

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF TYRE EMERGENCY SUPPORTER FOR MOTORCYCLE

This report is submitted in according with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours

By

MOHAMAD AZRIL BIN MOHD NAYAWI

B071610207

940518086663

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2019

DESIGN AND DEVELOPMENT OF TYRE EMERGENCY SUPPORTER FOR MOTORCYCLE

MOHAMAD AZRIL BIN MOHD NAYAWI

A thesis submitted in fulfillment of the requirement of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this report entitled "Design and Development of Tyre Emergency Supporter" is the result of my own research except as cited in the references. The report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	Mohamad Azril Bin Mohd Nayawi
Date	:	

APPROVAL

I hereby declare that I have read this dissertation/report and in my opinion this dissertation/report is sufficient in terms of scope and quality as a partial fulfillment of degree of Bachelor Engineering Technology (Automotive) with Honours.

Signature	:	
Supervisor Name	:	Mohd Hafizi Bin Abdul Rahman
Date	:	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DESIGN AND DEVELOPMENT OF TYRE EMERGENCY SUPPORTER FOR MOTORCYCLE

SESI PENGAJIAN: 2019/20 Semester 2

MOHAMAD AZRIL BIN MOHD NAYAWI Sava

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

atau TERHAD.

SULIT	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)
TERHAD	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
NO 20 JALAN TJ 12,	
TAMAN TEKAH JAYA	NIGHD HAFIZI + IN ABDUL RAHMAN Jurutata Pengajar Jabatan Teknologi ke uruteraan Mekanikal
34000 TAIPING	Fakulti Teknologi Kejuruter un Mekanikal dan Pembuatan Universiti Teknikal Malaysia Melaka
PERAK	
Tarikh: 9.1.2020	Tarikh: $a/(\partial v)$

C Universiti Teknikal Malaysia Melaka

ABSTRACT

This report represent a methodology for chassis design and development of tyre emergency supporter for motorcycle. This project design procedure concept based on three wheeler as innovation design for motorcycle purpose at having hard time during ride on the highway which kind of having tyre punctured scenario. To enhance the design of this supporter of two wheeled vehicle, a combination of various successful system in suspension like M. A. Saeedi , R. Kazemi opinion have been added to the vehicle. The mathematical structural modelling also have been added of various design part being developed. The model design is sketched using CAD software CATIA V5, Hyperwork and Solidwork thus fully made analysis for the structural using this software to determine the quality of project. It shown that for the lateral stability, the three wheeled vehicle with single front is more stable than four wheeled vehicle and this project will benefit the user to use this equipment for more safety usage during ride the highway.

ABSTRAK

Laporan ini mewakili metodologi untuk reka bentuk casis dan pembangunan penyokong kecemasan tayar untuk motosikal. Konsep prosedur reka bentuk projek ini berdasarkan tiga roda sebagai reka bentuk inovasi untuk tujuan motosikal yang mengalami kesukaran semasa menaiki jalan raya yang mempunyai senario yang disentuh tayar. Untuk meningkatkan reka bentuk penyokong dua kenderaan beroda ini, gabungan pelbagai sistem yang berjaya dalam penggantungan seperti M. A. Saeedi, pendapat R. Kazemi telah ditambahkan ke dalam kenderaan. Pemodelan struktur matematik juga telah ditambah dengan pelbagai bahagian reka bentuk yang sedang dibangunkan. Reka bentuk model dilukis menggunakan perisian CAD CATIA V5, Hyperwork dan Solidwork sehingga membuat analisis sepenuhnya untuk struktur menggunakan perisian ini untuk menentukan kualiti projek. Ia menunjukkan bahawa untuk kestabilan sisi, kenderaan tiga roda dengan depan tunggal lebih stabil daripada kenderaan beroda empat dan projek ini akan memberi manfaat kepada pengguna untuk menggunakan peralatan ini untuk penggunaan keselamatan yang lebih semasa menaiki lebuh raya.

DEDICATION

To my beloved mother

Hasimah Bte Che Din

Siblings

Atiqa Natasha Binti Mohd Nayawi

Shamsul Naimi Bin Mohd Nayawi

Nur Syahirah Binti Mohd Nayawi

Nurul Syuhada Binti Mohd Nayawi

Aidil Asyraf Bin Mohd Nayawi

Supervisor

En Mohd Hafizi Bin Abdul Rahman

Thank you very much for the love, support, encouragement, help, guiding and prayers

ACKNOWLEDGEMENTS

First and foremost, I would like to gratitude Allah SWT for his blessing and take this opportunity that given to me in conducting this research. I am also would to express my deepest appreciation and gratefulness to my brother and mother who always support and give motivation, aids and financial during completing this Bachelor Degree Project. Besides that, I would like to express my deepest appreciation to my respected supervisor Associate En Mohd Hafizi Bin Abdul Rahman from the Faculty of Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis.

Particularly, I would also like to express my deepest gratitude to Mr. Sham, for lending the workshop for me to use for completing my project Bachelor Degree. Nevertheless, I would like to thank my supervisor, lecturers, family and friends that participate and contribute their valuable time, ideas, help and support during completing my final project.

Special thanks to all for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project. It will be an unforgettable yet most precious experience for me and it would be very advantageous for my future work.

TABLE OF CONTENTS

DECLARATION	PAGE
APPROVAL	
ABSTRACT	i
ABSTRACT	ii
DEDICATION	
	iv
TABLE OF CONTENTS	vi
	viii
	ix
	xi
LIST OF APPENDICES	xii
CHAPTER	
1. INTRODUCTION	1
1.1 Background	1
1.2 Statement of the Purpose	2
1.3 Problem statement	2
1.4 Objective	3
1.5 Work Scope	3
1.6 Organization of Report	4
1.7 Summary	4
2. LITERATURE REVIEW	5
2.1 Design criteria	5
2.1.1 Benchmark Design and Analysis	5
2.2 Software Design	6

		2.2.1	Vehicle Modelling	6
	2.3	Optir	mization Process	10
		2.3.1	Shape	10
		2.3.2	Topological	11
	2.4	Virtu	al Test	14
		2.4.1	Strength	14
		2.4.2	Weight	15
		2.4.3	Stability	15
		2.4.4	Performance	16
	2.5	Deve	elopment	17
		2.5.1	Mechanical Properties	17
	2.6	3D S	Scanner/3D Printer	19
	2.7	Proc	ess Fabrication	20
		2.7.1	MIG Welding /TIG Welding	20
	2.8	Drilli	ng / Turning	22
	2.9	Sum	mary	22
n	NAE-	τυρρ		22
3.			DLOGY	23
	3.1		nodology of Product	23
	3.2	-	Chart	24
	3.3	-	ect Benchmark Analysis	25
		3.3.1	First Design Model	25
			Second Design Model	27
		3.3.3	Third Design Model	28
	2.4	3.3.4	Functional Analysis	29
	3.4		cept Design of Equipment	30
		3.4.1	, 0	31
		3.4.2	6 6	32
	<u>م د</u>	3.4.3	,	33
	3.5		ication	34
	0.0	3.5.1	Controller Design Fabrication	34
	3.6	ACTU	al Test	36

4.	RES	38	
	4.1	Software Design	38
	4.2	Design Analysis	41
	4.3	Frame Safety Analysis	42
	4.4	Data and Result	42
	4.5	Fabrication Process	44
	4.6	Testing On Motorcycle	48
	4.7	Detail Design	50
5.	CON	NCLUSION AND RECOMMENDATIONS	51
FC		FOR FUTURE RESEARCH	
	5.1	Summary of Research	51
	5.2	Recommendation	52

- REFERENCES 53
- APPENDICES 54

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Benchmark of product model	4
2.2	Sizing guide for tire	10
2.3	Mechanical properties of bike frame materials	17
3.1	Characteristic of product design 1	25
3.2	Characteristic of product design 2	26
3.3	Characteristic of product design 3	27

LIST OF FIGURES

FIGURE

TITLE

PAGE

1	Concept of Delta and Tadpole design	1
2	Tire of motorcycle	5
3	Tire of bicycle	6
4	Frame suspension analysis	7
5	The Tilted Condition	8
6	The Normal Condition	8
7	Tire of Scooter	9
8	Example of topological analysis on tire	11
9	Experiment on tire	12
10	Example of strentgh analysis on tire using Solidwork	13
11	Center of gravity	15
12	Example of motorcycle in 3D Printing	18
13	Tire of Scooter and tire sport ring	18
14	Example of product design of three wheeled motorcycle	19
15	Design Model 1	24
16	Design Model 2	26
17	Design Model 3	27
18	Tyre Design	29
19	Vehicle lay out	30
20	Example of component of three wheeled	31
21	The example product attached in vehicle	34
22	Virtual test o motorcycle (Lagenda 110)	35
23	Virtual test on motorcycle 13lc	36
24	The product assembly	37

25	Base of the product	38
26	Bracket on bottom	39
27	Top bracket	40
28	Tyre	40
29	Analysis on product	41
30	Strength Analysis	41
31	Analysis at all parts	42
32	Simsolid Analysis	43
33	Base of product	44
34	Body plate	45
35	Top bracket	45
36	Body and topplate joining	46
37	The clip on top of bracket	46
38	Body joining	47
39	All parts assembly	47
40	Testing Motorcycle 1	48
41	Testing Motorcycle 2	48
42	Testing Motorcycle 3	49
43	Testing Motorcycle 4	49
44	The stability of product at motorcycle	50
45	The stability of product at motorcycle	51

LIST OF SYMBOLS

D, d	-	Diameter
F	-	Force
g	-	Gravity = 9.81 m/s
Ι	-	Moment of inertia
1	-	Length
m	-	Mass
Ν	-	Rotational velocity
Р	-	Pressure
Q	-	Volumetric flow-rate
r	-	Radius
Т	-	Torque
Re	-	Reynolds number
V	-	Velocity
W	-	Angular velocity
X	-	Displacement
Z	-	Height
q	-	Angle
r	-	Density

XI

LIST OF APPENDICES

APPENDIX TITLE		PAGE	
A	Vehicle Motion		52
В	Suspension Analysis		54
C1	Choosing the right optimum	frame for frames	55
C2	Equation of motions		56

CHAPTER 1

INTRODUCTION

1.1 Background

For centuries, the number of motorcycle development in Malaysia has increased rapidly due to high demand of user in this country. The population keep growth everyday make the number of vehicle recently become large in use. The main focus in this paper is to drive attention towards the people in innovation that prove to be useful for future generation. The concept of three wheeled for this project criteria will be useful for rider that having punctured during ride at the highway commonly. According to the designer of three wheeled automobile has two main types that is Delta and Tadpole (July & Christy, 2018). When there is one wheel at the front and two at rear configuration is called Delta and the opposite of one wheeled at rear and two at front is called Tadpole concept.

Figure 1 : Concept of Delta and Tadpole design

In this report, a tyre emergency support for motorcycle based on two wheeled at the rear is stable dynamically, while braking, turning, simple in design and fabricating. At the first step, design of product to start the concept and searching the material also component needed. The most important part of vehicle is the chassis and its physical frame or structure of a vehicle are attached together. Generally, vehicle are rear wheel drive so according to Davis steering mechanism they have implement differential on rear wheel so that outer wheel travel with higher speed than the inner wheel (Cicero, Lacalle, Cicero, Fernández, & Méndez, 2011).

1.2 Statement of the Purpose

This paper provide knowledge about the stability of tire supporter to hold the punctured tire to prevent damage to the rim cause losses. It basically a suitable component that is light but literally strong in strength to hold the capacity and friendly user. The model of this two wheeled are sketched using CATIA V5 and provide the analysis by Hyperwork software. The analysis is being made to achieve the desired characteristic friendly user. Therefore, the objective for this project were to develop an emergency on-road especially for person that ride on highway.

1.3 Problem Statement

Project emergency tire supporter is innovation design for people need especially for motorcyclist. This innovation purpose is method to solving problem for those people who ride on highway that having tire punctured. They can use this product to get them into the closest R&R or go workshop nearby to get replacement for tire instead of changing at middle of highway. Riders especially cannot ride while having tire punctured that will cause injury if still ride the motor and also will effected the rim of tire being crooked. This product surely solve the issue of safety rider when having this problem as temporary solution.

1.4 Objective

- 1. To design tire emergency supporter for motorcyclist.
- 2. To develop the tire emergency supporter for motorcyclist.

1.5 Work Scope

- i. The design has been made of using Catia V5 software.
- ii. The analysis being made using software Hyperwork and Solidwork
- iii. The product concept is created according benchmark analysis
- iv. The process of fabrication were main process of this product builder
- v. The virtual test were to determine the performance of product created

1.6 Organization of Report

This report consist of five chapters begin with report introduction and end with conclusion. The remainder chapters are literature review, methodology and results as well as discussion. Literature review covers overview and method to development and analysis of making and completing product of Tire Emergency Supporter. Methodology shows sequences of works in order to develop this project. Results of implementation of this project will be written in chapter four along with discussion. Chapter five will delivers conclusion and recommendation for future planning. However, results with discussion and conclusion will be continued in Bachelor Degree Project II.

1.7 Summary

This chapter covers the background of the project and the problem statement which encourage this project to be conducted. The goals of this project report also deliberated in this chapter. Furthermore, the scope of this project report also discussed to make sure this project report was conducted systematically and guided according to its objectives.

CHAPTER 2

LITERATURE REVIEW

2.1 Design Criteria

2.1.1 Benchmarking Design and analysis

		Rating		
No	Criteria	Model 1	Model 2	Model 3
				AD A A A A A A A A A A A A A A A A A A
1	Weight	3	4	4
2	Strength	4	4	4
3	Design	2	3	4
4	Stability	4	3	4
5	Performanc	3	3	4
	e			

Table 1 : Benchmark of product model

Rate:

- 1. Low
- 2. Moderate
- 3. Good
- 4. Excellent

2.2 SOFTWARE DESIGN

2.2.1 Vehicle Modelling

1) Catia V5

Catia V5 software literally uses this concept of design as a sketch model for this project. The project was sketched in 2D and 3D by this software design. The frame body in the project's equipment is made of steel and has angular motion on it. Each wheel has z-direction translational motion and y-direction wheel spin. An analysis to see the result of the load and strength of material use is also being done for this design project. Part of model is shown as the product development in figures 2.2, and 2.2.1 below. (Zo⁻Iler, Wagner, & Winner, 2017)

There is two types of wheel suggestion to use on this product : -

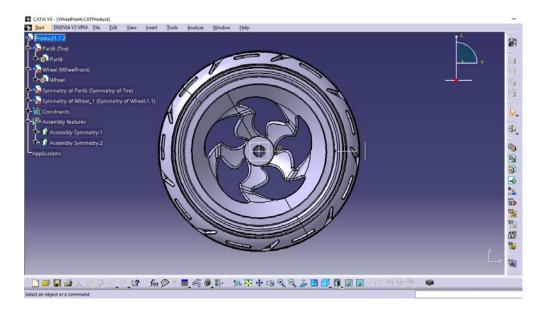


Figure 2 : Tire of motorcycle

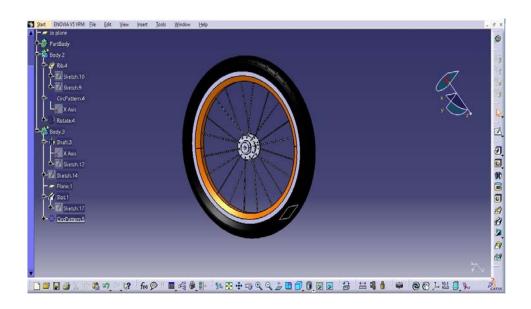


Figure 3: Tire of bicycle

It is to determine the best use of wheel whether using motorcycle or bicycle tire for these two types of tire design. After finishing the manufacturing process, this example tires will be tested in virtual test to obtain the required result. For this project assembly, the perfect tire between these two will be chosen. (Zo⁻Iler et al., 2017)