

Faculty of Mechanical and Manufacturing Engineering Technology

DESIGN AND ANALYSIS MINI HYDRO POWER TURBINE BLADE

Te Jin Hang

Bachelor of Mechanical Engineering Technology (Maintenance) with Honours.

2019

🔘 Universiti Teknikal Malaysia Melaka

DESIGN AND ANALYSIS MINI HYDRO POWER TURBINE BLADE

TE JIN HANG

A report submitted in fulfilment of the requirement for the Bachelor of Mechanical Engineering Technology (Maintenance) with Honours.

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Design and analysis mini hydro power turbine blade

SESI PENGAJIAN: 2019/2020 Semester 1

Saya **TE JIN HANG** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (\checkmark)

	SULIT TERHAD TIDAK TERHAD	(Mengandungi r kepentingan Ma AKTA RAHSIA (Mengandungi r oleh organisasi/	naklumat yang berdarjah keselamatan atau laysia sebagaimana yang termaktub dalam A RASMI 1972) naklumat TERHAD yang telah ditentukan badan di mana penyelidikan dijalankan)
			Disahkan oleh:
()	()
Alamat	Tetap:		Cop Rasmi:
24, Jala	an Emas 30,		
Taman	Sri Putri,		
81300	Skudai, Johor		
Tarikh:			Tarikh:
** Jika Lapo berkuasa/org dikelaskan se	ran PSM ini SUL anisasi berkenaar ebagai SULIT ata	IT atau TERHAD, s 1 dengan menyataka u TERHAD.	sila lampirkan surat daripada pihak n sekali sebab dan tempoh laporan PSM ini perlu

DECLARATION

I hereby, declared this report entitled Design and analysis mini hydro power turbine

blade is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Te Jin Hang
Date	:	

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Maintenance) with Honours. The member of the supervisory is as follow:

Signature	:
Supervisor's Name	: Ts. Azrin bin Ahmad
Date	:

DEDICATION

To my beloved parents who taught me that the best kind of knowledge to have is learned for its own sake. It is also dedicated to my supervisor who taught me that even the largest task can be accomplished if it is done one step at a time.

ABSTRAK

Kajian ini membincangkan tentang reka bentuk dan analisis bilah turbin mini untuk penjanaan kuasa hidroelektrik. Turbin mini untuk penjanaan kuasa hidroelektrik. telah diperlukan disebabkan oleh pembinaan empangan memerlukan kos yang terlalu tinggi dan telah berkesan kepada ekosistem. Oleh kerana aliran sungai lebih rendah berbanding dengan aliran air di empangan, turbin mini untuk penjanaan kuasa hydroelektrik diperlukan untuk menghasilkan tenaga elektrik dalam halaju air rendah dan tekanan rendah. Oleh itu, bilah turbin lingkaran dipilih untuk dianalisis dan direka oleh pencetak 3D dalam projek ini. Bilah turbin lingkaran ini boleh dikendalikan dengan halaju air rendah dan tekanan yang rendah untuk mencegah haiwan laut daripada kebinasaan. Kawasan permukaan bilah turbin lingkaran dan bilah itu sesuai untuk halaju rendah kerana radius kecilnya dapat menjana daya tarikan kecil. Turbin lingkaran akan direka dan dilukis dengan menggunakan SOLIDWORKS. Selain itu, bilah turbin lingkaran direka dengan menggunakan pencetak 3D. Jadi, masa pemprosesan telah dapat dikurangkan dan akan dapat menjimatkan kos. Bahan yang digunakan untuk menghasilkan bilah lingkaran adalah Poliamida 12. Poliamida 12 adalah yang dapat menahan tekanan tinggi dan halaju air tinggi. Selain itu, simulasi aliran dan simulasi tekanan akan dianalisis menggunakan Computational Fluid Dynamics (CFD). Jumlah voltan yang dihasilkan, dan kelajuan putaran bilah lingkaran akan direkodkan dalam kedua-dua eksperimen yang menggunakan bilah turbin lingkaran dengan ruang tutup dan lingkaran turbin spiral tanpa ruang tutup. Hasil kecekapan bilah lingkaran akan dikira dan dibandingkan antara bilah lingkaran dengan ruang tutup dan tanpa ruang tutup. Keputusan menunjukkan bahawa bilah turbin lingkaran dengan memasang ruang tutup dapat menghasilkan halaju, laju putaran dan voltan yang lebih tinggi daripada tanpa memasang ruang tutup.

ABSTRACT

This study discusses about the design and analysis mini hydro power turbine blade. The mini hydro power turbine has become more useful since the dam construction is too high cost and ecosystem impact. As the flow rate of the rivers or stream is lower comparing to the dam construction, the mini hydro power turbine is needed to be to generate electricity in the low water velocity and low head. Hence, the spiral turbine blade is decided to be analyzed and fabricated by 3D printer in this experiment. This kind of turbine blade can be operated in low water velocity and low head thus it can avoid harming the marine life. The spiral turbine blade's surface area and its own blades are suitable for low velocity as its small radius can generate a little traction force. The spiral turbine blade is designed by Quality Functional Deployment (QFD), Morphological chart and Failure modes, effects, and critical analysis. It is then drawn by using SOLIDWORKS software. Furthermore, the spiral turbine blade is fabricated by using 3D printer, so the processing time has been reduced and cost saving. The material that used by produce spiral blade is Polyamide 12 as this kind of material can withstand high pressure and high-water velocity. Moreover, the flow simulation and pressure simulation are analyzed by Computational Fluid Dynamics (CFD). The results of voltage produced, and rotational speed of spiral blade will be recorded in both experiments which are spiral turbine blade with and without the chamber. The results of efficiency of spiral blade is calculated and will be compared in between spiral blade with and add without the chamber. The results showed that the spiral turbine blade with installing collecting chamber can produce higher velocity, rotational speed, and voltage than without installing collecting chamber.

ACKNOWLEDGEMENTS

I would like to thank En Azrin bin Ahmad. He has been the ideal thesis supervisor. His advice, insightful criticisms, and patient encouragement aided the writing of this thesis in innumerable ways. His support of this project was greatly needed and deeply appreciated. Moreover, I would like to thank En. Mohammad Rafi Bin Omar, my co-supervisor, who is always generous about sharing his knowledge, and helping in in Selective Laser Sintering lab. Furthermore, thousands of gratitude dedicated to friends and everyone that had given support throughout the process in completing the project.

TABLE OF CONTENT

DECLARATIO	Ν			
DEDICATION				
ABSTRACT				i
ABSTRAK				ii
ACKNOWLED	GEME	NT		iii
TABLE OF CO.	NTENI FS	Ľ		1V
LIST OF TABL	RES			vi viii
LIST OF ABBR	EVIAT	TIONS, S	SYMBOLS AND NOMENCLATURES	xi
CHAPTER 1	INT	RODU	CTION	1
	1.1	Backgr	ound	1
	1.2	Statem	ent of the Purpose	3
	1.3	Problem	m Statement	4
	1.4	Scope	of work	4
CHAPTER 2	LIT	ERATU	JRE REVIEW	5
	2.1	Introdu	iction	5
	2.2	Hydrop	power	5
	2.3	Head a	nd flow	6
	2.4	Impuls	e turbine	7
		2.4.1	Crossflow turbine	8
		2.4.2	Pelton turbine	10
		2.4.3	Turgo turbine	11
	2.5	Reaction	on turbine12	
		2.5.1	Francis turbine	13
		2.5.2	Kapan turbine	14
	2.6	Horizo	ntal spiral turbine	14
	2.7	Turbin	e power	16
	2.8	Turbin	e speed	17
	2.9	Turbin	e efficiency and torque	18
	2.10	ANSY	S	19
	2.11	Compu	tational Fluid Dynamics (CFD)	20
	2.12	3D prin	nting	21
	2.13	Selecti	ve Laser Sintering	22
	2.14	Nylon	Polyamide 12	24

CHAPTER 3	ME	THOD	DLOGY	25	
	3.1	Introdu	action	25	
	3.2	Flowcl	nart of designing mini hydro power turbine blade	25	
		3.2.1	Morphological chart	27	
		3.2.2	Quality functional deployment	28	
		3.2.3	Failure modes, effects and critical analysis (FME	CA)29	
		3.2.4	Detailed Design	29	
	3.3	Machin	ne Equipment	30	
		3.3.1	Selective Laser Sintering Machine	30	
		3.3.2	Blender Mixer	31	
		3.3.3	Powder Purify Station	32	
		3.3.4	Sand Blasting Machine	33	
	3.4	Softwa	re	34	
		3.4.1	Computational Fluid Dynamics	34	
		3.4.2	BuildStar	35	
		3.4.3	Makestar	36	
	3.5	Project	Specification	38	
		3.5.1	Bill of Material	39	
	3.6	Experi	mental method	40	
CHAPTER 4	RESULTS& DISCUSSION			43	
	4.1	Introdu	action	43	
	4.2	Conce	otualization	43	
		4.2.1	Design concept & selection of turbine type	43	
		4.2.2	System boundary	44	
		4.2.3	Product type	44	
	4.3	Morph	ological chart	44	
	4.4	Quality	y Functional Deployment	46	
	4.5	Failure	Mode, Effects, and Critical Analysis (FMECA)	48	
	4.6	Detaile	ed Design	49	
		4.6.1	Part drawing	50	
		4.6.2	Assembly Drawing	53	
		4.6.3	Exploded view	54	
	4.7	Flow s	imulation analysis of the spiral blade	55	
		4.7.1	Material Properties of Polyamide 12	55	
		4.7.2	Flow analysis of spiral blade with chamber	56	
		4.7.3	Flow analysis of spiral blade without chamber	58	
	4.8	Pressu	re analysis of spiral turbine blade	60	
		4.8.1	Pressure analysis of spiral turbine blade with char	nber	60
		4.8.2	Pressure analysis of spiral turbine blade without		
		chamb	er	62	
	4.9	Result	of modelling and calculation	64	
		4.9.1	Calculation of torque	64	
			-		

	4.9.2	Calculation of turbine speed	64
	4.9.3	Turbine power	65
	4.9.4	Power output and efficiency	66
CHAPTER 5	CONCLUS	ION& FUTURE WORK	69
	5.1 Conclu	ision	69
	5.2 Limita	tion	70
	5.3 Future	work	70
REFERENCES			71
APPENDICES			77

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1: Speci	fication of SLS machine	31
Table 3.2: Speci	fication of blender mixer	31
Table 3.3: Speci	fication of powder purify station	32
Table 3.4: Speci	fication of sand blasting machine	33
Table 3.5: Bill o	f material	39
Table 3.6: Resul	ts of both testing	42
Table 4.1: Morp	hological chart	45
Table 4.2: QFD	for Customer requirements	46
Table 4.3: Mater	rial properties of Polyamide 12	55
Table 4.4: Water	r velocity flow in the spiral blade with chamber	57
Table 4.5: Water	r velocity flow in the spiral blade without chamber	58
Table 4.6: Press	ure acting on the spiral blade with chamber	61
Table 4.7: Press	ure acting on the spiral blade with no chamber	62

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: Example of mir	ii hydro turbine	2
Figure 1.2: Mini hydro pov	ver turbine blade	3
Figure 2.1: Hydropower		6
Figure 2.2: Principle of imp	pulse turbine	8
Figure 2.3: Crossflow turbi	ne	9
Figure 2.4: Pelton turbine		10
Figure 2.5: Turgo turbine		11
Figure 2.6: Principle of rea	ction turbine	12
Figure 2.7: Francis turbine		13
Figure 2.8: Kaplan turbine		14
Figure 2.9: The shape of bl	ade orientating to face the current flow of direction	15
Figure 2.10: The multiple b	plades options cuts through water all along its horizo	ontal axis
		16
Figure 2.11: 3D printing		22
Figure 2.12: Selective Lase	r Sintering	23
Figure 2.13: Chemical form	nula of PA 12	24

Figure 3.1: Flowchart of the designing mini hydro power turbine blade methodology	26
Figure 3.2: Flowchart of fabricating mini hydro power turbine blade	27
Figure 3.3: FARSOON FS402P	30
Figure 3.4: Blender mixer NPM-V50	32
Figure 3.5: Powder purify station	33
Figure 3.6: Sand blasting machine	34
Figure 3.7: Example of CFD simulation	35
Figure 3.8: Buildstar software	36
Figure 3.9: Piston movement and powder recoating	36
Figure 3.10: Makestar view window	37
Figure 3.11: Final design of the mini hydro turbine	38
Figure 3.12: Location of experiment carried out	40
Figure 3.13: Testing of mini hydro power turbine without chamber	40
Figure 3.14: Testing of mini hydro power turbine with chamber	41
Figure 4.1: Spiral turbine blade	50
Figure 4.2: Ball bearing	51
Figure 4.3: Part drawing of shaft	52
Figure 4.4: Assembly drawing of mini hydro turbine	53
Figure 4.5: Exploded view	54
Figure 4.6: Water velocity streamline	56
Figure 4.7: Outer view of spiral turbine blade with chamber	56

Figure 4.8: Graph of velocity versus time	57
Figure 4.9: The water velocity flow streamline	58
Figure 4.10: Graph of velocity versus time	59
Figure 4.11: Pressure streamline on the spiral blade	60
Figure 4.12: Outer view of pressure analysis of spiral turbine blade with chamber	60
Figure 4.13: Graph of total pressure versus time	61
Figure 4.14: Pressure streamline on the spiral blade	62
Figure 4.15: Total pressure versus time	63

LIST OF SYMBOLS

Pt	-	Power of turbine shaft (watt)
P 1	-	Load power (watt)
g	-	Gravity = 9.81 m/s
Hn	-	Net head (m)
Q	-	Water flow rate (m^3/s)
η_t	-	Turbine efficiency
N	-	Rotational velocity
Р	-	Pressure
р	-	Density of water (1000kg/m ³)
В	-	Turbine and generator friction torque coefficient (N.m/(rad./sec.))
Т	-	Torque
J	-	Moment of inertia of the whole rotating system (kg/m^2)

LIST OF ABBREVIATIONS

CATIA	Computer aided three-dimensional interactive application
ANSYS	Analysis system
QFD	Quality functional deployment
FMECA	Failures modes, effects and critical analysis
VOC	Customer's voice
CFD	Computational Fluid Dynamics
SLS	Selective Laser Sintering

CHAPTER 1

INTRODUCTION

1.1 Background

Renewable energy is defined as the natural energy which consist of solar, hydro and wind where these energies can be reproduced and reused repeatedly. All the natural resources above are clean resources which would not pollute the environment. Besides, renewable energy can be classified into two types which are large renewable energy generation and small renewable energy generation (Ellabban, Abu-Rub, & Blaabjerg, 2014). Large renewable energy generation usually in touch with the large project such as hydropower and wind farms while the small power productive equipment like mini hydro power turbine will be classified as small renewable energy generation (Athula Rajapakse, 2009). Mini hydro power turbine which is the small renewable energy can produce the power between 5kW to 100kW. It is considered as ordinary and stable among all types of renewable energy. These installations gain a lot of benefit like environmental conservation and cost saving especially for those homeowners and small business owners. One of the foremost style concerns in mini hydro power turbine is to reduce the water flow which unable to cross to achieve maximum efficiency (Khan & Badshah, 2014). The potential of the mini hydro power turbine depends on many types of parameters. The factors include the design of the blades which will transfer the kinetic energy to electrical energy, runners, and turbine power. The example of the design of mini hydro power turbine blade is shown in Figure 1.0. (Source: U.S. Army Corps of Engineers)

Figure 1.1: Example of mini hydro turbine (Source: U.S. Army Corps of Engineers)

The design of turbines and blades with numerous patterns decide the power of the mini hydro turbine to produce energy from different rate of water flow and to come up with more electrical energy. A spiral turbine blade is a new design which enable transferring kinetic energy from water flow more efficiency (Monatrakul & Suntivarakorn, 2017). This kind of design maintains the balance of ecosystem as it will reduce harming marine animals due to its low velocity rotating system. Furthermore, the spiral turbine can generate limited adherence force as its small radius blade design. This kind of turbine blade has better efficiency when it is in low velocity flow rate of water and additional appropriate than the other kind of turbine blade after analyzing with the small sized water receiving area.

Figure 1.2: Mini hydro power turbine blade (Source: Goldenspiralturbine, 2015)

The objective of this project is to design and fabricate the mini hydro power turbine blade which could maximize the efficiency of the mini hydro turbine. The result of this study is to fabricate and analysis a functioning micro hydro turbine. Figure 1.2 shows the example of mini hydro power turbine blade.

1.2 Statement of the Purpose

- 1. To design a mini hydro power turbine blade that can maximize its efficiency by using the SOLIDWORKS.
- 2. To fabricate the mini hydro turbine blade using 3D printer.
- 3. To analyse the efficiency of the spiral type of mini hydro power turbine blade.

1.3 Problem Statement

The development of hydro power plants through dam construction nowadays is hard because of the high investment costs, opposite from people and unfriendly to the ecosystem. The high velocity of the hydro turbine and the design of mini hydro turbine blade will affect the ecosystem of the marine life. Furthermore, the high cost of development of hydro power plants will cause the association to oppose encounter. Thus, the design of spiral turbine blade is intended to save cost and can be used in mini hydro turbine which has optimal performance and able to be operated in low velocity of water such as in the narrow space like mountain river or stream in rural area. Besides, this type of design maintains the balance of ecosystem as it will reduce harming the marine animals due to its low velocity rotating system.

1.4 Scope of work

- The design process of the mini hydro turbine blade will be using the SOLIDWORKS software.
- 2. The mini hydro turbine blade will be fabricated by using 3D printer.
- The analysis will be carried out by SOLIDWORKS included flow simulation and pressure simulation.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides the literature review based on the previous researches as well as the design and analysis based on the mini hydro power turbine blade. The literature review done based on the previous researches will help improving the methodology of this project and the result will be recorded successfully.

2.2 Hydropower

Hydro-power are often thought of because it is the most adorable supply of electricity due to its environmentally receptive energy source and good conversion efficiencies among all identified energy resources. (Ighodalo Okhueleigbe, 2019). The concept of the operation of the hydro power plant is acquiring the power from the flow of the water from higher level to the lower level which using the theory of head and flow. The head and flow from the water falls and velocity can be accommodated and controlled to generate hydro power that will be transferred into electrical energy to be used in daily life.

Figure 2.1: Hydropower

(Source: https://i.ytimg.com/vi/q8HmRLCgDAI/maxresdefault.jpg)

However, the development of hydro-power plant these few years through dam construction which is classified as large renewable energy generation become more difficult due to high risk of investment, unfriendly to the ecosystem, association encounter and other factors (Monatrakul & Suntivarakorn, 2017). For solving these problems, several mini hydro power schemes have been created which has long lifespan and low operation and maintenance cost. There are several types of turbines such as Pelton turbine, Turgo turbine and crossflow turbines. The crossflow turbine has become more popular due to it can be assembled and fabricated easily and efficiently in the manufacturing power plant site

2.3 Head and flow

Head, known as the water falling vertically, is the basic for all the hydro power plant generation. It can be defined by the change of water absorption and water releasing point. Although the water is flowing quickly on itself, it doesn't contain enough energy to produce hydro power as it required two quantities which are the head, H and water flow rate, Q. Besides, the relationship between head and water pressure is directly proportional.