

Faculty of Mechanical and Manufacturing Engineering Technology

INVESTIGATION ON INCOMPLETE FILL PROBLEM OF QUAD FLAT PACKAGE IN SEMICONDUCTOR INDUSTRY

NURUL AMIZA BINTI MAZLAN SUPAWI

BACHELOR OF MANUFACTURING ENGINEERING TECHNOLOGY (PROCESS AND TECHNOLOGY)

INVESTIGATION ON INCOMPLETE FILL PROBLEM OF QUAD FLAT PACKAGE IN SEMICONDUCTOR INDUSTRY

NURUL AMIZA BINTI MAZLAN SUPAWI

A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology)

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Investigation on incomplete fill Problem of Quad Flat Package in Semiconductor industry

Sesi Pengajian: 2019

Saya **NURUL AMIZA BINTI MAZLAN SUPAWI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT* Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK TERHAD

Yang benar,

Disahkan oleh penyelia:

NURUL AMIZA BINTI MAZLAN SUPAWI

TS. DR. KAMARUL BIN AMIR MOHAMED Cop Rasmi Penyelia

Alamat Tetap:

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

iii

DECLARATION

I hereby, declared this report entitled Investigation on incomplete fill Problem of Quad Flat Package in Semiconductor industry is the results of my own research except as cited in references.

Signature:	
Author:	NURUL AMIZA BINTI MAZLAN
	SUPAWI

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor:	TS. DR. KAMARUL BIN AMIR
	MOHAMED

Signature:	
Co-supervisor 1:	TS. DR. ROHANA BINTI ABDULLAH

Signature: Co-supervisor 2: IR. TS. MOHD SYAHRIN AMRI BIN MOHD NOH

v

ABSTRAK

Hari ini, industry pembuatan sangat mengutamakan produktiviti. Peningkatan produktiviti sekali gus akan meningkatkan kualiti produk. Terdapat pelbagai alternative yang tersedia untuk untuk meningkatkan produktiviti. Dalam industry pembuatan semikonduktor, komponen yang dibentuk tidak penuh atau lengkap adalah salah satu kecacatan produk biasa yang memberi kesan kepada kualiti produk. Projek ini bertujuan untuk menganalisa dan menentukan punca masalah komponen yang dibentuk tidak lengkap yang dihadapi sebuah kilang pembuat semikonduktor di Muar yang mengalami jumlah kerosakan produk yang tinggi dalam proses pembuatan mereka dan merekomenkan penyelesaian untuk mengurangkan kecacatan produk. Untuk membaiki proses tersebut, kaedah DMAIC Six Sigma digunakan untuk menyelesaikan masalah ini. Projek ini dijalankan mengikut kesemua lima fasa DMAIC iaitu define, measure, analyse, improve, dan control. Kaedah ini adalah antara yang terbaik dan terbukti untuk mengurangkan kerosakan produk dan menaiktaraf sistem sejak berdekad yang lalu. Dalam fasa define, target projek ini untuk mengurangkan jumlah produk yang tidak menepati speksifikasi telah dibina dan didokumenkan. Fasa measure dilakukan dengan mengumpulkan data kecacatan dalam tempoh masa dua minggu dan telah diterjemahkan dalam graf Pareto. Dalam fasa analyse, rajah tulang ikan (fishbone) dan 5 Kenapa (5 Whys) digunakan bagi mencari punca kepada kecacatan komponen yang telah dibentuk. Setelah punca kecacatan komponen telah dikenalpasti, cadangan untuk mengatasi masalah dibuat mengikut setiap punca dalam fasa improve. Akhir sekali, control chart dicadangkan untuk diguna dalam fasa control.

ABSTRACT

Nowadays, productivity is the main concern to manufacturing industry. Improving the productivity will improve the quality of the product. There are many alternative that available to improve the productivity. In semiconductor manufacturing industry, incomplete fill is one of the common defects in moulding process that affects product quality. This project is aimed to analyse and determine the root cause of incomplete fill defects faced by a semiconductor manufacturing company in Muar which experienced high number of defects in their production process and to recommend a solution to reduce the defects. In order to improve the process, Six Sigma DMAIC method was used to tackle the problem. This project was conducted according to all five phases of DMAIC which are define, measure, analyse, improve, and control. This method is powerful and proven to reduce defects and improve system since decades ago. In define phase, project goal statement to reduce the reject quantity is constructed and documented. Measure phase is done by collecting the incomplete fill defect for two week and translated into pareto chart. In analyse phase, fishbone diagram and 5 Whys are used to find out the root causes for incomplete fill defects. After root causes are found, suggestions to counter the problem according to the root causes is done in improve phase. Finally, control chart is suggested to be used in control phase.

DEDICATION

To my beloved parents Mazlan Supawi bin Yusof, Siti Jariah binti Che Noh, my supervisor Ts. Dr. Kamarul bin Amir Mohamed, my Co-supervisor 1 Dr. Rohana binti Abdullah, Co-Supervisor 2 Ir. Ts. Mohd Syahrin Amri bin Mohd Noh and everyone involved especially STMicroelectronic staffs and UTeM lecturers.

viii

ACKNOWLEDGEMENTS

First and foremost, I must thank my research supervisors, Ts. Dr. Kamarul Amir Mohamed and my co-supervisor Dr. Rohana binti Abdullah and Ir. Ts. Mohd Syahrin Amri bin Mohd Noh. Without their assistance and dedicated involvement in every step throughout the process, this paper would have never been accomplished. I would like to thank you very much for your support and understanding. Not overlooked, I want to use this opportunity to express my gratitude to all STMicroelectronic staff particularly Mr. Jamal, Mr. Azman and Mr. CL Yeo for being agreeable, helpful in guiding and data sharing and always supported me throughout the course of this degree project. Most importantly, none of this could have happened without my family. I am very grateful for my parents, siblings and friends who have been encouraging and supportive all this time. Without unending affection and persevering help from my family, I would not have been here.

TABLE OF CONTENTS

		PAGE
	TABLE OF CONTENTS	Х
	LIST OF TABLES	XV
	LIST OF FIGURES	xvi
	LIST OF APPENDICES	xviii
	LIST OF SYMBOLS	xix
	LIST OF ABBREVIATIONS	XX
СНА	APTER 1: INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	2
1.3	Project Objective	3
1.4	Project Methodology	3
1.5	Scope of Study	4
1.6	Thesis Structure	4
СНА	APTER 2: LITERATURE REVIEW	8
2.1	Introduction	8
2.2	Manufacturing Industry	9
2.3	Quality	9

	2.3.1	Dimension of Quality	10
	2.3.2	Total Quality Management (TQM)	12
2.4	Produ	ctivity	13
	2.4.1	Measures of productivity	13
	2.4.2	Partial productivity	14
	2.4.3	Multifactor productivity	14
	2.4.4	Benefit of productivity	15
2.5	Produ	ctivity input	15
	2.5.1	Man / Labor	15
	2.5.2	Machine	16
	2.5.3	Material	16
	2.5.4	Method	16
2.6	Produ	ctivity output	17
2.7	Qualit	y Tools	17
	2.7.1	Check sheet	18
	2.7.2	Pareto chart	18
	2.7.3	Cause and Effect Diagram	19
2.8	Six Si	gma	20
	2.8.1	Definition of six sigma	22
	2.8.2	Six Sigma Methodology	23

	2.8.3 DMAIC Six Sigma methodology	25
2.9	Company Background	30
2.10	Selected of Product	31
2.11	Process	32
	2.11.1 Moulding	34
	2.11.2 Moulding procedure	36
2.12	The Quality problem in the moulding process	37
2.13	Incomplete Fill Defect	41
2.14	Summary	43
CHAI	PTER 3: METHODOLOGY	44
3.1	Introduction	44
3.2	Project Planning	45
3.3	Flow chart of Research Methodology	47
	3.3.1 Define Phase	49
	3.3.1.1 Selection of Project Tittle	49
	3.3.1.2 Literature Review	49
	3.3.1.3 Factory Visit	50
	3.3.1.4 Define Target / Goal	50
	3.3.2 Measure Phase	51
	3.3.2.1 Data Gathering	51

xii

	3.3.2.2 Identify the Problem	52
	3.3.3 Analyse Phase	52
	3.3.3.1 Identify the Root Cause of the Problem	53
	3.3.3.2 Analyses and Validation	54
	3.3.4 Improve Phase	55
	3.3.5 Control Phase	55
3.4	Gantt Chart	56
	3.4.1 Gantt Chart FYP 1	57
	3.4.2 Gantt Chart FYP 2	58
3.5	Expected Result	59
3.6	Summary	59
СНА	APTER 4: RESULT & DISCUSSION	60
4.1	Introduction	60
4.2	Define Phase	61
4.3	Measure Phase	62
4.4	Analyses Phase	64
	4.4.1 Analyses by Team	65
	4.4.2 Analysis by Device	66
	4.4.3 Analysis by Compound	67
	4.4.4 Analysis by Incomplete Fill Category xiii	68

	4.4.5	Data Analysis from Machine MOLD ASM #22	69
	4.4.6	Dummy Run-Test	71
	4.4.6.1	Press 1	71
	4.4.7	Press Analysis	73
	4.4.8	5 - Why Analysis	76
4.5	Improv	ve Phase	77
4.6	Contro	l Phase	81
4.7	Summa	ary	82
СНАР	PTER 5:	CONCLUSION & RECOMMENDATION	83
5.1	Conclu	sion	83
5.2	Recom	mendation	84
DEF		70	0.6
REFE	KENCI	£S	86
APPE	NDIX		88

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 : Dimen	sions of Quality	11
Table 2.2 : The rel	ationship of sigma level to "defects per million opportunities"	22
Table 2.3 : DMAI	C VS DMADC	25
Table 2.4 : Type o	f Quad Flat Package (QFP)	32
Table 2.5 : Mould	ing Procedure	36
Table 2.6 : Mould	ing Defect	37
Table 4.1: Project	Charter	61
Table 4.2: Total R	eject in PPM	63
Table 4.3: Press D	ata from Mould ASM #22	69
Table 4.4: Detail I	Dummy QFP TQ10	72
Table 4.5: Mould	Temperature of Press 1	74
Table 4.6: 5 Why	Analysis	77
Table 4.7: Data of	Incomplete Fill After Improvement	80

XV

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1 : Struct	ture of Report	7
Figure 2.1 : Manu	facturing System	10
Figure 2.2 : Three	main criteria in quality management	12
Figure 2.3 : Exam	ple of check sheet	18
Figure 2.4 : Exam	ple of Pareto chart	19
Figure 2.5 : Exam	ple of cause and effect diagram	20
Figure 2.6 : Six Si	igma Methodology	24
Figure 2.7 : DMA	IC Flowchart	26
Figure 2.8: STMic	croelectronic Sdn. Bhd	30
Figure 2.9: Quad	Flat Package (QFP)	31
Figure 2.10 : Gen	eral process of QFP	33
Figure 2.11 : End	of Line Process Flow	34
Figure 2.12: Moul	lding Machine ASM Idealmold	35
Figure 2.13: Mou	lding Machine FICO AMS 36M	35
Figure 2.14: Incor	nplete Fill of Air Vent Category	41
Figure 2.15: Incor	nplete Fill of Gate Block Category	42
Figure 2.16: Incor	nplete Fill of Hole Category xvi	42

Figure 3.1 : Flowchart of the FYP 1 & FYP 2	46
Figure 3.2 : Flowchart of research study	48
Figure 3.3: Cause and Effect Diagram 1	52
Figure 3.4: Cause and Effect Diagram of Press 1	54
Figure 4.1: Pareto Diagram of Quantity Reject Versus Machine	64
Figure 4.2: TQ10 Reject Quantity versus Team	65
Figure 4.3: TQ10 Reject Quantity versus Device	66
Figure 4.4: TQ10 Reject Quantity versus Compound	67
Figure 4.5: Percentage of Reject Quantity versus Incomplete Fill Category	68
Figure 4.6: Graph of Percent of Incomplete Fill versus Machine Press	70
Figure 4.7: Dummy Run-Test Result	71
Figure 4.8: Example Transfer Block of QFP TQ14	75
Figure 4.9: Transfer Block QFP TQ10 (After Service)	78
Figure 4.10: Quantity Reject of Incomplete Fill before Improvement	79
Figure 4.11: Quantity Reject of Incomplete Fill After Improvement	80
Figure 4.12: Quality Control Chart of Incomplete Fill Defect	82

xvii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1 BEM&T Muar	Organization Chart	88
Appendix 2 : Quad Flat Pac	ckage Assembly Organization	89
Appendix 3 : Current Layo	ut for Block P1	90
Appendix 4 : End of Line I	ayout for Block P1	91
Appendix 5: Data Collectio	on of Mold ASM #22	92
Appendix 6: Data Collectio	on of Mold ASM #22	93
Appendix 7: Data Collectio	on of Mold ASM #22	94
Appendix 8: Data Collectio	on of Mold ASM #22	95
Appendix 9: Data Collectio	on of Mold Fico #13	96
Appendix 10: Data Collecti	on of Mold Fico #13	97
Appendix 11: Data Collecti	on of Mold ASM #9	98
Appendix 12: Data Collecti	on of Mold ASM #16	99
Appendix 13: Data Collecti	on of Mold Fico #1	100
Appendix 14: Data Collecti	on of Mold ASM #13	101
Appendix 15: Data Collecti	on of Mold ASM #3	102
Appendix 16: Turn-It-In		103

xviii

LIST OF SYMBOLS

σ	-	Sigma
Q	-	Quality
Р	-	Performance
E	-	Expectation

xix

LIST OF ABBREVIATIONS

QFP	Quad Flat Package	
DMAIC	Define, Measure, Analyse, Improve, Control	
TQM	Total Quality Management	
IE	Industrial Engineering	
SOP	Standard Operation Procedure	
DMADV	Define, Measure, Analyse, Design, Verify	

CHAPTER 1

INTRODUCTION

Chapter one will explain briefly about the outline of the project and main purpose of this study. This chapter also include introduction of six sigma and identification of problem statement, objective and scope of the study.

1.1 Background

Every manufacturing industry growing awareness of the need to improve quality in the industrial sector. There is a huge pressure on organizations to improve the customer satisfaction and quality in the organization, and at the same time to decrease ineffectiveness and reduce the number of errors. Customer is expecting to have a good product with higher quality and better service at a lower price. At industry, productivity will improve with a great operation, good production planned and higher quality product.

Efficiency of manufacturing production is measure through assorted types to define productivity. Productivity is the value of service or product produced divided by the values of input resources. A productivity expressed the ratio of the output and inputs used in manufacturing production. Increment in productivity enable organization and company to produce greater output for the same level of input, win higher incomes, and eventually create higher quality output. However, increasing productivity are important in operation to perform the high-quality operation.

Nowadays, there are too many quality issues found in manufacturing company. However, quality problems have two faces in manufacturing which is process and product. Quality issues or defect occur in production operation because of the mistake in the way its produce and quality control. All the product must follow the specification given to pass the quality check. All the quality issues and defect must be eliminated to enhance the product quality and productivity of the company. One of the way to improve productivity is to use six sigma methodology to resolve the quality problem and improve the productivity.

In the course of the most recent years, the six-sigma program has turned out to be progressively famous and used in assorted company as well as in several types of industries. This study will gain in depth knowledges about six sigma and its methodology of DMAIC will be used to complete this study.

1.2 Problem Statement

STMicroelectronics Sdn. Bhd. is global semiconductor company. а STMicroelectronics is international company focus on application approach in smart driving, smart industry, smart home and city, and smart things. In this project research focusing in OFP (Quad flat package) department, in producing quad flat package. Quad flat package has faced many quality and defect problems. These quality defect have contributed increase rate rejected for outgoing inspection for every month. The increasing rate for rejected product will cause more extra money needed to spend for new raw material for the product. If this happen in long term it will cause loss to the company. Poor product quality that does not fulfil customer requirement and may cause customer to choose competitors product.

All semiconductor industry worldwide is trying to satisfy their customer by producing a good product with high quality. These quality problem make the manufacturer to use many technique and step to control and solve the quality issues for their product and

its application in production line. The focus in this project is to develop a six sigma techniques to reduce the incomplete fill defect of QFP in moulding process and increase the productivity.

1.3 Project Objective

The objectives of this study are as follows:

- To study the incomplete fill problems of the Quad Flat Package of TQ10 production line at semiconductor company.
- ii. To analyse main factors that contribute to the incomplete fill defect of quad flat package of TQ10.
- iii. To propose improvement method to overcome and reduce the incomplete fill defects of Quad Flat Package TQ10.

1.4 Project Methodology

Project methodology started with two phase. One is referring the overall of the project and another is referring the method that used to conduct this research. In overall of this project, the project started with define the title, literature review, visit the factory, identify the problem, research methodology, data and information gather, data analysis, improvement and recommendation and last is discussion and conclusion.

For the method that used to conduct this research have five phase. First is define phase that include to get approval to conduct research at STMicroelectronics, problem identification and six sigma methodology planning. Second is measure phase which is data and information gathering. Analysis phase is consisting of data analysis and identify the root cause of the problem. Next is improve which include the suggestion for the improvement and lastly is control which is to suggestion to control the improvement.

1.5 Scope of Study

The scope of this project is focused or reducing the incomplete fill defect that occur during molding process for producing quad flat package raw product. This research study develops six sigma methodology and the raw data was collected at STMicroelectronic company Sdn. Bhd.

1.6 Thesis Structure

Structure of report is like the flow the report to study the productivity improvement by using six sigma techniques. Each of the chapter have specific end goal to accomplish the comprehension of the proposal. Chapter 1 introduces the project which are including project background, problem statement, objective, project methodology, scope of study and last was thesis structure. In this chapter show the background of the research.

Chapter 2 presents the literature review on theoretical background of the development in six sigma. The definition of the productivity also be highlighted in this chapter. The subchapter in this chapter are started with introduction, manufacturing industry, quality, productivity, productivity input, productivity output, six sigma, company background and selected of product.