

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF AN INTEGRATED QUALITY INSPECTION GAUGE FOR NT40-0Z25-70 MILLING ARBOR

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Manufacturing Engineering Technology (Product Design) with Honours.

by

NUR FATIN DIYANAH BINTI NORAZAM B071610550 970517-01-6548

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2019

DESIGN AND DEVELOPMENT OF AN INTEGRATED QUALITY INSPECTION GAUGE FOR NT40-0Z25-70 MILLING ARBOR

NUR FATIN DIYANAH BINTI NORAZAM

A thesis submitted in fulfillment of the requirements for the Bachelor's Degree in Manufacturing Engineering Technology (Product Design) with Honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND DEVELOPMENT OF AN INTEGRATED QUALITY INSPECTION GAUGE FOR NT40-0Z25-70 MILLING ARBOR

Sesi Pengajian: 2019/2020

Saya **NUR FATIN DIYANAH BINTI NORAZAM** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

SULIT* Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

□ TIDAK TERHAD

Yang benar,

NUR FATIN DIYANAH BINTI NORAZAM

Alamat Tetap:

NO 16, JALAN PRIMA 2/3, TAMAN NUSANTARA PRIMA, 792000 NUSAJAYA, JOHOR BAHRU, JOHOR

Tarikh: $\frac{8}{1} \frac{2020}{202}$

Disahkan oleh penyelia:

PROFESOR MADYA 75. DR. WAN HASRULNIZZAM BIN WAN MAHMOOD

Cop Rasmi Penyelia

PROF. MADYA. DR. WAN HASRULNIZZAM BIN WAN MAHMOOD Timbalan Dekan (Akademik) Fakulti Teknologi Kejuruteraan Mekanikal Dan Pembuatan Ugiversitti Teknikal Malaysia Melaka

Tarikh:

4. **Sila tandakan (X)

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/ organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled DESIGN AND DEVELOPMENT OF AN INTEGRATED QUALITY INSPECTION GAUGE FOR NT40-0Z25-70 MILLING ARBOR is the results of my own research except as cited in references.

.

Signature: Author :

NUR FATIN DIYANAH BINTI NORAZAM

Date:

8/1/2020

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Product Design) with Honours. The member of the supervisory is as follow:

Signature:

Supervisor:

PROFESOR MAD TS. DR. WAN HASRULNIZZAM BIN WAN MAHMOOD

DEDICATION

In the name of Allah, the Most Gracious, the Most Merciful and all praises to the Prophet, Muhammad S.A.W. Alhamdulillah, praise to Allah for His mercy, I have successfully completed this project in a timely manner.

I would like to take this opportunity to extend my utmost gratitude and sincere appreciations, to my father, *Norazam Bin Suleiman* for his support and sacrifice to confront with all problems and difficulties along this journey, mentally and physically.

Also not to forget to my mother, *Norazura Binti Harun* for her continuous support, love and understanding.

May Allah rewards all of you with a goodness and prosperity, here and hereafter.

ABSTRACT

The purpose of the project is to design and develop an integrated quality inspection gauge for NT40-0Z25-70 milling arbor. The research method includes Failure Mode and Effect Analysis, Quality Function Deployment, Screening and Scoring Matrix using Pugh Method. The design concept involves four major part which determine most critical for inspection process based on specific analyses using Coordinate Measuring Machine and Horizontal Optical Comparator. There are three design concepts had been developed based on current existing standard gauge in the industry. The prototype was fabricated using low cost material that able to enhance the inspection process for NT40-0Z25-70 milling arbor. On the other hand, the project involved the use of advanced machining process including laser cutting machine and high precision measuring equipment. The project significance for design and development of new inspection tool can be a good references to design a product.

ABSTRAK

Tujuan projek ini adalah untuk merekabentuk dan membangunkan gabungan alat pemeriksaan kualiti bersepadu untuk pengilangan arbor kod NT40-0Z25-70. Kaedah penyelidikan yang digunakan adalah Mod Kegagalan dan Analisis Kesan, Peningkatan Fungsi Kualiti, Matriks Penapisan dan Pemarkahan menggunakan Kaedah Pugh. Konsep reka bentuk ini melibatkan empat bahagian utama arbor yang menentukan bahagian kritikal untuk proses pemeriksaan berdasarkan analisis spesifik menggunakan Mesin Pengukur Selaras dan Perbandingan Optikal Horisontal. Selain itu, terdapat tiga konsep reka bentuk yang telah dibangunkan berdasarkan ukuran tolok sedia ada yang terdapat dalam industri. Disamping itu, prototaip ini direka dengan menggunakan bahan kos rendah yang dapat meningkatkan proses pemeriksaan untuk pengilangan arbor kod NT40-0Z25-70. Seterusnya, projek ini melibatkan penggunaan proses pemesinan canggih termasuk mesin pemotong laser dan peralatan pengukur berketetapan tinggi. Justeru itu, kepentingan-kepentingan yang terdapat dalam projek reka bentuk dan pembangunan alat pemeriksaan baru ini dapat dijadikan rujukan yang baik untuk merekabentuk produk.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to the following people and organization that have helped me during completing this project. This project was successfully completed with their assistance and help, either directly or indirectly.

Much appreciation and thanks goes to my supervisor, Profesor Madya Ts. Dr. Wan Hasrulnizzam Bin Wan Mahmood, from the Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for his guidance, advice, encouragement and support towards the completion of this project.

Special thanks to my mother and father, my siblings and peers for their concern and support during my project year. I would also like to thank to everyone who had been the crucial parts of realization of this project.

Last but not least, I would also like to appreciate my university, Universiti Teknikal Malaysia Melaka (UTeM), especially for giving me the chances to further my study at this level.

TABLE OF CONTENTS

DE AP	CLA	RATION	
DE	DICA	TION	
AB	STRA	ΛCT	i
AB	STRA	K	ii
AC	KNO	WLEDGEMENTS	iii
ТА	BLE	OF CONTENTS	iv
LIS	ST OF	TABLES	viii
LIS	ST OF	FIGURES	xii
LIS	ST OF	APPENDICES	xiv
LIS	ST OF	ABBREVIATIONS	xvi
СН		B	
1.	IN	FRODUCTION	1
1.	11	Background	1
	1.1	Problem Statement	2
	1.2	Project Objective	4
	1.4	Scope of Project	5
r	тт	TDATIDE DEV/IEW/	6
4.	21	Introduction	6
	2.1	Quality	0 0
	2.2	Quality Cost of Quality	0
	2.3	2.2.1 Definition of Quality Cost	10
		2.3.1 Definition of Quality Cost	11
		2.3.2 Type of Quality	13
		2.3.2.1 Good Quality	13
	2.1	2.3.2.2 Poor Quality	14
	2.4	Inspection	15
	2.5	Design Concept	17
	2.6	New Product Development (NPD)	19
	2.7	Gauge	22
	• •	2.7.1 Type of Gauge	22
	2.8	Summary	26
3.	ME	THODOLOGY	27
	3.1	Introduction	27
	3.2	Project Flowchart	28
	3.3	Online Research Method	30
		3.3.1 Process of Milling Arbor	31
	3.4	Observation in Milling Laboratory	34
	3.5	Failure Mode and Effect Analysis Method	37
	3.6	Product Design Specification	38
	3.7	House of Quality Method	39
	3.8	Concept Design Stage	41
	3.9	Concept Evaluation	43
		3.9.1 Concept Screening using Pugh Matrix Method iv	43

		3.9.2 Concept Scoring	45
	3.10	Final Concept Design	46
	3.11	Summary	47
4.	RES	ULT AND DISCUSSION	48
	4.1	Introduction	48
	4.2	Method 1-Repetitive Sampling Control	48
	4.3	Result of Data Taken in Repetitive Sampling Control	49
		4.3.1 Reading for Circle 1	49
		4.3.2 Reading for Circle 2	50
		4.3.3 Reading for Pitch of Header Thread	51
		4.3.4 Reading for Length of Header Thread	52
		4.3.5 Reading for Angle of Header Thread	53
		4.3.6 Reading for Pitch of Screw Thread	54
		4.3.7 Reading for Length of Screw Thread	55
		4.3.8 Reading for Angle of Screw Thread	56
	4.4	Method 2-Data collection from CMM and HOC	57
		4.4.1 Coordinate Measuring Machine (CMM)	57
		4.4.2 Horizontal Optical Comparator (HOC)	58
	4.5	Result of Data Taken in CMM and HOC	59
		4.5.1 Reading for Circle 1 in CMM	59
		4.5.2 Reading for Circle 2 in CMM	60
		4.5.3 Reading for Header Thread Pitch in HOC	61
		4.5.4 Reading for Header Thread Length in HOC	61
		4.5.5 Reading for Header Thread Angle in HOC	62
		4.5.6 Reading for Screw Thread Pitch in HOC	62
		4.5.7 Reading for Screw Thread Length in HOC	63
		4.5.8 Reading for Screw Thread Angle in HOC	63
		4.5.9 Comparison Between the CMM and HOC with The	
		Repetitive Sampling Control Method	64
	4.6	Detail Design for Milling Arbor	66
	4.7	Detail Design for Milling Arbor Gauge	67
	4.8	Bill of Material	68
	4.9	Prototyping Plan	69
		4.9.1 List of Material/Apparatus	69
		4.9.2 Prototyping Process	70
		4.9.3 Final Prototyping Product	73
		4.9.4 Product Demonstration	74
	4.10	Data Collection	77
		4.10.1 Result of Dimension Using CMM Analysis	77
		4.10.2 Result of Dimension Using HOC Analysis	78
	4.11	Comparison Result Between Milling Arbor and Gauge Part	81
	4.12	Material Properties	82
	4.13	Solid Work Simulation Analysis	83
		4.13.1 Circle 1	83
		4.13.2 Circle 2	84
		4.13.3 Plate Thread	85

		4.13.4 Shaft Thread	86
	4.14	4 Summary	87
5.	CO	NCLUSION	88
	5.1	Introduction	88
	5.2	Summary of Findings	88
	5.3	Significance of Project	90
	5.4	Limitation	91
RE	FERF	ENCES	92
AP	APPENDICES		

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Classification of Quality Definition	8
Table 2.2	Classification of Definition for Quality Cost	11
Table 2.3	List of Design Concept	20
Table 2.4	Type of Gauge	22
Table 3.1	Online Research Survey	30
Table 3.2	Process of Milling Arbor	31
Table 3.3	List of Critical Part for Quality Inspection Process in	
	Milling Arbor	35
Table 3.4	Failure Mode and Effect Analysis (FMEA)	37
Table 3.5	House of Quality for Milling Arbor Gauge	43
Table 3.6	Table of Concept Screening Method	44
Table 3.7	Scoring Method Between Concept B and C	45
Table 4.1	Result of CMM Analysis for Circle 1	59
Table 4.2	Result of CMM Analysis for Circle 2	60
Table 4.3	Result of HOC Analysis for Header Thread Pitch	61
Table 4.4	Result of HOC Analysis for Header Thread Length	61
Table 4.5	Result of HOC Analysis for Header Thread Angle	62

Table 4.6	Result of HOC Analysis for Screw Thread Pitch	62	
Table 4.7	Result of HOC Analysis for Screw Thread Length		
Table 4.8	Result of HOC Analysis for Screw Thread Angle		
Table 4.9	Comparison between the dimension of CMM/HOC with the		
	Repetitive Sampling Control	64	
Table 4.10	List of material use	69	
Table 4.11	Manufacturing Process	70	
Table 4.12	Critical Part Testing for Circle 1 and 2	77	
Table 4.13	Critical Part Testing for Plate Thread and Shaft Thread	78	
Table 4.14	Testing Data Collection	81	
Table 4.15	Material Properties for Prototype and Standard Gauge	82	
Table 4.16	Circle 1 Simulation Result	83	
Table 4.17	Circle 2 Simulation Result	84	
Table 4.18	Plate Thread Simulation Result	85	
Table 4.19	Shaft Thread Simulation Result	86	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Quality Inspection Process	7
Figure 2.2	Definition of Quality	9
Figure 2.3	Type of Quality Cost	10
Figure 2.4	Cost of Good Quality	13
Figure 2.5	Cost of Bad Quality	14
Figure 2.6	Internal and External Failure Costs	14
Figure 2.7	Inspection Process Flow	15
Figure 2.8	Definition of Design Concept	17
Figure 2.9	Design Concept	18
Figure 2.10	List of Element and Principle Design	19
Figure 2.11	Level Gauge	22
Figure 2.12	Bore Gauge	22
Figure 2.13	Depth Gauge	23
Figure 2.14	Height Gauge	23
Figure 2.15	Plug Gauge	23
Figure 2.16	Ring Gauge	24
Figure 2.17	Snap Gauge	24
Figure 2.18	Force Gauge	24

Figure 2.19	Groove Gauge	24
Figure 2.20	Feeler Gauge	25
Figure 2.21	Profile Gauge	25
Figure 2.22	Thickness Gauge	25
Figure 3.1	Flowchart Process	28
Figure 3.2	Horizontal Mill Arbor Process	30
Figure 3.3	Milling Machine Taper Tooling	30
Figure 3.4	Material Selection for Arbor	31
Figure 3.5	Roughing and Finishing Process (Front Side)	31
Figure 3.6	Micrometer Gauge Check Process	31
Figure 3.7	Drilling Process	31
Figure 3.8	Threading Process	32
Figure 3.9	Roughing and Finishing Process (Back Side)	32
Figure 3.10	Drilling and Threading Process	32
Figure 3.11	Threading Check Process (Profile)	32
Figure 3.12	Milling Process	33
Figure 3.13	Angle Deformation Process	33
Figure 3.14	Angle Gauge meter check process	33
Figure 3.15	Standard Milling NT40-0125-70	34
Figure 3.16	Critical Part 1	35
Figure 3.17	Groove	35
Figure 3.18	Profile	35
Figure 3.19	Critical Part 2	35
Figure 3.20	Drive Torque Angle Gauge Meter Angle Rotation	35
Figure 3.21	Critical Part 3	36

Figure 3.22	Micrometer	36
Figure 3.23	Header Cover	36
Figure 3.24	Critical Part 4	36
Figure 3.25	Groove	36
Figure 3.26	Profile	36
Figure 3.27	Result of Selection Criteria in the Questionnaire Survey	39
Figure 3.28	Design Concept A	41
Figure 3.29	Design Concept B	42
Figure 3.30	Design Concept C	42
Figure 3.31	Standard Gauge	44
Figure 3.32	Concept Design A	44
Figure 3.33	Concept Design B	44
Figure 3.34	Concept Design C	44
Figure 3.35	Final Design	46
Figure 4.1	Graph of Data Measurement for Circle 1	49
Figure 4.2	Graph of Data Measurement for Circle 2	50
Figure 4.3	Graph of Data Measurement for Pitch of Header Thread	51
Figure 4.4	Graph of Data Measurement for Length of Header Thread	52
Figure 4.5	Graph of Data Measurement for Angle of Header Thread	53
Figure 4.6	Graph of Data Measurement for Pitch of Screw Thread	54
Figure 4.7	Graph of Data Measurement for Length of Screw Thread	55
Figure 4.8	Graph of Data Measurement for Angle of Screw Thread	56
Figure 4.9	Arbor Dimensioning Process by using Coordinate Measuring	
	Machine	57
Figure 4.10	Arbor Dimensioning Process by using Horizontal Optical	

	Comparator	58	
Figure 4.11	Result in ZEISS Calypso for Circle 1	59	
Figure 4.12	Result in ZEISS Calypso for Circle 2		
Figure 4.13	Graph of Average Measurement for Critical Mill Arbor	65	
Figure 4.14	Detail Design of Milling Arbor	66	
Figure 4.15	Detail Design of Integrated Milling Arbor Gauge	67	
Figure 4.16	Bill of Material	68	
Figure 4.17	Picture of Final Product	73	
Figure 4.18	Picture of Packaging of Product	73	
Figure 4.19	Installation of Jig	74	
Figure 4.20	Demonstration use of Thread Plate	74	
Figure 4.21	Demonstration use of Circle 1	75	
Figure 4.22	Demonstration use of Circle 2	75	
Figure 4.23	Demonstration use for Reject Part of Thread Shaft	76	
Figure 4.24	Demonstration use for Pass Part of Thread Shaft	76	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Project Gantt Chart	93
Appendix B	Questionnaire Survey Form	95
Appendix C	Respondent Information Details	98
Appendix D	Result of Questionnaire Survey	100
Appendix E	Detailed Drawing in Solidwork Software	102
Appendix F	Reading of Repetitive Sampling Control for Critical Part	104
Appendix G	Solidwork Simulation Result	105

LIST OF ABBREVIATIONS

AIAG	-	Automotive Industry Action Group
ANOVA	-	Analysis of Variance
BOM	-	Bill of Material
CAD	-	Computer aided design
CNC	-	Computer Numerical Control
COQ		Cost of Quality
CMM	-	Coordinate Measuring Machine
FMEA	-	Failure Mode Effect Analysis
HOC	-	Horizontal Optical Comparator
HoQ	-	House of Quality
MSA	-	Measurement System Analysis
NPD	-	New Product Development
QC	-	Quality Control
QFD	-	Quality Function Deployment

CHAPTER 1

INTRODUCTION

1.1 Project Background

Quality can be defined as fulfilling specification or customer requirement, without any defect. According to Judi et al., (2014) a product is said to be high in quality if it is functioning as expected and reliable. Whereas Irudhayaraj et al., (2016) claimed that quality control refers to activities to ensure that produced items are fulfilling the highest possible quality. Most of tools and techniques to control quality are statistical techniques. Quality is a universal value and has become a global issue. A range of techniques are available to control product or process the production quality. These include seven statistical process control (SPC) tools, acceptance sampling, quality function deployment (QFD), failure mode and effects analysis (FMEA), quality inspection, six sigma, and design of experiments (DoE). In this project, quality inspection is known as one of the most important stages of the production process.

Inspection is defined as an official process of checking that things are in the correct condition. In engineering activities, inspection involves the measurements, tests, and gauges applied to certain characteristics in regard to an object or activity. The results are usually compared to specified requirements for determining whether the item or activity is in line with these targets. Nowadays, various types of inspection methods are being used in industry, from that quality of any product is to be checked. Bożek et al., (2017) state that the

different types of inspection methods involve Coordinate Measuring Machine and various type of gauges are used.

Gauges are the tools which are used for checking the size, shape and relative positions of various parts but not provided with graduated adjustable members. Therefore, in order to survive and be able to provide customers with good products, manufacturing organisations are required to ensure that their processes are continuously monitored and product quality are improved.

1.2 Problem Statement

Milling is a metal removal operation. In milling operation metal is removed by a rotating multipoint cutter which is fitted on the arbor of the milling machine. The varieties of features are formed by milling machine on a part by cutting away the unnecessary material. Milling machine is divided into certain main components, which are column, saddle, base, table, knee, arbor, over-arm and spindle. In milling process, certain aspects play a very important role such as arbor, fixture, and cutter which are needed in milling machine. However, this machining technology is still constrained by issues such as material properties, part accuracy, cost and performance (Mishra, 2017).

In improving process of milling, a very important role is played by the quality control. Manufacturing organisation applies various quality control techniques to improve the quality of the process by reducing its variability. The pressure from globalisation has made manufacturing organisations moving towards three major competitive arenas which are quality, cost, and responsiveness.

Therefore, optimization of the related number of activities is importance. According to Borror, (2014) manufacturing process is exposed to the effect of certain factors and obstacles which should be analysed and taken into consideration. Such factors often cause non-compliance or defects in products, processes or equipment. Other than that, Stanojeska & Biospin, (2015) also stated that quality control in milling industrial processes has been developed only as a technical control, so the quality control of raw materials, process parameters and the final products has been provided with a numerous defects and high cost production. Furthermore, for the next fundamental condition, Cepova et al., (2018) claimed that by increasing the quality of manufactured products caused increase in the amount of research about techniques used successfully to increase the manufacturing productivity.

The new paradigm of quality assurance improvement should be made by appropriate research and study towards the new improvement in the quality inspection gauge. Hence, by creating an integrated quality inspection gauge, it helps to increase the part accuracy, cost, quality level and save lots of time (Petrzelka, 2010). In this project, an integrated NT40-0Z25-70 milling arbor for quality inspection is design and develop to enhance the production process in the milling industry. This help to encounter the problem of the high cost, part inaccuracy and save time of the inspection process.

In this study, the research questions are considered:

- i. What does the current practice of quality inspection gauge in the manufacturing industry?
- ii. How to make an improvement from the existing gauge by creating all in one quality inspection gauge for the milling arbor?
- iii. How can a new design of quality gauge help the quality inspection process for milling arbor?

1.3 Project Objective

The objectives of the project are:

- i. To identify the current practice of quality inspection techniques in milling arbor quality inspection process.
- ii. To design an integrated quality inspection gauge for NT40-0Z25-70 milling arbor.
- iii. To fabricate an integrated quality inspection gauge for NT40-0Z25-70 milling arbor.