87509368/W/BEEC/A

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIQUID LEVEL CONTROLLER SYSTEM WITHOUT CONTACT

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Computer Engineering Technology (Computer Systems) with Honours.

by

ABDUL MUAZ BIN ABDUL HAMID B071610286 940820125731

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Liquid Level Controller System Without Contact

Sesi Pengajian: 2019

Saya **ABDUL MUAZ BIN ABDUL HAMID** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

ABDUL MUAZ BIN ABDUL HAMID

Alamat Tetap: No 1977; LORONG 10

X TAMA MEGA, JALAN LABOR

X BATU F, Sandakan

X GOOO, SABAH, MALAYSDA.

Tarikh: 8/1/2020

Disahkan oleh penyelia:

FAKHRULLAH BIN IDRIS

Cop Rasmi Penyelia

FAKHRULLAH BIN IDRIS Jurutera Pengajar Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka

Tarikh: 9/1/2020

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled Liquid Level Controller System Without Contact is the results of my own research except as cited in references.

12020

8

(

Signature:

ABDUL MUAZ BIN ABDUL HAMID

Date:

Author:

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours. The member of the supervisory is as follow:

Signature: Supervisor : AKHRULLAH BIN IDRIS

8/. 12020 Signature:

Co-supervisor:

AHMAD FAIRUZ BIN MUHAMMAD AMIN

V

ABSTRAK

This project is to build and to test a liquid level control system without contact. The system is more advanced than the conventional liquid level controller and is designed to improve life by having a more convenient control system. For example, the system is designed to control the liquid level in the tank and user get to access the data using WIFI. Using an ultrasonic sensor to detect liquid levels, it will make the project wireless or without any liquid contact. The system uses the Raspberry Pie B+ as the microcontroller to automatically control the water pump and display data in sequence. The water pump is controlled based on the programming code that was programmed in the Raspberry. The project uses the ultrasonic sensor to detect the liquid level. First, the sensor detects the liquid level if the liquid level is low, the system will give data and display to the user and the operation will start operating. When the liquid level reaches high or full, the process will cease and send another information to the administrator, and then it will run automatically.

vi

ABSTRACT

Projek ini adalah untuk di bina dan menguji sistem pengawal tahap cecair tanpa sentuhan. Sistem ini lebih maju daripada pengawal tahap cecair konvensional dan direka untuk memperbaiki kehidupan dengan mempunyai sistem kawalan yang lebih mudah. Contohnya, sistem ini direka untuk mengawal tahap cecair dalam tangki dan membuat pemberitahuan melalui WIFI. Dengan menggunakan sensor ultrasonik untuk mengesan paras cecair. Ia akan membuat projek ini tanpa wayar ataupun tanpa sebarang sentuhan cecair. Sistem ini menggunakan Raspberry Pie B + sebagai mikrokontroler untuk mengawal pam air secara automatik dan pemberitahuan secara berturutan. Pam air dikawal berdasarkan kod pengaturcaraan yang diprogramkan di Raspberry. Projek ini menggunakan sensor ultrasonik untuk mengesan tahap cecair jika paras cecair rendah, sistem akan menghantar pemberitahuan kepada admin dan operasi akan mula beroperasi. Apabila tahap cecair mencapai tinggi atau penuh, operasi akan berhenti dan menghantar pemberitahuan kepada admin, system ini dijalankan secara automatik.

vii

DEDICATION

For my beloved parents ABDUL HAMID BIN ABDUL RAHMAN NURMIDA IDRIS And my sibling for supporting me

Special thanks to my supervisor ENCIK FAKHRULLAH BIN IDRIS For guiding me

And thankful to my friends especially ISMATUL IDDA BINTI SHARIFUDDIN For helping and supporting me to finish this final year project

viii

ACKNOWLEDGEMENTS

In the name of Allah S.W.T the most generous and merciful I would like the be thankful for the blessing and giving me the strength to able complete this final year project. In my deepest heart, would like to express my appreciation to all those who provided me the possibility to finish this bachelor's final year project especially gratitude to my loving parent Abdul Hamid B. Abdul Rahman and Nurmida Idris. Thank you for the support and encouragement. They are always advising me to performing the best in my field that I involved. Not to forget to all my siblings. I also would like to extend my appreciation to all those who contributed time, concern and effort to lend a helping allowing me to gain invaluable knowledge.

I also would like to thank my beloved Supervisor Fakhrullah Bin Idris for all his comments, constructive criticism, suggestion, encouragement and always gave insightful comments on my works were taken seriously to make me understand the world of engineering. Their supports have led me to practice and learn more and more from them to finish my Project Sarjana Muda I.

Lastly, I will practice what I learned for the future. The knowledge and experience achieved when to complete this report is encouragement and patient.

ix

TABLE OF CONTENTS

		PAGE
TAB	LE OF CONTENTS	X
LIST	T OF TABLES	xiii
LIST	OF FIGURES	xiv
LIST	COF APPENDICES	xvii
LIST	T OF SYMBOLS	xviii
LIST	COF ABBREVIATIONS	xix
LIST	COF PUBLICATIONS	XX
СНА	PTER 1 INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope of Project	3
СНА	APTER 2 LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Ablution	5
2.3	Conservation Water	10
2.4	Liquid Flow Monitoring x	13

2.5	Previous System and Existing Automatic Water Level Controller 15		
2.6	Project Outc	come	20
CHAI	PTER 3	METHODOLOGY	22
3.1	Introduction		22
3.2	Project Wor	kflow	23
3.2.1		Implementation of the Project Process	23
3.2.2		Planning the Project Process	23
3.2.3		Flowchart Project Process	26
3.3	Hardware In	nplementation	27
3.3.1		Transmission Part	28
3.3.2		Power Supply	29
3.3.3		Receiver Part	30
3.4	Software Im	plementation	31
3.5	Component	Description	35
3.5.1		Using Raspberry Pi 3 B+	36
3.5.2		Ultrasonic sensor	37
3.5.3		R385 DC12V Diaphragm Water Pump	38
3.5.4		Relay	40
3.5.5		Step Down Module Power Converter	41
3.5.6		Water Flow Sensor YF-S201	42
		xi	

CHAPTER 4		DATA ANALYSIS AND RESULT	44
4.1	Introduction		44
4.2	The prototyp	be of the project	44
4.2.1		Testing on The Water Level	47
4.2.2		Measurement of water inside tank	49
4.2.3		Testing of The Water Flow Rate	51
4.3	Software Par	t	52
4.4	RESULT		54
СНАР	PTER 5	CONCLUSION	55
5.1	Introduction		55
5.2	Conclusion		55
5.3	Limitation		56
5.4	Recommend	ation for The Future Work	56
5.5	Summary of	Project	57
REFERENCES 58			

APPENDIX 62

xii

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 comparis	sons between existing Water levelling system	19
Table 2.2 : Compar	rison between existing and this project	20
Table 3.1 : List of	Component	35
Table 4.1 : The res	ult of testing ultrasonic sensor	47
Table 4.2 : The res	ult of testing measurement of volume	49
Table 4.3 : Actual	volume of water versus value obtained by the sensor	51

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Resear	ch Method Chart	6
Figure 2.2 :Flowch	hart of the system	7
Figure 2.3 : Block	diagram of the system	8
Figure 2.4 : Frame	work of study for the development of SmartWUDHU	9
Figure 2.5 : Standa	ardized regression coefficients for the water conservation	11.
Figure 2.6 : Recurs	sive partitioning results for water conservation behaviour	12
Figure 2.7 : miniat	ure that assemble System for Simulation	13
Figure 2.8 : Flow	Chart used in System	15
Figure 2.9 : Arduin	no Layout that been Used	17
Figure 2.10 : Wate	er Level Indicator with 555 timers	18
Figure 3.1 : The Pl	lanning Project Process	25
Figure 3.2 : Flowc	hart of the Project System	26
Figure 3.3: Block	diagram of the Project system	28
Figure 3.4 : The T	ransmitter System	28
Figure 3.5 : Micro	USB power socket	29
Figure 3.6 : Receiv	ver / Output part of Project	30

xiv

Figure 3.7 : Raspbian Operating system	31
Figure 3.8 : Example Python IDE Software	32
Figure 3.9: Example Python IDE	32
Figure 3.10: Connection between Raspberry Pie B+ by using Ethernet cable	33
Figure 3.11 : Proteus 8 Software example	34
Figure 3.12 : Raspberry Pi 3 B+ GPIO pin	36
Figure 3.13 : Ultrasonic sensor	37
Figure 3.14 : Ultrasonic sensor connection circuit	38
Figure 3.15 : Mechanical drawing for the water Pump	39
Figure 3.16 : Channel DC 5V Relay Module	40
Figure 3.17 : Module LM2596 Power Supply	41
Figure 3.18 : A water flow sensor	42
Figure 4.1 : First prototype	45
Figure 4.2 : Hardware Used	45
Figure 4.3 : Ultrasonic Sensor attaches to top Tank.	46
Figure 4.4 : YF-s201 water Flow sensor	46
Figure 4.5 : The graph of length obtained by the ultrasonic sensor	48
Figure 4.6 : The Graph of measurement volume of water	50
Figure 4.7 : Volume predicted versus volume obtained by the sensor	51
Figure 4.8 : Node-red for Display data	52
Figure 4.9 : Display Data Through website xv	54

xvi

LIST OF APPENDICES

APPENDIX	X TITLE	PAGE	P
Appendix 1	Liquid Level Coding for this project	62	
Appendix 2	Coding waterflow for this project	624	
Appendix 3	Gantt Chard	677	

xvii

LIST OF SYMBOLS

D, d	-	Diameter
F	-	Force
g	-	Gravity = 9.81 m/s
I	-	Moment of inertia
1	-	Length
m	-	Mass
Ν	-	Rotational velocity
Р	-	Pressure
Q	-	Volumetric flow-rate
r	-	Radius
Т	-	Torque
Re	-	Reynold number
V	-	Velocity
W	-	Angular velocity
X	-	Displacement
Z	-	Height
q	-	Angle

xviii

LIST OF ABBREVIATIONS

PCA

Principal Component Analysis

xix

LIST OF PUBLICATIONS

CHAPTER 1

INTRODUCTION

1.1 Project Background

In advance of electronic technology, people have made it an easier and faster to improvise something in a within a short time. Most people always use technology to complete the work and help daily job at home or a specific area. This project "Liquid Level Controller System Without Contact" is used the technology in electronic, the evolution in electronic that will be applied in this project is by Raspberry Pi B+. At the same time, some circuit and software are used, such as Python used to functions this project.

Nowadays, most of the liquid that uses in daily or industrial have been controlled by using floater to control its level whether it's in a tank or any liquid container. Almost of that will make an error in levelling it while it's also will not able to control the timing of pumping liquid, starts pump automatically and create information properly to convey. This project will make the levelling and storing the liquid inconvenience way for any user who uses this technology. Some component and equipment that will use in this project, such as the HC-SR04 Ultrasonic sensor and controlled by Raspberry Pi B+, which act as a microcontroller for the project.

By using the HC-SR04 Ultrasonic sensor, it will measure the level of liquid than by using Raspberry Pie as the controller that equipped with WI-FI module make the user

1

convey anything to the system through by displaying data through android application. The function of this project is detecting the level of liquid by using an ultrasonic module. By recognizing the forward reflection, the ultrasound module measures the range of fluid levels (in cm). The pump automatically starts if the level is below a specified point. Furthermore, the data will show the transmitter sign via the WI-FI to make it easier for the user to know what it wants.. The main concept of this project is using a microcontroller whose serial port is interfaced with this ultrasonic module. The Tx sensor sends a levelreflected the ultrasonic signal and the Rx ultrasonic sensor is received. This ultrasonic level controller includes an ultrasonic module that detects an accurate range by reflecting it. This project will help the user to save and level the liquid.

1.2 Problem Statement

In the industrial process, the control of the liquid level in tanks and the flux among tanks is a fundamental problem. The process industries require liquids to be pumped, stored in tanks, then pumped to another tank. As an example, the toilet tank in our house is also a liquid level control system. The float arm attached to the input valve of the water tank can be drained into the water tank until the float reaches a point. Which closes the valve and the tank flow must be controlled, due to its continuous operation, preventing water levels to the highest standards. There are many other design theories for controllers that can be used to manage the fluid level in tanks. Proportional integral derivative control is one of a kind of control strategies used to control the liquid level and flow. convey anything to the system through by displaying data through android application. The function of this project is detecting the level of liquid by using an ultrasonic module. By recognizing the forward reflection, the ultrasound module measures the range of fluid levels (in cm). The pump automatically starts if the level is below a specified point. Furthermore, the data will show the transmitter sign via the WI-FI to make it easier for the user to know what it wants.. The main concept of this project is using a microcontroller whose serial port is interfaced with this ultrasonic module. The Tx sensor sends a levelreflected the ultrasonic signal and the Rx ultrasonic sensor is received. This ultrasonic level controller includes an ultrasonic module that detects an accurate range by reflecting it. This project will help the user to save and level the liquid.

1.2 Problem Statement

In the industrial process, the control of the liquid level in tanks and the flux among tanks is a fundamental problem. The process industries require liquids to be pumped, stored in tanks, then pumped to another tank. As an example, the toilet tank in our house is also a liquid level control system. The float arm attached to the input valve of the water tank can be drained into the water tank until the float reaches a point. Which closes the valve and the tank flow must be controlled, due to its continuous operation, preventing water levels to the highest standards. There are many other design theories for controllers that can be used to manage the fluid level in tanks. Proportional integral derivative control is one of a kind of control strategies used to control the liquid level and flow.

1.3 Objective

- i. To study and understand the operation of the liquid level control system that involves HC-SR04 Ultrasonic Sensor and Raspberry Pi B+
- To design and develop the controller system using HC-SR04 Ultrasonic Sensor for levelling liquid
- iii. To analyse the measurement of precision by using HC-SR04 Ultrasonic Sensor

1.4 Scope of Project

The liquid level controller system is for any user whether it's industrial or personal to make it control liquid levelling. This system is placed in many areas such as industrial factory, home or anywhere that use the liquid. The purpose of this project is to help to control the liquid levelling. At the same time, this system also will notify the user whether the tank is full or occur ap problem such as leaking or overflowing.

This system only used one sensor, which is a HC-SR04 Ultrasonic sensor and controlled by the Raspberry Pi B+. By taking measures of the fluid level in cm, this sensor function detects the amount of fluid and detects the reflection that proceeds. This sensor is detected about 10cm to 20m range on an object below the sensor. This sensor also able to realize the ambient light, measure the colour and can identify the proximity. This sensor will send the signal to the Raspberry Pi B+. When the level falls beneath the setpoint, the pump starts automatically after receiving the reflection signal.