD AMI	N KHUSAIRIE	BIN				
MOHD SHUIB		FAI	FAKHRULLAH BIN IDRIS				
Alama	at Tetap:		Cop	Cop Rasmi Penyelia			
Blok 2	Blok 28-2-5 Jalan 2/146 Desa Tasek						
Sunga	Sungai Besi 57000 W.P. Kuala Lumpur						
Tarikł	1:		Tari	kh:			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled CAMPUS NETWORK MULTICAST USING HUAWEI ENSP NETWORK SIMULATOR is the results of my own research except as cited in references.

Signature:	
Author:	MUHAMMAD AMIN KHUSAIRIE BIN
	MOHD SHUIB

Date:

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) With Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	FAKHRULLAH BIN IDRIS

Signature:

Co-supervisor: GLORIA RAYMOND TANNY

ABSTRAK

Karya ini membincangkan tentang rangkaian kampus menggunakan teknik multicasting IP dengan Huawei eNSP rangkaian simulator termasuk protokol multicast, simulator rangkaian, rangkaian kampus dan perisian eNSP sendiri. Tambahan pula, projek ini hanya melaksanakan dalam simulasi sahaja. Terdapat beberapa protokol dalam teknik multicast. PIM adalah salah satu protokol multicast. PIM boleh dibahagikan kepada dua mod: Mod padat (DM) dan Mod jarang (SM). PIM-DM adalah protokol mod multicast padat. Dalam PIM-DM, data dipindahkan melalui "mod push," yang sesuai dengan pengguna yang ramai untuk rangkaian. PIM-SM adalah protokol mod multicast yang jarang. Dalam PIM-SM, data dipindahkan melalui "mod tarik," yang sesuai untuk rangkaian yang luas dengan pengguna tersebar. Dalam projek ini, ia akan cuba untuk melaksanakan protokol multicast yang PIM-DM lawan PIM-SM. IGMP Snoop adalah sangat mudah. Ia membuktikan barangan Rajah multicast dengan memantau mesej IGMP di antara akhir pelanggan dan akhir router, simulasi rangkaian eNSP adalah simulator rangkaian yang dibangunkan oleh Huawei Enterprise Network simulasi. eNSP ialah, extensible, berasaskan Huawei rangkaian grafik platform alat simulasi percuma. Simulasi perkakasan untuk router rangkaian perusahaan, suis dan persembahan yang sempurna adegan peranti sebenar, menyokong simulasi rangkaian berskala besar, juga membuat kita boleh melakukan ujian eksperimen dan belajar teknologi rangkaian dalam hal yang tidak ada peranti sebenar. Untuk projek ini, kami akan digunakan simulator rangkaian ini sebagai platform untuk membina Kampus rangkaian topologi.

ABSTRACT

This paper is discuss about the campus network using IP multicasting technique with Huawei eNSP network simulator including multicast protocols, network simulators, campus network and eNSP software itself. Furthermore, this project only implements in simulation only. There are several protocols in multicast technique. PIM is one of multicast protocols. PIM can be divided into two modes: Dense Mode (DM) and Sparse Mode (SM). PIM-DM is a dense mode multicast protocol. In PIM-DM, data is transferred through the "push mode," which is suitable with crowded users for the network. PIM-SM is the sparse mode multicast protocol. In PIM-SM, data is transferred through the "pull mode," which is suitable for the wide network with dispersed users. In this project it will try to implement these of multicast protocols which is PIM-DM versus PIM-SM. IGMP Snoop is very simple. It establishes multicast table items by monitoring the IGMP message between the end of the client and the end of the router. eNSP network simulation is network simulator that develop by Huawei Enterprise Network Simulation. eNSP is a free, extensible, Huawei-based graphical network simulation tool platform. Hardware simulation for enterprise network routers, switches and a perfect presentation of a real device scene, support large-scale network simulation, also make us can do experimental test and learn network technology in the case of that there is no real device. For this project, we will use this network simulator as a platform to construct Campus network topology.

DEDICATION

To my beloved parents, Mohd Shuib bin Idris and Zainab Binti Hitam, my supervisor and co-supervisor Ts Fakhrullah bin Idris and Gloria Raymond Tanny, my siblings, my friends, my teachers, and my only one.

viii

ACKNOWLEDGEMENTS

First of all, I would like to have my gratitude and thanks toward Allah S.W.T for giving this opportunity to breathing and completing this final year project 1. Throughout the hardship I have endured and giving me endless strength to face the project.

Furthermore, I also want to give my gratitude to my supervisor Ts Fakhrullah bin Idris and my co-supervisor Gloria Raymond Tanny for patience, motivation and gave full commitment by helping me to completing this final year project 1.

Moreover, I would like to give my biggest gratitude toward my family especially my parents, Mohd Shuib bin Idris and Zainab binti Hitam for giving me endless moral motivation and support of money and love for me.

Finally, my sincere gratitude toward all my friends who helped me during process of completing this project and on my writing report. Thank you.

TABLE OF CONTENTS

TABLE OF CO	NTENTS	PAGE
TABLE OF CO		X
LIST OF TABL	ES	xiv
LIST OF FIGU	RES	XV
LIST OF ABBR	EVIATIONS, SYMBOLS AND NOMENCLATURES	XV
CHAPTER 1	INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Work	4
1.5	Project Contribution	4
1.6	Thesis Structure	5
CHAPTER 2	LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Multicast Technology	6
2.2.1.1 M	ulticast Technology can save usage of bandwidth	6
2.2.1.2 Im	plementation on IP Multicasting	7
2.2.1.3 Pro	otocol of IP Multicasting x	11

	2.2.1.4 Summary for IP Multicasting Technology	14
2.3	Network Simulation	15
	2.3.1.1 Network Simulator used as network performance analysis	15
	2.3.1.2 Comparison between Network Simulation	15
	2.3.1.3 Network Simulator used for a teaching purpose	17
	2.3.1.4 Network Simulation been used for Research or Project Purpose	19
	2.3.1.5 Table Comparison for Network Simulators	24
	2.3.1.6 Summary comparison for Network Simulators	24
2.4	Campus Network	25
2.5	Huawei eNSP Network Simulation	28
	2.5.1.1 Table Comparison for Huawei eNSP Network Simulation	30
2.6	Summary	31
СНА	PTER 3 METHODOLOGY	33
CIIA		55
3.1	Introduction	33
3.2	Flow of the Final Year Project 1	33
	3.2.1.1 Gantt chart	35
3.3	Hardware Implementation	35
	3.3.1.1 Routers	35
	3.3.1.2 AR1220 Router	36
	3.3.1.3 AR2220 Router	37

xi

	3.3.1.4 AR2	2240 Router	38
	3.3.1.5 AR3	3360 Router	38
	3.3.1.6 Tabl	le Comparison for Routers	39
	3.3.1.7 Sum	mary for Routers	40
	3.3.3.1 Swit	tch	40
	3.3.3.2 \$570	00 Switch	41
	3.3.3.3 \$370	00 Switch	41
	3.3.3.4 CE6	800 (CLOUDENGINE 6800) Switch	42
	3.3.3.5 Tabl	le Comparison for Switch	43
	3.3.3.6 Sum	mary for Switch	43
	3.3.4.1 Mult	ticast Source (MCS) Server	44
	3.3.5.1 Firev	wall	44
3.4		Multicast Protocol	44
3.5		Huawei eNSP Network Simulator	45
3.6		Flowchart Project PSM 1	46
3.7		Design Proposed Project PSM 1	48
СНАР	PTER 4	49	

4.1	Introduction	49
4.2	Campus Network Multicast Simulation	49
4.2.1	Campus Network Design	49
	xii	

4.2.2	Network Elements Configuration for Multicast Simulation	50
4.2.3	Identify the Protocols used (PIM-SM)	54
4.2.4	Identify the Protocols used (PIM-DM)	55
4.2.5	Network Configuration Testing & Multicast Simulation	56
4.3	Analysis of Multicast Traffic Using Wireshark	61
4.3.1	Protocol Independent Multicast Sparse Mode (PIM-SM)	61
4.3.2	Protocol Independent Multicast Dense Mode (PIM-DM)	68
4.4	Protocol Independent Multicast Sparse Mode (PIM-SM) Versus	
	Protocol Independent Multicast Dense Mode (PIM-DM)	75
4.5	Discussion	75
CHAPTER 5	77	
5.1	Introduction	77
5.2	Conclusion	77
5.3	Recommendation of Future Work	78
REFERENCES	79	

APENDIX 82

xiii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1:	The Comparison of IP Multicasting Technology	10
Table 2.2:	The Comparison of Multicast Protocols	14
Table 2.3:	The Comparison of Network Simulators	24
Table 2.4:	The Comparison of Network Simulators and Protocols used	31
Table 2.5:	The Comparison between Routers in eNSP Network Simulation	n 38
Table 2.6:	The Comparison between Switch's in eNSP Network Simulation	on 42
Table 2.7:	The Comparison between Firewall in eNSP Network Simulatio	on 45
Table 4.2.1:	All possible of the Possible /28 Networks for 10.10.1.1	51
Table 4.3.1:	Comparison table for Data Traffic (PIM-SM) for each	
	Interface Using Wireshark	66
Table 4.3.2:	Comparison table for Multicast Protocols (PIM-SM) for each	
	Interface using Wireshark	67
Table 4.3.3:	Comparison table for Data Traffic (PIM-DM) for each Interface	e Using
	Wireshark	73
Table 4.3.4:	Comparison table for Multicast Protocols (PIM-DM) for each	
	Interface using Wireshark	74

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Typical topology for Campus Network	2
Figure 2.1:	Prototype of implement system	10
Figure 2.2:	Multicast video conference prototype based on OPNET	13
Figure 2.3:	Packet Tracer Network Device Map and Command Line Interaction (CLI)	face 18
Figure 2.4:	GNS3 design screen which shows topology map	19
Figure 2.5:	Simulation interface of Packet Tracer	20
Figure 2.6:	Simulation Interface of GNS3	21
Figure 2.7:	Simulation Interface of EstiNet	21
Figure 2.8:	Mininet Simulation Interface	22
Figure 2.9:	Network Topology for UPVTV	25
Figure 2.10:	Multicast TV roaming setup	26
Figure 2.11:	Example of Network Topology of China Agricultural University	ity 27
Figure 2.12:	Typical topology of IP Multicasting Network	28
Figure 2.13:	Output of IP multicasting video in this project	29
Figure 3.1:	Flowchart of Final year Project 1	33
Figure 3.2:	PSM 1 Gantt Chart	34

XV

Figure 3.3:	AR1220 routers in simulation for Huawei eNSP	35
Figure 3.4:	AR2220 routers in simulation for Huawei eNSP	36
Figure 3.5:	AR2240 routers in simulation for Huawei eNSP	37
Figure 3.6:	AR3260 routers in simulation for Huawei eNSP	37
Figure 3.7:	S5700 switch in simulation for Huawei eNSP	40
Figure 3.8:	S3700 switch in simulation for Huawei eNSP	40
Figure 3.9:	CE6800 switch in simulation for Huawei eNSP	41
Figure 3.10:	MCS server in simulation for Huawei eNSP	43
Figure 3.11:	USG5500 Firewall in simulation for Huawei eNSP	44
Figure 3.12:	USG6000 Firewall in simulation for Huawei eNSP	44
Figure 3.13:	Flowchart of the Project PSM 1	48
Figure 3.14:	Design of Campus Network Topology	50
Figure 4.2.1:	Figure 4.2.2: The range of IP addresses is divided into	
	"classes" based on the high order bits of a 32 bits IP address	52
Figure 4.2.3:	Example of Application of PIM-SM the Multicast Network	52
Figure 4.2.4:	Example of Application of PIM-DM the Multicast Network	53
Figure 4.2.4:	ICMP Ping test between PC that connected to R1 to	
	Multicast Server	54
Figure 4.2.5:	ICMP Ping test between PC that connected to R2 to	
	Multicast Server	54
Figure 4.3.5:	PIM RP-info on R1	55
Figure 4.3.6:	PIM RP-info on R2	55

xvi

Figure 4.2.1:	Figure 4.2.4.3: PIM-SM information	55
Figure 4.2.4.1:	PIM RP-info on R1 & R2	56
Figure 4.2.4.2:	PIM-DM information	56
Figure 4.2.5.1:	IGMP group and Multicast routing information of R1	57
Figure 4.2.5.2:	IGMP group and Multicast routing information of R2	58
Figure 4.2.3.3:	Interface of PIM and IGMP in R1	59
Figure 4.2.3.4:	Interface of PIM and IGMP in R2	60
Figure 4.2.3.8:	Mtrace Command to trace RPF information of multicast source	60
Figure 4.2.3.9:	The Result Multicast Streaming video	61
Figure 4.3.1:	PC IP address 10.10.1.115/28 joining multicast group IP address	
	225.1.1.1 using protocol IGMPv2	61
Figure 4.3.2:	PC IP address 10.10.1.113/28 asking to join membership	
	from multicast server 10.10.2.2/30 using protocol IGMPv2	61
Figure 4.3.3:	PC IP address 10.10.1.115/28 leave multicast group IP	
	address 255.1.1.1 using protocol IGMPv2	61
Figure 4.3.4:	Multicast source sent hello to PC using protocol PIMv2	62
Figure 4.3.5:	IO Graphs from R1 to Multicast Server	63
Figure 4.3.6:	IO Graphs from Client 9 to R2	64
Figure 4.3.7:	IO Graphs from Client 12 to R1	64
Figure 4.3.8:	Interface from Multicast Server	64
Figure 4.3.9:	All Client Interface for R1	64
Figure 4.3.10:	All Client Interface for R2	64
Figure 4.3.11:	Protocols hierarchy	65
Figure 4.3.12:	Protocols conversation From PC to Multicast Server	65

Figure 4.3.13:	Data packet capture using Wireshark	
Figure 4.3.14:	IO graph from R1 to Multicast server	
Figure 4.3.15:	IO graph From Client 17 to R1	
Figure 4.3.16:	IO graph from client 4 to R2	69
Figure 4.3.17:	Interface from Multicast Server	70
Figure 4.3.18:	All Client Interface for R2	70
Figure 4.3.19:	All Client Interface for R2	70
Figure 4.3.20:	Protocol hierarchy from client 17 to R2	71
Figure 4.3.21:	Protocol hierarchy from client 4 to R1	71
Figure 4.3.22:	Protocol hierarchy from R1 to Multicast server	71
Figure 4.3.23:	Conversation from client 4&17to multicast server	72
Figure 4.3.24:	Conversation from R1 to Multicast Server	72
Figure 4.3.25:	End point from R1 to Multicast server	73
Figure 4.3.26:	End point from client 17 to R2	73
Figure 5.1:	Gantt chart for Final Year Project 1	82
Figure 5.2:	Gantt chart for Final Year Project 2	83

xviii

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURES

RP	-	Rendezvous Point
IP	-	Internet Protocols
IPV4	-	Internet Protocols Version 4
IPV6	-	Internet Protocols Version 6
UDP	-	User Datagram Protocol
LAN	-	Local Area Network
VLC	-	Video LAN Client
eNSP	-	Enterprise Network Simulation Platform
PC	-	Personal Computer
LTE	-	Long Term Evolution
OSPF	-	Open Shortest Path First
MOSPF	-	Multicast Open Shortest Path First
BCMCS	-	Broadcast and Multicast Services
RIP	-	Routing Information Protocols
VRP	-	Versatile Routing Platform
WLAN	-	Wireless Local Area Network
PIM-SM	-	Protocols Independent Multicast Sparse Mode
PIM-DM	-	Protocols Independent Multicast Dense Mode
IGMP	-	Internet Group Management Protocols
IPTV	-	Internet Protocol television
GNS3	-	Graphical System Simulator
EIGRP	-	Enhanced Interior Gateway Routing Protocol

xix

CHAPTER 1

INTRODUCTION

1.1 Project Background

Everything in our daily lives has turned to the digital era with the great developments in the field of Internet and technology. As part of our lives, the value of the Internet has increased significantly. It helps to create a new technology known as Campus Network using IP multicasting technique with Huawei eNSP Network Simulator. There are several network simulators in the field of networking, such as Cisco Packet Tracer, Graphical Network Simulator 3 (GNS3), Huawei eNSP, and so on. This project will only apply in simulation. The network simulator will be use for this project is Huawei eNSP.

IP multicasting is a technique used to send Internet Protocol datagrams to a collection of interested recipients for a single transmission. It is the multicast type specific to IP and is used for media streaming and other implementation of networks. It uses uniquely held IPv4 and IPv6 multicast address blocks. This project was using Huawei eNSP network simulation. There are two method of IP multicasting which is one-to-many and many-to-many. Multicast efficiently uses network infrastructure by demanding the source to deliver a packet only once, even though it needs to be delivered to a significant number of receivers. Typically network switch hubs and routers will take care of replicating the packet to achieve multiple destinations at the very same time. The protocol used in IP Multicasting is User Datagram Protocol (UDP). Alternatively, the use of dependable multicast protocols is Pragmatic General Multicast (PGM). It has been developed to overcome massage loss and it also has loss detection and retransmission. The multicast group address is used by the sources and the receivers to send and receive multicast messages. Internet Group Management Protocol (IGMP) is the protocols commonly used by recipients to join the IP Multicast group. With routing protocols based on shared trees, a multicast distribution tree is built for that group once the receivers join a particular multicast IP group. Protocol Independent Multicast (PIM) is the most widely used protocol for this. There are varieties of PIM executions which is Sparse Mode (SM), Dense Mode (DM) and Source Specific Mode (SSM). On top of that, PIM-SM is widely used during the time 2006 but SSM and Bidir are easier and scalable variation developed. Bidir is one of the PIM executions which is in Bidirectional Mode it contains Bidir or it called Sparse-Dense Mode (SDM).

A campus network is a computer network or topology that made up of interconnection of local area network (LAN). It usually contains network switches, routers, and computers. For nowadays transmission media it usually used optical fiber but sometimes it used a copper plant. Campus network usually apply in large area, which is in enterprise, university, and so on.

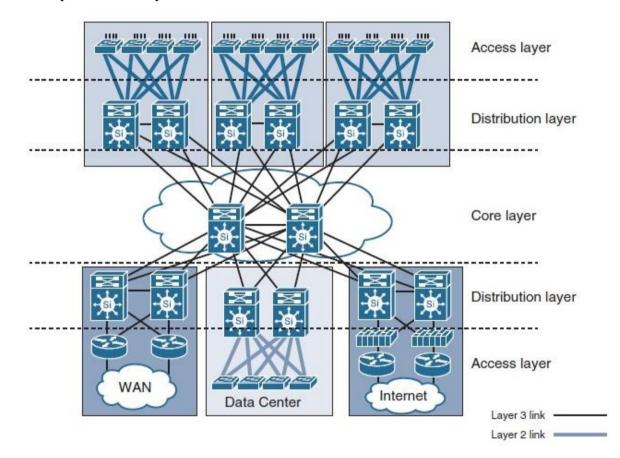


Figure 1.1: Typical topology for Campus Network

1.2 Problem Statement

Networking is a large field of work and in education, networking is one of the toughest subjects to learn it. There are several network simulators has been used for an educational purpose or in a working field. Most popular for educational purpose is a Cisco Packet Tracers. That because Cisco Packet Tracer is easier to learn compare to other simulators, however the tools in Cisco Packet tracers is not effective when come to troubleshooting compare to Graphical Network Simulator 3 (GNS3) because of the functionality for GNS3 is closely mimics a real network. That has been prove in journal comparative study on networking simulation tools using correlation analysis that proposed by (Chua *et al.*, 2018) stated that The results revealed that PT is comparable in the effectiveness of practical laboratories with respect to the practice of configurations, depending on the measurements used for the study. However, GNS3 is regarded as a tool that is more efficient in troubleshooting as it provides functionality that closely imitates an actual network. Results demonstrated proof of the exchange of skills from two behaviours and identified GNS3 as receiving a higher level of information exchange.

Furthermore, Huawei eNSP network simulation is not popular whether in education field or working field. That because Huawei eNSP is a new network simulation compare to other network simulators which is Cisco Packet Tracer and GNS3. Huawei eNSP is published in 2013 and it contain with a real network equipment in the simulation. That will help users to quickly become familiar with real-life equipment, understand and master the operation and configuration of related products. So, we apply this project using a Huawei eNSP network simulation. The network that we design is campus network using IP multicasting technique.

1.3 Objectives

The main objective for this thesis will be to:

- 1. To design campus network topology using Huawei eNSP network simulation
- 2. To apply the IP multicasting technique in campus network topology using Huawei eNSP network simulation.
- 3. To able distribute the video streaming to all client using Multicast Protocols.
- 4. To analyse the performance of multicast protocol PIM-SM versus PIM-DM in Campus Network simulation.

1.4 Scope of Work

Scope of this project eventually a whole campus or university however, this project only applies in simulation only. In this design of network campus, it contains a networking equipment which is network switches, routers and server. For the transmission media, this project will used optical fiber and copper plant to connect all devices.

1.5 Project Contribution

The main motivation of complete this project because of project using a Huawei eNSP network simulator is rare and less people do it. As we know, multicast is an alternative way of broadcasting and unicasting. Multicast also can save bandwidth usage while transmitting the data.

1.6 Thesis Structure

In Chapter 1, it will be clarifying quickly about the possibility of the project. Task background will be examined in this part. This part will be focused on the layout of the project, indicating the objective, the issue articulation, and the scope of the project.

In chapter 2, this area is about the thought or idea, speculation, and some characteristics for protocols of IP multicasting, Implementation of IP multicasting, multicast technique is more saving bandwidth compare to unicast, comparison of network simulators, network simulators used for educational purpose, campus network and Huawei eNSP network simulator that used as a part of this project.

In chapter 3, this segment will clarify about the technique or methodology. Methodology chapter is a step that should be pursue and detailed reports of studies that should be finished to accomplish the target or objective. This section discloses the methodology taken to finish the task and it consist the detail about the development of this project.