

Faculty of Mechanical and Manufacturing Engineering Technology

RESEARCH AND DEVELOPMENT OF IMPACT ABSORPTION FOAM MADE FROM KENAF CORE

Lee Set Foon

Bachelor of Manufacturing Engineering Technology (Process and Technology)

2020

RESEARCH AND DEVELOPMENT OF IMPACT ABSORPTION FOAM MADE FROM KENAF CORE

LEE SET FOON

A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology)

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

DECLARATION

I hereby, declared this report entitled "Research and Development of Impact Absorber Foam Made by Kenaf Core" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	LEE SET FOON
Date	:	

APPROVAL

I hereby declared that I have read this thesis and in my opinion this thesis is sufficient in term of scope quality for the award of Bachelor's degree of Bachelor of Manufacturing Engineering Technology (Process and Technology)

.....

(ASSOC. PROF. IR. TS. DR. MOHD YUHAZRI BIN YAAKOB CEng MIMechE)

DEDICATION

Dedicated to

my beloved father, Lee Pion Hua my appreciated mother, Lucy Tan my adored siblings, Lee Foo Khiong, Lee Foo Soon and Lee Foo Jong for giving me moral support, cooperation, encouragement and also understandings. Thank You So Much & Love You All Forever

ABSTRACT

Nowadays, nature fibre tends to replace the synthetic fibre use in the composite field. The reason behind this is the natural fibre has comparable mechanical properties compare to synthetic fibre. Besides that, the rise of environmental awareness of public about the used and advantages of the natural fibres such as biodegradable, low density and low cost has attracted the interest of many researchers to do an investigation on natural fibre. However, most of the researchers are focus in the use of the natural fibre as reinforcement to study the energy absorption of composite materials instead of using the core particles as reinforcement. As a result, there are no any reference regarding the relationship of different mesh size of kenaf core and its bonding structure when it has been used as reinforcement. Besides that, based on previous studies, there has conflict finding about different mesh size of particles use as reinforcement towards the energy absorption ability of composite foam. Therefore, the aim for this research was to investigate the impact energy and vibration energy absorption of composite foam with different size of kenaf core as reinforcement and different type of resin used. There were two types of resin used in this research, that was Polyurethane (PU) and Soft Epoxy (SE). Furthermore, the kenaf core particles with 3 mm mesh size was represented by alphabet A, 20 micron mesh size was represented by alphabet B, and 40 micron mesh size was represented by alphabet C. The objective of this study is to investigate highest impact and vibration energy absorption of composite foam according to the different layup sequence. There were 57 layup sequence has been investigated with two types of resin used. The composite foam was fabricated by using simple mixing process and cold press process to ensure the equivalent thickness of composite foam formed. In order to evaluated the impact energy and vibration energy absorption performance of the fabricated composite foam with different layup sequence, ASTM standard testing were conducted and scanning electron microscope (SEM) was used to analysed the bonding structure of composite foam. The best layup sequence for impact absorption properties was ACC with SE resin used. This ACC layup sequence specimen was able to absorbed 9.90 J of impact energy, that was 33.9 % lower compared to pure SE specimen. CAA with PU resin used was the best layup sequence for vibration energy absorption. The magnitude rms value obtained by the CAA layup sequence was 7.298, that was 255.47 % increasing in value compared to pure PU specimen. The better performance of energy absorption can be obtained when the composite foam has higher porosity. This is further developed into motorcycle seat cushion due to its better vibration energy absorption performance. Lastly, the kenaf core particles used as reinforcement can reduced the weight of motorcycle seat cushion and more environmentally friendly.

ABSTRAK

Pada masa kini, serat semula jadi semakin cenderung untuk menggantikan penggunaan serat sintetik dalam bidang komposit. Hal ini disebabkan serat semula jadi mempunyai sifat mekanikal yang setanding dengan serat sintetik. Selain itu, peningkatan kesedaran alam sekitar tentang penggunaan dan kelebihan serat semula jadi seperti kemesraan alam, kepadatan yang rendah, dan kos yang rendah telah menarik minat ramai penyelidik untuk melaksanakan penyelidikan atas serat semula jadi. Namun begitu, kebanyakan penyelidik menumpukan perhatian dalam penggunaan serat semula jadi sebagai bahan pengukuhan untuk mengkaji tahap penyerapan tenaga bahan komposit daripada menggunakan zarah teras. Akibatnya, tidak ada rujukan mengenai hubungan antara saiz mesh teras kenaf terhadap struktur ikatan apabila ia digunakan sebagai bahan pengukuhan dalam bahan komposit. Di samping itu, berdasarkan kajian terdahulu, terdapat keputusan kajian yang bercanggahan tentang saiz mesh zarah yang berbeza terhadap keupayaan penyerapan tenaga bagi busa komposit. Oleh itu, tujuan penyelidikan ini adalah untuk mengkaji tahap penyerapan tenaga impak dan tahap penyerapan tenaga getaran bagi busa komposit dengan menggunakan saiz mesh teras kenaf yang berlainan sebagai bahan pengukuhan dalam jenis resin yang berlainan. Dua jenis resin yang digunakan dalam kajian ini, iaitu Polyurethane (PU) dan Soft Epoy (SE). Tamabahan pula, zarah teras kenaf yang bersaiz 3 mm mesh diwakili oleh abjad A, teras bersaiz 20 mikron mesh diwakili oleh abjad B, dan teras bersaiz 40 mikron mesh diwakili oleh abjad C. Objektif kajian ini adalah untuk mengkaji tahap penyerapan tenaga impak dan tenaga getaran yang paling tinggi bagi busa komposit berdasarkan urutan susunan yang berlainan. Sebanyak 57 urutan susunan telah dikaji dengan penggunaan 2 jenis resin yang berlainan. Busa komposit telah dibuat dengan menggunakan proses pencampuran mudah dan proses tekanan sejuk untuk memastikan ketebalan busa komposit yang sama dibentuk. Bagi menlai prestasi tahap penyerapan tenaga impak dan penyerapan teneaga getaran untuk busa komposit, ujian berdasarkan piawaian ASTM telah dijalakan dan mikroskop elektron (SEM) telah menggunakan untuk menganalisis struktur ikatan zarah teras kenaf dalam busa komposit. Urutan susunan yang terbaik untuk sifat penyerapan tenaga impak adalah ACC dengan resin SE sebagai pengikat. Spesimen urutan susunan ACC ini dapat menyerap 9.90 J tenaga impak, iaitu 33.9 % lebih rendah berbanding dengan spesimen SE tulen. Manakala, urutan susunan CAA dengan resin PU sebagai pengikat adalah urutan susunan yang terbaik untuk menyerap tenaga getaran. Nilai magnitud rms yang diperolehi oleh urutan susunan CAA ialah 7.298, iaitu sebanyak 255.47 % peningkatan nilai berbanding dengan spesimen PU tulen. Busa komposit mempunyai leliangan yang banyak, prestasi penyerapan tenaganya lagi baik. Ini kemudiannya berkembang menjadi kusyen kerusi motosikal kerana prestasi penyerapan tenaga getarannya yang lebih baik. Akhir sekali, penggunaan teras kenaf sebagai bahan pengukuhan dapat mengurangkan berat kusyen kerusi motsikal dan lebih mesra alam.

ACKNOWLEDGEMENT

I would like to express my gratitude to everyone who supported me throughout this research study especially my beloved supervisor Assoc. Prof. Ir. Ts. Dr. Mohd Yuhazri Bin Yaakob CEng MIMechE. I am thankful for his kindness, unwavering patience, aspiring guidance, advice and variable information helped me through the process all the time. His easily understood explanations and open mind allowed me to grow, interesting and easy learning ways for this research study. Besides, I also thankful to his for encouraging the use of proper grammar and consistent notation in my writing and for carefully reading and commenting on countless revisions of this research.

Next, I would like to thank my lovely family: my parents and my brother and sisters for supporting me spiritually throughout my thesis writing.

Other than that, I would like to give a special thanks to my best friends who gave me much of motivation and mentally supports especially to Nur Sima Syazwani Binti Hamzah. Thanks for sharing those information and moral support to improve my work.

Lastly, I would like to thank to my senior and teammates Mohd AmirHafizan bin Husin, Nur Sima Syazwani binti Hamzah, Nur Atiqah Binti Abghani, Tan Rui Jie and Renuka A/P Ragu who always gave me their critical suggestions, cooperation and comments throughout my research. Thanks for the great friendship.

TABLE OF CONTENTS

DECLARATION	PAGE
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
LIST OF SYMBOLS	X

CHAPTER

1.	INT	RODUCTION	1
	1.1	Background	1
	1.2	Problems Statement	4
	1.3	Objectives	6
	1.4	Scope	6
	1.5	Rational of Research	7
	1.6	Summary of Methodology	8
	1.7	Thesis Arrangement	10
2.	LIT	ERATURE REVIEW	12
	2.1	Composite	12
		2.1.1 Classification of composite materials	13
	2.2	Natural Fibre Composite	17
		2.2.1 Advantages and disadvantages of natural fibre	18
		2.2.2 Application of natural fibre	19
		2.2.3 Summarize of natural fibre	20
	2.3	Kenaf	21
		2.3.1 Properties of kenaf	22
		2.3.2 Kenaf fibre	23
		2.3.3 Kenaf core	24
		2.3.4 Summarize of kenaf	26
	2.4	Impact	27
		2.4.1 Impact Testing	29
		2.4.2 Previous study of impact properties for natural fibre	32
	2.5	Previous Study on Characteristic of Energy Absorbing Material	37

	2.6	Summ	nary		39
3.	ME	THOD	OLOGY		41
	3.1	An Ov	verview of 1	Methodology	41
	3.2	Raw N	Aaterial		43
		3.2.1	Kenaf co	re	43
		3.2.2	Polyureth	ane	44
		3.2.3	Soft Epoz	ху	45
	3.3	Fabric	ation of M	ould	46
	3.4	Foam	Fabrication	n Process	46
		3.4.1	Drying pr	rocess of kenaf core	46
		3.4.2	Polyureth	ane (PU) composite foam fabrication process	47
		3.4.3	Soft Epoz	xy (SE) composite fabrication process	49
	3.5	Foam	Layup Seq	uence	50
	3.6	Sampl	e Testing		51
		3.6.1	Sample p	reparation for charpy impact test	51
		3.6.2	Sample p	reparation for motor vibration test	52
		3.6.3	Scanning	electron microscope (SEM)	53
4. RES	SULT A	AND DISC	USSION	54	
	4.0	Overv	iew		54
	4.1	Fabric	ation of Co	omposite Specimens	54
		4.1.1	Composi	te specimen reinforced PU	55
		4.1.2	Composi	te specimen reinforced SE	58
		4.1.3	Summary	7	61
	4.2	Mecha	anical Testi	ng	61
		4.2.1	Charpy in	npact analysis of kenaf core reinforced PU	62
			4.2.1.1	Impact performance of pure PU foam	63
			4.2.1.2	Impact performance of specimen AAA	63
			4.2.1.3	Impact performance of specimen AAB	64
			4.2.1.4	Impact performance of specimen AAC	65
			4.2.1.5	Impact performance of specimen ABA	66
			4.2.1.6	Impact performance of specimen ABB	66
			4.2.1.7	Impact performance of specimen ABC	67
			4.2.1.8	Impact performance of specimen ACA	68
			4.2.1.9	Impact performance of specimen ACB	68
			4.2.1.10	Impact performance of specimen ACC	69
			4.2.1.11	Impact performance of specimen BAA	70
			4.2.1.12	Impact performance of specimen BAB	70
			4.2.1.13	Impact performance of specimen BAC	71
			4.2.1.14	Impact performance of specimen BBA	72

4.2.1.15	Impact performance of specimen BBB	72
4.2.1.16	Impact performance of specimen BBC	73
4.2.1.17	Impact performance of specimen BCA	74
4.2.1.18	Impact performance of specimen BCB	74
4.2.1.19	Impact performance of specimen BCC	75
4.2.1.20	Impact performance of specimen CAA	76
4.2.1.21	Impact performance of specimen CAB	76
4.2.1.22	Impact performance of specimen CAC	77
4.2.1.23	Impact performance of specimen CBA	78
4.2.1.24	Impact performance of specimen CBB	78
4.2.1.25	Impact performance of specimen CBC	79
4.2.1.26	Impact performance of specimen CCA	80
4.2.1.27	Impact performance of specimen CCB	80
4.2.1.28	Impact performance of specimen CCC	81
4.2.1.29	Summary of kenaf core reinforced PU	82
Charpy imp	pact analysis of kenaf core reinforced SE	82
4.2.2.1	Impact performance of pure SE specimen	84
4.2.2.2	Impact performance of specimen AAA	84
4.2.2.3	Impact performance of specimen AAB	85
4.2.2.4	Impact performance of specimen AAC	86
4.2.2.5	Impact performance of specimen ABA	86
4.2.2.6	Impact performance of specimen ABB	87
4.2.2.7	Impact performance of specimen ABC	88
4.2.2.8	Impact performance of specimen ACA	88
4.2.2.9	Impact performance of specimen ACB	89
4.2.2.10	Impact performance of specimen ACC	90
4.2.2.11	Impact performance of specimen BAA	90
4.2.2.12	Impact performance of specimen BAB	91
4.2.2.13	Impact performance of specimen BAC	92
4.2.2.14	Impact performance of specimen BBA	92
4.2.2.15	Impact performance of specimen BBB	93
4.2.2.16	Impact performance of specimen BBC	94
4.2.2.17	Impact performance of specimen BCA	94
4.2.2.18	Impact performance of specimen BCB	95
4.2.2.19	Impact performance of specimen BCC	96
4.2.2.20	Impact performance of specimen CAA	96
4.2.2.21	Impact performance of specimen CAB	97
4.2.2.22	Impact performance of specimen CAC	98
4.2.2.23	Impact performance of specimen CBA	98
4.2.2.24	Impact performance of specimen CBB	99
4.2.2.25	Impact performance of specimen CBC	100

4.22

	4.2.2.26	Impact performance of specimen CCA	100
	4.2.2.27	Impact performance of specimen CCB	101
	4.2.2.28	Impact performance of specimen CCC	102
	4.2.2.29	Summary of kenaf core reinforced SE	102
4.2.3	Comparis	on impact performance of kenaf core reinforced	104
	PU and k	enaf core reinforced SE	
4.2.4	Vibration	performance analysis of kenaf core reinforced	105
	PU		
	4.2.4.1	Vibration performance of pure PU specimen	105
	4.2.4.2	Vibration performance of AAA specimen	106
	4.2.4.3	Vibration performance of AAB specimen	107
	4.2.4.4	Vibration performance of AAC specimen	107
	4.2.4.5	Vibration performance of ABA specimen	108
	4.2.4.6	Vibration performance of ABB specimen	109
	4.2.4.7	Vibration performance of ABC specimen	109
	4.2.4.8	Vibration performance of ACA specimen	110
	4.2.4.9	Vibration performance of ACB specimen	111
	4.2.4.10	Vibration performance of ACC specimen	111
	4.2.4.11	Vibration performance of BAA specimen	112
	4.2.4.12	Vibration performance of BAB specimen	113
	4.2.4.13	Vibration performance of BAC specimen	113
	4.2.4.14	Vibration performance of BBA specimen	114
	4.2.4.15	Vibration performance of BBB specimen	115
	4.2.4.16	Vibration performance of BBC specimen	115
	4.2.4.17	Vibration performance of BCA specimen	116
	4.2.4.18	Vibration performance of BCB specimen	117
	4.2.4.19	Vibration performance of BCC specimen	117
	4.2.4.20	Vibration performance of CAA specimen	118
	4.2.4.21	Vibration performance of CAB specimen	119
	4.2.4.22	Vibration performance of CAC specimen	119
	4.2.4.23	Vibration performance of CBA specimen	120
	4.2.4.24	Vibration performance of CBB specimen	121
	4.2.4.25	Vibration performance of CBC specimen	121
	4.2.4.26	Vibration performance of CCA specimen	122
	4.2.4.27	Vibration performance of CCB specimen	123
	4.2.4.28	Vibration performance of CCC specimen	123
	4 2 4 20	Summary of kenaf core reinforced PU for	104
	4.2.4.29	motor vibration test	124
1 2 5	Vibration	performance analysis of kenaf core reinforced	105
4.2.3	SE		125
	4.2.5.1	Vibration performance of pure SE specimen	126

	4.2.5.2	Vibration performance of AAA specimen	127
	4.2.5.3	Vibration performance of AAB specimen	128
	4.2.5.4	Vibration performance of AAC specimen	128
	4.2.5.5	Vibration performance of ABA specimen	129
	4.2.5.6	Vibration performance of ABB specimen	130
	4.2.5.7	Vibration performance of ABC specimen	130
	4.2.5.8	Vibration performance of ACA specimen	131
	4.2.5.9	Vibration performance of ACB specimen	132
	4.2.5.10	Vibration performance of ACC specimen	132
	4.2.5.11	Vibration performance of BAA specimen	133
	4.2.5.12	Vibration performance of BAB specimen	134
	4.2.5.13	Vibration performance of BAC specimen	134
	4.2.5.14	Vibration performance of BBA specimen	135
	4.2.5.15	Vibration performance of BBB specimen	136
	4.2.5.16	Vibration performance of BBC specimen	136
	4.2.5.17	Vibration performance of BCA specimen	137
	4.2.5.18	Vibration performance of BCB specimen	138
	4.2.5.19	Vibration performance of BCC specimen	138
	4.2.5.20	Vibration performance of CAA specimen	139
	4.2.5.21	Vibration performance of CAB specimen	140
	4.2.5.22	Vibration performance of CAC specimen	140
	4.2.5.23	Vibration performance of CBA specimen	141
	4.2.5.24	Vibration performance of CBB specimen	142
	4.2.5.25	Vibration performance of CBC specimen	142
	4.2.5.26	Vibration performance of CCA specimen	143
	4.2.5.27	Vibration performance of CCB specimen	144
	4.2.5.28	Vibration performance of CCC specimen	144
	4.2.5.29	Summary of kenaf core reinforced SE for motor vibration test	145
1 76	Comparia	son vibration performance of kenaf core	147
4.20	reinforce	d PU and kenaf core reinforced SE	147
4.27	Structure	observation for each kenaf core reinforced PU	148
	and kena	f core reinforced SE	
	4.2.7.1	Structure of pure PU specimen	149
	4.2.7.2	Structure of pure SE specimen	150
	1273	Structure of 3 mm mesh size kenaf core	151
	4.2.7.3	reinforced PU specimen	131
	1271	Structure of 20 mesh size kenaf core reinforced	acture of 20 mesh size kenaf core reinforced 152 specimen
	⊣ ∠./. \	PU specimen	
	4275	.7.5 Structure of 40 mesh size kenaf core reinforced	153
	1.2.7.3	PU specimen	155

		1276	Structure of 3 mm mesh size kenaf core	154
		4.2.7.0	reinforced SE specimen	134
		4277	Structure of 20 mesh size kenaf core reinforced	155
		4.2.7.7	SE specimen	155
		1278	Structure of 40 mesh size kenaf core reinforced	157
		4.2.7.0	SE specimen	157
	4.3	Best Layup Seq	uence	158
		4.3.1 Best lay	rup sequence for impact energy absorption	158
		4.3.2 Best lay	rup sequence for motor vibration energy absorption	159
	4.4	Illustration of E	nergy Dissipation	160
5.	CO	NCLUSION		162
	5.1	Conclusion		162
	5.2	Recommendation	n	164
	5.3	Sustainability E	lement	165
	5.4	Commercial Va	lue and Potential	166
	5.5	Research Achie	vement	167
REF	EREN	NCES		169
APP	ENDI	CES		180

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	The advantages and disadvantages of the natural fibre	20
2.2	Percent of kenaf fibre components in various parts	24
2.3	Kenaf Fibre dimension	24
2.4	Different label according to different types of materials	29
2.5	Differences of Izod and Charpy test requirements	31
2.6	The impact force and distance travel of helmet according to different types of helmets	34
2.7	Summary of impact properties for natural fibre based on previous studied	35
2.8	Summary of energy absorption materials characteristic based on previous studied	38
3.1	Price and quantities of kenaf core based on mesh size	44
3.2	Properties of Polyurethane	44
3.3	The properties of soft epoxy resin in different aspects	45
3.3	Layup sequence of foam according to different arrangement of alphabet	50
4.1	Layup sequence of foam according to different arrangement of alphabet	55
4.2	The layup sequence of different mesh size of kenaf core reinforced PU	55
4.3	The layup sequence of different mesh size of kenaf core reinforced SE	59

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Overall methodology flow chart	9
2.1	Classification of composites materials based on matrix	13
2.2	Classification of composites materials based on reinforcement	14
2.3	Types of fibre reinforcement composite (a) random fibre; (b) continuous fibre	15
2.4	Types of particulates reinforcement composites (a) Particle composites; (b) Flat flakes composites; (c) Fillers composites	15
2.5	Types of structural composites (a) Sandwich composites; (b) Laminated composites	16
2.6	Categorized of natural fibres.	18
2.7	Natural fibre product (a) Compression mould automotive door panel; (b) Value added product from kenaf biocomposite for the Salone Satellite; (c) The particleboard with rice husk core	20
2.8	Kenaf Plant	21
2.9	Stem structure of kenaf plant	22
2.10	Kenaf bast fibre	24
2.11	Kenaf core with different mesh sizes (a) 3.0 mm; (b) 20 mesh; (c) 40 mesh	26
2.12	Types of impact (a) Particle; (b) Rigid body; (c) Flexible body transverse impact; (d) Flexible body axial impact	27

2.13	Illustration of impact (a) Horizontal impact; (b) Vertical impact	28
2.14	The graph of gel acceleration versus times for the different types of material.	29
2.15	Types of impact test (a) Izod Impact Test; (b) Charpy Impact Test	30
2.16	Setup for NOCSAE test	31
2.17	The Oberst Beam Method equipment set up	32
2.18	The impact strength of different Mengkuang fibre size with different filler content in composite.	33
2.19	The different types of helmets. (a) Kabuto; (b) Flax; (c) Kenaf	34
3.1	Flow chart for the overall methodology	42
3.2	Different mesh size of kenaf core (a) 3 mm (b) 20 mesh (c) 40 mesh.	43
3.3	The sample of polyurethane	44
3.4	Sample of Soft Epoxy	45
3.5	The overall design of mould	46
3.6	The heating drying oven	47
3.7	Illustration of impact absorber foam fabrication	48
3.8	The example of layup sequence of composite foam	50
3.9	Parameter of specimen for Charpy test	51
3.10	The Charpy test machine	52
3.11	The size of specimen used for motor vibration test	52
3.12	Scanning Electron Microscope (SEM)	53
4.1	Shrinkage defects happened in PU specimen with 3 mm kenaf core as reinforcement	57

4.2	Imbalance 40 mesh size kenaf core distribution when reinforced PU	58
4.3	The energy absorption of pure PU and 27 layup sequence of kenaf core reinforced PU	62
4.4	Pure PU specimen (Pendulum charpy impact test)	63
4.5	AAA layup sequence specimen	64
4.6	AAB layup sequence specimen	65
4.7	AAC layup sequence specimen	65
4.8	ABA layup sequence specimen	66
4.9	ABB layup sequence specimen	67
4.10	ABC layup sequence specimen	67
4.11	ACA layup sequence specimen	68
4.12	ACB layup sequence specimen	69
4.13	ACC layup sequence specimen	69
4.14	BAA layup sequence specimen	70
4.15	BAB layup sequence specimen	71
4.16	BAC layup sequence specimen	71
4.17	BBA layup sequence specimen	72
4.18	BBB layup sequence specimen	73
4.19	BBC layup sequence specimen	73
4.20	BCA layup sequence specimen	74
4.21	BCB layup sequence specimen	75
4.22	BCC layup sequence specimen	75
4.23	CAA layup sequence specimen	76
4.24	CAB layup sequence specimen	77

xvii

4.25	CAC layup sequence specimen	77
4.26	CBA layup sequence specimen	78
4.27	CBB layup sequence specimen	79
4.28	CBC layup sequence specimen	79
4.29	CCA layup sequence specimen	80
4.30	CCB layup sequence specimen	81
4.31	CCC layup sequence specimen	81
4.32	The energy absorption of pure SE and 27 layup sequence of kenaf core reinforced in SE	83
4.33	Pure SE specimen (Pendulum charpy impact test)	84
4.34	AAA layup sequence specimen	85
4.35	AAB layup sequence specimen	85
4.36	AAC layup sequence specimen	86
4.37	ABA layup sequence specimen	87
4.38	ABB layup sequence specimen	87
4.39	ABC layup sequence specimen	88
4.40	ACA layup sequence specimen	89
4.41	ACB layup sequence specimen	89
4.42	ACC layup sequence specimen	90
4.43	BAA layup sequence specimen	91
4.44	BAB layup sequence specimen	91
4.45	BAC layup sequence specimen	92
4.46	BBA layup sequence specimen	93
4.47	BBB layup sequence specimen	93

xix

4.48	BBC layup sequence specimen	94
4.49	BCA layup sequence specimen	95
4.50	BCB layup sequence specimen	95
4.51	BCC layup sequence specimen	96
4.52	CAA layup sequence specimen	97
4.53	CAB layup sequence specimen	97
4.54	CAC layup sequence specimen	98
4.55	CBA layup sequence specimen	99
4.56	CBB layup sequence specimen	99
4.57	CBC layup sequence specimen	100
4.58	CCA layup sequence specimen	101
4.59	CCB layup sequence specimen	101
4.60	CCC layup sequence specimen	102
4.61	Comparison of energy absorption for kenaf core reinforce PU and kenaf core reinforced SE	104
4.62	The graph of average magnitude rms of pure PU and 27 layup sequence of kenaf core reinforced PU	105
4.63	Pure PU specimen (Motor vibration test)	106
4.64	AAA layup sequence specimen	106
4.65	AAB layup sequence specimen	107
4.66	AAC layup sequence specimen	108
4.67	ABA layup sequence specimen	108
4.68	ABB layup sequence specimen	109
4.69	ABC layup sequence specimen	110
4.70	ACA layup sequence specimen	110

4.71	ACB layup sequence specimen	111
4.72	ACC layup sequence specimen	112
4.73	BAA layup sequence specimen	112
4.74	BAB layup sequence specimen	113
4.75	BAC layup sequence specimen	114
4.76	BBA layup sequence specimen	114
4.77	BBB layup sequence specimen	115
4.78	BBC layup sequence specimen	116
4.79	BCA layup sequence specimen	116
4.80	BCB layup sequence specimen	117
4.81	BCC layup sequence specimen	118
4.82	CAA layup sequence specimen	118
4.83	CAB layup sequence specimen	119
4.84	CAC layup sequence specimen	120
4.85	CBA layup sequence specimen	120
4.86	CBB layup sequence specimen	121
4.87	CBC layup sequence specimen	122
4.88	CCA layup sequence specimen	122
4.89	CCB layup sequence specimen	123
4.90	CCC layup sequence specimen	124
4.91	The graph of average magnitude rms of pure SE and 27 layup sequence of kenaf core reinforced SE	126
4.92	Pure SE specimen (Motor vibration test)	127
4.93	AAA layup sequence specimen	127

4.94	AAB layup sequence specimen	128
4.95	AAC layup sequence specimen	129
4.96	ABA layup sequence specimen	129
4.97	ABB layup sequence specimen	130
4.98	ABC layup sequence specimen	131
4.99	ACA layup sequence specimen	131
4.100	ACB layup sequence specimen	132
4.101	ACC layup sequence specimen	133
4.102	BAA layup sequence specimen	133
4.103	BAB layup sequence specimen	134
4.104	BAC layup sequence specimen	135
4.105	BBA layup sequence specimen	135
4.106	BBB layup sequence specimen	136
4.107	BBC layup sequence specimen	137
4.108	BCA layup sequence specimen	137
4.109	BCB layup sequence specimen	138
4.110	BCC layup sequence specimen	139
4.111	CAA layup sequence specimen	139
4.112	CAB layup sequence specimen	140
4.113	CAC layup sequence specimen	141
4.114	CBA layup sequence specimen	141
4.115	CBB layup sequence specimen	142
4.116	CBC layup sequence specimen	143
4.117	CCA layup sequence specimen	143

xxii

4.118	CCB layup sequence specimen	144
4.119	CCC layup sequence specimen	145
4.120	Comparison of magnitude rms value for kenaf core reinforce PU and kenaf core reinforced SE	147
4.121	Sample undergoes SEM observation	148
4.122	Pure PU specimen	149
4.123	Microstructure of pure PU specimen under SEM	149
4.124	Pure SE specimen	150
4.125	Microstructure of pure SE specimen under SEM	150
4.126	Sample of 3 mm mesh size kenaf core reinforced PU specimen	151
4.127	Microstructure of 3 mm mesh size kenaf core reinforced PU specimen under SEM	151
4.128	Sample of 20 mesh size kenaf core reinforced PU specimen	152
4.129	Microstructure of 20 mesh size kenaf core reinforced PU specimen under SEM	153
4.130	Sample of 40 mesh size kenaf core reinforced PU specimen	154
4.131	Microstructure of 40 mesh size kenaf core reinforced PU specimen under SEM	154
4.132	Sample of 3 mm mesh size kenaf core reinforced SE specimen	155
4.133	Microstructure of 3 mm mesh size kenaf core reinforced SE specimen under SEM	155
4.134	Sample of 20 mesh size kenaf core reinforced SE specimen	156
4.135	Microstructure of 20 mesh size kenaf core reinforced SE specimen under SEM	156

xxii

4.136	Sample of 40 mesh size kenaf core reinforced SE specimen	157
4.137	Microstructure of 40 mesh size kenaf core reinforced SE specimen under SEM	158
4.138	SE specimen with layup sequence ACC	159
4.139	PU specimen with layup sequence CAA	160
4.140	Illustration of energy dissipation for layup sequence ACC in impact test	160
4.141	Illustration of energy dissipation for layup sequence CAA in vibration test	160
5.1	Prototype of product made by kenaf core reinforced polyurethane composite foam	167
5.2	Potential application of kenaf core reinforced PU with CAA layup sequence	167
5.3	Picture taken during 5 th Undergraduate Research Competition & Exhibition.	168