

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DIGITAL REPRODUCTION OF MALAY RELIC COMPONENTS OBTAINED FROM NON-CONTACT LASER-BASED REVERSE ENGINEERING SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Manufacturing) with Honours

by

UMI SYAZANA BINTI MOHAMAD ALI B071610775

950802025744

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2019

DIGITAL REPRODUCTION OF MALAY RELIC COMPONENTS OBTAINED FROM NON-CONTACT LASER-BASED REVERSE ENGINEERING SYSTEM

UMI SYAZANA BINTI MOHAMAD ALI

A thesis submitted in fulfillment of the requirements for the Bachelor's Degree in Manufacturing Engineering Technology (Product Design) with Honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

C Universiti Teknikal Malaysia Melaka

DIGITAL REPRODUCTION OF MALAY RELIC COMPONENTS OBTAINED FROM NON-CONTACT LASER-BASED REVERSE ENGINEERING SYSTEM.

By

UMI SYAZANA BINTI MOHAMAD ALI

BACHELOR DEGREE

Submitted in partial fulfilment of the requirements for the award of the

Degree of Bachelor of Manufacturing Engineering Technology

(Product Design) With Honours

Faculty of Mechanical and Manufacturing Engineering Technology

Universiti Tecknikal Malaysia Melaka

Malaysia

2019

DECLARATION

I declare that this thesis entitled "Digital Reproduction Of Malay Relic Components Obtained From Non-Contact Laser-Based Reverse Engineering System." is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature : Name : UMI SYAZANA BINTI MOHAMAD ALI Date :

APPROVAL

This report is submitted to the Faculty of Mechanical Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Product Design) with Honours. The members of the supervisory is as follow:

"I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of degree in Bachelor of Manufacturing Engineering Technology (Product Design) with Honours."

Signature	:
Supervisor Name	: TS. DR SYAHIBUDIL IKHWAN BIN ABDUL KUDUS
Date	:

Signature	:
Co-Supervisor Name	: TS. DR. HAMBALI BIN BOEJANG
Date	:

DEDICATION

To all my family especially my beloved parent, Mohamad Ali Bin Syed Merah, Saeena Beevi Binti Hj.Ajis Khan and My grandfather Hj. Ajis Khan. To all my siblings Umi Hani Waznah, Umi Syazwani, Nur Basyirah, Nur Hanisah, Nur Damia Khairunnisah and Nur salsabila, To my extraordinary supervisor Ts. Dr. Syahibudil Ikhwan Bin Abdul Kudus and my awesome Co-Supervisor Ts. Dr. Hambali Bin Boejang. To our FTKMP team staff and lab assistant En. Mohd Idain Fahmi Rosley, En. Mohd Rafi Omar, En.Kamarudin and En.Zulkifli for the endless knowledge and support during the whole scanning process until the fabrication of the prototype for this thesis.

To my fellow project team members Low Kah Lai, Kerk Zi Ling and my fellows friends, To Melaka Museum PERZIM Melaka for the collaboration and to Stadthuys Museum curator Pn.Noor Azimah Binti Md Ali for the positive support for this thesis.

Thank you so much for the motivation and the support

ACKNOWLEDGEMENTS

Alhamdulillah, thank you Allah S.W.T for all the blessing and the opportunity that had been given to me. The ability, courage, endurance, and patience that had been put inside me strengthening me in completing this thesis.

In preparing this thesis, there are many people had contributed towards my project by giving thought, ideas, technical discussion. In particular, I would like to take this opportunity to express my sincere gratitude to both of my Supervisors Ts. Dr. Syahibudil Ikhwan Bin Abdul Kudus and my Co-Supervisor Ts. Dr. Hambali Bin Boejang for the remarkable support throughout my Degree study in Faculty of Mechanical Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) for their advice, patience, motivation, plentiful knowledge, and encouragement. I am grateful to have them as my extraordinary and awesome supervisors and I could not have imagined having better supervisors for my studies.

Furthermore, I would also like to acknowledge Perbadanaan Muzium Melaka (PERZIM) for providing me their ample support and motivation both directly and indirectly. Such kindness and thoughtfulness will be deeply ingrained with me. Special thanks to Stadthuys Museum curator Pn.Noor Azimah Binti Md Ali for providing the history, literature, measured drawing of 'Sundang Raja Mohamad' as reference in my thesis. Particularly, I would also like to express my deepest gratitude to all the staffs in the project team: Ts. Mohd Idain Fahmi Rosley, En. Mohd Rafi Omar, Ts. Hassan Attan, Dr.Ridhwan Jumaidin, the technicians from Rapid Prototyping Laboratory, En. Kamaruddin and En. Zulkifli, and for their assistance and efforts in all the laboratory sessions and analysis works.

Special thanks to my beloved father, mother, grandfather and siblings for their moral and financial support in completing this thesis. Lastly, thank you to all my peers and my team members which is Low Kah Lai and Kerk Zi Ling for the knowledge, experience, and kind cooperation.

ABSTRACT

This report describe the details of the title "Digital Reproduction of Malay Relic Components Obtained From Non-contact Laser-based Reverse Engineering System". The purpose of this projects is too able to compares at least two different types of non-contact (laser-based) reverse engineering machines that available in Faculty of Mechanical and Manufacturing Engineering Technology (FTKMP), which is used to determine the best device that produce STL data from scanned object. The Malay relic selected for this study is 'SUNDANG RAJA MOHAMAD' and the relic will be used in Reverse engineering (RE) process as well as will be fabricated using additive manufacturing technologies (AM). This research will be focusing on powder based process as it will be used in fabrication of scanned objects. Furthermore, this study shows the effective way of restoration and reproduction of the historical relic. 3D scanner can helps fix defects on certain objects as well as it captured data was very accurate to the actual object scan.

i

ABSTRAK

Laporan ini dilaksanakan untuk mengkaji secara mendalam mengenai tajuk "Digital Reproduction of Malay Relic Components Obtained From Non-contact Laser-based Reverse Engineering System ". Tujuan projek ini juga adalah untuk membandingkan sekurangkurangnya dua jenis mesin kejuruteraan terbalik yang tidak berkaitan (berasaskan laser) yang boleh didapati di Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan (FTKMP), yang digunakan untuk menentukan peranti terbaik yang menghasilkan data STL dari objek yang diimbas. Artifak Melayu yang dipilih untuk kajian ini adalah 'SUNDANG RAJA MOHAMAD' dan artifak tersebut akan digunakan dalam proses kejuruteraan "Reverse (RE)" dan akan difabrikasi menggunakan teknologi pengilangan tambahan (AM). Kajian ini akan memberi tumpuan kepada proses berasaskan serbuk kerana ia akan digunakan dalam fabrikasi objek yang diimbas. Tambahan pula, kajian ini menunjukkan cara pemulihan dan penghasilan semula artifak bersejarah yang berkesan. Pengimbas 3D boleh membantu memperbaiki kecacatan pada objek tertentu dan data yang ditangkap itu sangat tepat untuk mengimbas objek sebenar.

TABLE OF CONTENT

Chapter	Content	Page
	Declaration	
	Approval	
	Dedication	
	Abstract	i
	Abstrak	ii
	Table of content	iii
	List of Table	vii
	List of Figure	viii
	List of Appendices	xvi
	List of Abbreviations	xvii
	CHAPTER 1	
	INTRODUCTION	
1.0	Background	1
1.1	Research Objectives	3
1.2	Research Scope	3
1.3	Thesis Structure	3
1.4	Summary	6
	CHAPTER 2	
	LITERATURE REVIEW	
2.0	Introduction	7
2.1	Reverse Engineering	7
2.1.1	Contact And Non-contact Method	8
2.1.1.1	Contact Method	8
2.1.1.2	Non-Contact Method	10
2.1.2	Introduction To Re Non-Contact Devices (3d Scanner)	15
2.1.2.1	Application Of 3d Scanner	17
2.1.2.2	Advantages And Limitation Of 3d Scanner	18
2.1.3	Process Chain Of Re	19

2.1.4	Post Processing Of Captured Data	20
2.1.5	Advantages And Limitation Of Re	21
2.2	Historical and Cultural Heritage	22
2.2.1	Historical Artifact In Melaka	23
2.2.2	Product Background of Artifact	26
2.2.3	Issues in Artifact	27
2.2.4	Method Use in Historical Restoration and Preservation	29
2.3	Additive Manufacturing	30
2.3.1	Classification of Am System	31
2.3.2	Advantages and Disadvantages of AM	32
2.3.3	Am Process Chain	33
2.3.4	Classification Of Am Technologies	36
2.3.4.1	Laser Sintering (LS)	37
2.3.4.2	Laser Sintering (LS) Capabilities	38

CHAPTER 3

METHODOLOGY

3.0	Introduction	40
3.1	Flow Chart of the Methodology	41
3.2	Structure of the experiment	42
3.3	Data Collection	43
3.3.1	Primary Data	43
3.3.2	Secondary Data	43
3.4	Experimental work	44
3.5	Selection of scanned object	44
3.6	RE Process selection	45
3.7	Experimental procedure	46
3.7.1	Pre-processing	46
3.7.2	Scanning procedures	46
3.7.3	Post-processing	47
3.7.4	Data Conversion	47
3.8	Prototype Fabrication	48
3.9	Result and Comparison	48

CHAPTER 4

RESULT AND DISCUSSION

4.0	Introduction	52
4.1	pre-processing, scanning, merging and post-processing	52
4.1.1	Pre-Processing, Scanning, Merging and Post-Processing (SOP)	53
4.1.1.1	Set up procedure (REXCAN CS+2)	53
4.1.1.2	Set up procedure (ZEISS T-SCAN)	56
4.1.1.3	Scanning procedure (REXCAN CS+)	57
4.1.1.4	Scanning procedure (ZEISS T-SCAN)	60
4.1.1.5	Standard of procedure for data manipulation (Rexcan Cs+ Using	61
	Ezscan)	
4.1.1.6	Standard of procedure for data manipulation (ZEISS T-SCAN using	65
	Polywork: Iminspect)	
4.1.1.7	Direct data conversion (for both REXCAN CS+ and ZEISS T-	68
	SCAN)	
4.1.1.8	Indirect data conversion (for both REXCAN CS+ and ZEISS T-	76
	SCAN)	
4.1.1.9	Standard of procedure in fabrication of the prototypes for both	84
	Rexcan and T-SCAN STL file.	
4.1.2	Time analysis before STL file generation (REXCAN and T-SCAN	90
4.2	Determined the Quality of STL File (Direct and Indirect Convert to	92
	STL File)	
4.2.1	CAD-CAD analysis after STL File Generation (REXCAN AND T-	92
	SCAN)	
4.2.2	Part-Part analysis after STL File Generation (REXCAN AND T-	101
	SCAN)	
4.2.3	CAD-Part analysis after STL File Generation (REXCAN AND T-	103
	SCAN)	
4.3	Challenges Encounter and Counter Measures Taken	108
4.4	Summary	110

v

	CHAPTER 5	
	CONCLUSION AND RECOMMENDATION	
5.0	Conclusion	112
5.1	Recommendation	113
	REFERENCES	114
	APPENDICES	119

LIST OF TABLE

TABLE	TITLE	PAGE
3.1	The 'Weighted decision matrix (WDM)' used for selection of scanned object	45
3.2	Template of Time Taken for Comparison both Rexcan and T-Scan based on	49
3.3	Template for Gap comparison between both scanned data	50
3.4	Template of 'Weighted decision matrix (WDM)' for selection of Part to part analysis	50
3.5	Template of dimension taken between actual and scanned data	50
4.1	Time Taken for Comparison both Rexcan and T-Scan based on Scanned Object	90
4.2	Result Gap distance for REXCAN data analysis (mm)	96
4.3	Result of Gap distance for T-SCAN data analysis (mm)	98
4.4	Differences Gap at the Same Area for Rexcan and T-Scan	99
4.5	'Weighted decision matrix (WDM)' for selection of Part to part analysis	102
4.6	Dimension of actual artifact (mm)	104
4.7	Dimension of actual 'Hulu keris' (mm)	105
4.8	Dimension taken from scanned data of REXCAN and T-SCAN	106

vii

LIST OF FIGURE

FIGURE	TITLE	PAGE
1.1	structure of the report	5
2.1	Triggered probe mounted on an articulated arm (Boejang et al., 2013).	9
2.2	Analogue probe attached on CCM (Boejang et al., 2013).	10
2.3	Structure light RE system (Boejang et al., 2013)	11
2.4	A Photogrammetry method in action (Boejang et al., 2013).	12
2.5	A CGI Machine (Boejang et al., 2013).	13
2.6	CT scanner in action	14
2.7	ZSCANNER 700 CX	15
2.8	iSense 3D Scanner with IPad	16
2.9	Sense 3D Scanner	16
2.10	REXCAN CS2+	16
2.11	ZEISS T-SCAN	17

viii

2.12	Comprehensive RE process chain (Boejang et al., 2013).	20
2.13	"Sundang Raja Mohamad"	27
2.24	Details of 'Sundang Raja Mohamad'	27
2.15	Additive Manufacturing Processes Along with Classes of Materials and Method of Deposition (Abdul Kudus, 2019).	32
2.16	Overall AM Process Chain	34
2.17	Schematic diagram of triangle tessellation of STL file (Boejang et al., 2013).	35
2.18	AM Technologies (Abdul Kudus, 2019)	36
2.19	Schematic diagram of Laser Sintering (LS), (Sætre, 2013).	37
2.20	Laser Sintering (LS) machines in FTKMP	39
2.21	Laser Sintering (LS) internal chamber	39
3.1	Flowchart of the development of the studies	41
3.2	workflow of scanning process	44
4.1	SKD-S2 Developer spray	53
4.2	Unboxing the machine	54
4.3	Lens installation	54
4.4	Placing the calibration board in front of laser	55

4.5	Calibration in progress using EZscan	55
4.6	Installed T-scan	56
4.7	Switch 'ON' T-Scan	56
4.8	Calibrate T-scan	57
4.9	Switch 'ON' all three devices from (a) till (c)	57
4.10	EZScan software icon	58
4.11	EZscan homepage	58
4.12	'Connect' icon	58
4.13	Calibrate the devices	58
4.14	Adjust the brightness, laser mode 'ON'	59
4.15	click 'auto scan' to scan the object	59
4.16	scanning using 100 pixel lens	60
4.17	Activate 'Iminspect'	60
4.18	Activate polywork virtual probe	60
4.19	Activate polywork line scan player	61
4.20	Aligning the hand held devices with tracking camera	61
4.21	Scanned data for 400 pixel lens	62

х

4.22	Scanned data for 100 pixel lens	62
4.23	'Editing' the scanned data	62
4.24	import both data from lens 100pxl and 400pxl	63
4.25	Use '3-point align' to the scanned according to each group	63
4.26	Global align	64
4.27	Merging process	64
4.28	Complete REXCAN data	65
4.29	Workflow of POLYWORK software	66
4.30	Activate the 'IMInspect_project'	67
4.31	Positioning scanned data	67
4.32	Use '3-point align' as reference	67
4.33	Merging scanned object to become a complete data	68
4.34	Start polywork modeller	68
4.35	Import polygonal model	69
4.36	Select scanned files	69
4.37	Default parameter	70
4.38	Automatic holes filled	70

4.39	Fill holes interactively	71
4.40	Smooth the surface	71
4.41	Export the polygonal model to STL	72
4.42	Open 'MagicsRP' software	72
4.43	Import STL scanned data	73
4.44	select desired STL file to be import	73
4.45	Select 'Fix wizard' icon	74
4.46	click 'Update' to identify the error and follow 'Advice'	74
4.47	Select 'surface to solid'	75
4.48	Set the thickness to 2mm	75
4.49	Export to STL files	76
4.50	Polywork solidified body to CAD format	77
4.51	Use anchor line	77
4.52	Completed area	78
4.53	Fitting NURBS surfaces	78
4.54	Export STL file	79
4.55	Open 'Digitized shape editor'	79

4.56	Choose 'Generative shape design'	80
4.57	Apply spline to make a close loop	80
4.58	Fill in the surface	81
4.59	Surface complete repair	81
4.60	Joining the surface	82
4.61	Adjust merging distance to '0.1mm'	82
4.62	Adjust merging distance to '0.005mm'	83
4.63	Complete CAD solid model retrieve	83
4.64	Export model Into CATpart. File format	84
4.65	BuildStar Icon	84
4.66	Layout of the parts	85
4.67	Check collision	85
4.68	Build powder estimate	86
4.69	Platform of the SLS machine	86
4.70	Pouring powder into the build chamber	86
4.71	Flatten the powder with blade	87
4.72	Flatten with 'Motion' operation	87

4.73	SLS machine	88
4.74	Lift the powder upwards	88
4.75	Powder Purify Station	89
4.76	Process remove the powder from built part	89
4.77	Blasting Machine	89
4.78	Comparison of duration taken between Rexcan and T-Scan	91
4.79	REXCAN' Color deviation Map.	93
4.80	'T-SCAN' color deviation map	93
4.81	Graph standard deviation of Rexcan	95
4,82	Graph standard deviation of T-Scan	95
4.83	Comparison of selected area between Rexcan and T-Scan for the gap distance	100
4.84	Rexcan detailed part of the crown area	101
4.85	T-SCAN detailed part of the crown area	101
4.86	The actual reading measurement indicator	103
4.87	The actual reading measurement indicator for 'Hulu keris'	104
4.88	Dimension taken from CAD scanned data REXCAN	105

xiv

4.89	Dimension taken from CAD scanned data T-Scan	106
4.90	Part to Cad analysis of REXCAN and T-Scan (mm)	108
4.91	Defects occur at 'A' area	109

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	TYPES OF ARTIFACT IN MELAKA	119
В	DETAILING OF 'SUNDANG RAJA MOHAMAD'	121
С	GANTT CHART PSM 1	122
D	GANTT CHART PSM 2	123
Ε	SURAT PERMOHONAN MENJALANKAN KAJIAN PSM	124
\mathbf{F}	SURAT PERMOHONAN MENJALANKAN AKTIVITI	125
G	SURAT KELULUSAN PERZIM	126
н	CAD TO CAD RESULT (GEOMAGIC)	127
Ι	OFFICIAL MEETING WITH PERZIM	133
J	SCANNING SESSION AT 'THE STADTHUYS'	134
K	PROTOTYPE USING SLS MACHINE	136

xvi

LIST OF ABBREVIATION

BDP	Bachelor Degree Project
AM	Additive Manufacturing
CAD	Computer Aided Design
RE	Reverse Engineering
RP	Rapid Prototyping
SLS	Selective Laser Sintering
2D	Two Dimensional
3D	Three Dimensional
SLA	Stereolithography
FDM	Fusion Deposition Modelling (FDM)

xvii