

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TO DESIGN A MODEL OF AN OPEN AND UNDERGROUND RAIN WATER HARVESTING SYSTEM USING RECYCLED MATERIAL AND TO STUDY ITS BENEFITS FOR DOMESTIC APPLICATIONS

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance) with Honours.

by

MUHAMMAD FAZIHAN BIN RIDZWAN B071610767

950704-04-5397

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEEERING TECHNOLOGY

DECLARATION

I declare that this thesis entitled "To Design A Model Of An Open And Underground Rain Water Harvesting System Using Recycled Material And To Study Its Benefits For Domestic Applications" is the result of my own research except as cited in the references.

Signature	:	
Name	:	MUHAMMAD FAZIHAN BIN
		RIDZWAN
Date	:	

APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of degree of Bachelor Of Mechanical And Manufacturing Engineeering Technology.

Signature	:	
Supervisor Name	:	MR KHAIRIL AMRI BIN
		KAMARUZZAMAN
Date	:	

DEDICATION

Dedicated to my beloved mother and father

My friends and family members

For their encouragement and support through the research

ABSTRACT

Rain Water Harvesting (RWH) is a technology where surface runoff is effectively collected during rainfall data. In order to support such technologies RWH systems should be based on design, material and equipment. Harvested rainwater can be used for rainfed agriculture or water supply for domestic use in households. This report focuses on the design of the RWH system at a single storey house in Malacca and its benefits to domestic use like gardening, washing vehicle, watering flowers, cleaning the drain and construction work. The material used on each component of this system is also a recycled material. Design selected based on rainfall data from Malaysia Meteorological and concept of design. The data analysis can get the size of the tank for this project application by calculating the average bill water demand for daily use. The bucket method was used to identify where the material use in this system can be used and function on every component. The result show the water flow for low rain from 0.105 to 0.106 liter/s and for medium and heavy rain was approaching each other from 0.216 to 0.229. This happened cause of the diameter the pipe necessary to give a required flow rate will depend upon the head of water available, the smoothness of the internal bore of the pipe and the effective length of the pipe.

ABSTRAK

Penuaian Air Hujan (RWH) adalah teknologi di mana aliran air permukaan dikumpulkan secara berkesan semasa data hujan. Untuk menyokong teknologi seperti sistem RWH harus berdasarkan reka bentuk, bahan dan peralatan. Air hujan yang dipanen boleh digunakan untuk pertanian hujan atau bekalan air untuk kegunaan domestik dalam isi rumah. Laporan ini memberi tumpuan kepada reka bentuk sistem RWH di sebuah rumah tunggal di Melaka dan faedahnya untuk kegunaan domestik seperti berkebun, membasuh kenderaan, menyiram bunga, membersihkan longkang dan kerja pembinaan. Bahan yang digunakan pada setiap komponen sistem ini juga merupakan bahan kitar semula. Reka bentuk dipilih berdasarkan data hujan dari Malaysia Meteorological dan konsep reka bentuk. Analisis data boleh mendapatkan saiz tangki untuk permohonan projek ini dengan menghitung permintaan air bil purata untuk penggunaan harian. Kaedah baldi telah digunakan untuk mengenalpasti di mana bahan yang digunakan dalam sistem ini boleh digunakan dan berfungsi pada setiap komponen. Hasilnya menunjukkan aliran air untuk hujan rendah dari 0.105 hingga 0.106 liter / s dan untuk hujan sederhana dan berat sedang menghampiri antara 0.216 hingga 0.229. Ini berlaku sebab diameter paip yang diperlukan untuk memberikan kadar aliran yang diperlukan akan bergantung kepada kepala air yang tersedia, kelancaran lubang dalaman paip dan panjang berkesan paip.

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Mr Khairil Amri Bin Kamaruzzaman from the Faculty of Mechanical & Manufacturing Engineering Technology (Maintenance Technology) Universiti Teknikal Malaysia Melaka (UTeM) for him essential supervision, support and encouragement towards the completion of this thesis.

Special thanks to all my peers, my late mother, beloved father and siblings for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

TABLE OF CONTENTS

DECL	LARATION	i
APPR	OVAL	ii
DEDI	CATION	iii
ABST	TRACT	iv
ABST	'RAK	iv
ACKN	NOWLEDGEMENTS	vi
TABL	LE OF CONTENTS	vii
LIST	OF TABLES	X
LIST	OF FIGURES	xi
LIST	OF APPENDICES	xiii
LIST	OF ABBREVIATIONS	xiv
	PTER 1 INTRODUCTION	1
1.0	Project Briefing	1
1.1	Problem Statement	2
1.2	5	4
1.3	Scope Of Work	4
СНАР	PTER 2 LITERATURE REVIEW	5
2.0	Water Supply System	5
2.1	Water Treatment Systems	б
2.	1.2 Filtration	8
2.	1.3 Ion Exchange	8
2.	1.4 Absorption	8
2.	1.5 Disinfection	8
2.2	SAMB	9
2.	2.1 SAMB Water Treatment Systems	11
2.3	Water Tariff	13
2.4	Weather and Climate	16
2.5	Rainfall	17
2.	5.1 Rainfall Data Analysis	18
2.6	House Type	20

vii

2.6.1	Landed vs Strata	20
2.6.2	Mansion / Bungalow / Zero Lot Bungalow / Villas	20
2.6.3	Semi-Detached	21
2.6.4	Townhouse	22
2.6.5	Apartment / Flat	23
2.6.6	Condominium / Service Apartment, Residence, Suite	24
2.6.7	Penthouse / Duplex / Loft	25
2.6.8	Terrace	26
2.6.8.1	Terraced House Plot Size	27
2.7 Rai	n Water Harvesting System	29
2.7.1	Application Areas	31
2.8 Con	nponents of Rainwater Harvesting System	31
2.8.1	Catchment Area	31
2.8.2	Delivery System	32
2.8.3	Filter	32
2.8.3.1	First Flush System	32
2.8.4	Rainwater Storage Tank	34
2.9 Rec	cycled Material	35
2.10 Rai	nwater Quality Standards	36
CHAPTER 3	3 METHODOLOGY	37
3.1 Pro	blem Statement	39
3.2 Obj	ective	40
3.3 Sco	ppe of Work	40
3.4 Lite	erature Review	41
3.5 Des	ign Rain Water Harvesting	41
3.5.1	Concept of Design	42
3.5.2	Design Selection	44
3.6 Ma	terial Selection	45
3.6.1	Bill of Materials	46
3.6.1.1	Rain Water Harvesting system	46
3.6.1.2	2 House Prototype	47
3.7 Fab	ricate a Prototype Rain Water Harvesting	48
3.7.1	Drill With Hole Saw	48

viii

3.7.2	Pipe Connected	49
3.8	Testing And Analysis	50
3.8.1	Bucket methods	50
3.8.2	Tank size	51
3.9 R	lain	51
СНАРТЕ	R 4 RESULT AND DISCUSSION	52
4.1	Fank sizing	52
4.1.1	Water demand	52
4.1.2	Sizing of Rainwater Storage Tank.	54
4.2 P	rototype	55
4.3 D	Data	57
4.3.1	Low rain	57
4.3.2	Medium rain	58
4.3.3	Heavy rain	59
4.4 B	Sucket method	62
4.4.1	Water Flow	62
4.4.2	Water Volume	63
4.5 D	Discussion	65
СНАРТЕ	R 5 CONCLUSION AND RECOMMENDATION	70
5.1 C	Conclusion	70
5.2 R	Recommendation	71
REFERE	NCE	72
APPEND	IX	75

LIST OF TABLES

TABLETITLEPAGE

2.0	Domestic water usage	6
2.1	Domestic and industry water rates	14
2.2	Water rates in Malacca	15
2.3	Average rainfall data in Malacca	19
2.4	Landed vs strata	20
3.0	BOM of Rain Water Harvesting system	46
3.1	BOM of House Prototype	47
4.0	Low rain	57
4.1	Medium rain	58
4.2	Heavy rain	59
4.3	Water flow	62
4.4	Water volume	63

LIST OF FIGURES

FIGURE TITLE

PAGE

1.0	News on water crisis in 1998	4
2.0	Water treatment plant surface water supply	7
2.1	Tasik Ayer Keroh	10
2.2	Bertam water treatment plant	11
2.3	Overall picture of public water treatment system of Syarikat	12
	Air Melaka Berhad	
2.4	DAF illustration process	12
2.5	Example Bungalow House	21
2.6	Semi Detached House	22
2.7	Townhouse	23
2.8	Apartment	24
2.9	Example of Condominium	25
2.10	Example of Penthouse	26
2.11	Terrace House	27
2.12	Terraced House Plot Size Single and Double Storey	28
2.13	Terraced House Plot Size Single and Double Storey	29
2.14	Flow for Rain Water Harvesting	30
2.15	Schematic of a typical rainwater catchment system	30
2.16	First Flush system to remove larger debris	33
2.17	First Flush system	34
3.0	Methodology Flowchart	38

FIGURE TITLE

3.1	Selangor in hot water over water crisis	40
3.2	Drawing using SOLIDWORK 2016	41
3.3	Stainless Steel Drum	42
3.4	Drill hole saw	43
3.5	Pipe coupling	44
4.0	Prototype	56
4.1	Prototype side view	57
4.2	Graph Time vs Number of Trial (Tank A)	61
4.3	Graph time vs Number of Trial (Tank B)	62
4.4	Bar Chart Average Time vs Type of Rain	62
4.5	Graph Water flow vs Number of Trial	64
4.6	Graph Volume of Water vs Number of Trial	65

xii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Gantt chart PSM 1	75
В	Gantt chart PSM 2	76

xiii

LIST OF ABBREVIATIONS

RWH	-	Rain Water Harvesting	
SAMB	-	Syarikat Air Melaka Berhad	
NAHRIM	-	National Hydraulic Research Institute of Malaysia	
PAM	-	Perbadanan Air Melaka	
DAF	-	Dissolve Air Floatation	
SPAN	-	Suruhanjaya Perkhidmatan Air Negara	
PE	-	Polyethylene	
PP	-	Polypropylene	
UV	-	Ultraviolet	
UFM	-	Ultra Filtration	
BOM		Bill of Material	

XV

CHAPTER 1

INTRODUCTION

1.0 Project Briefing

Rain water harvesting or rain water collection system, is a technology that collects and stores rainwater for daily use. The recycling of rainwater involves the rainwater collected from the roof of a building. Then the rain water passes a filter, which eliminates waste and is placed either underground or on the side of building in a holding tank. It is very important to establish a new development source such as rain water to ensure that no shortage of water is present. As demand grows, there is a chance that Malaysia's major cities will face a water crisis. A rainwater collection system approach to the building is an effective way of minimizing water used in non-potable applications.

This system ranges from rain barrels to more elaborate structures with pumps, tank purification systems, pipe and catchment. The rainwater system components are relatively simple and a low maintenance level is needed once it is installed. It is made up of a collection system like a roof, a reservoir or a tank from recycled material that stores the water such as polyethylene tanks or metal tanks and drives to deliver where it has to go. This collected water can be used for landscaping, flush toilet, wash vehicle, wash drain, wash the house, wash the floor, and gardening.

The main objective of this project is to produce a model of "Rain Water Harvesting system" which will help to solve water supply problem and save the water usage. Rain water harvesting is a good solution. It will reduce the use of treated water from state government of Malacca or Syarikat Air Melaka Berhad (SAMB). Furthermore, this project will focus on the benefits and impacts of the rain water harvesting system in Malaysia's home.

1.1 Problem Statement

Rain water harvesting made to help problem like high cost of water use, this is because water is the main source in daily life. Water harvesting method previously advanced for more life are in recent times receiving renewed interest because they are able to make contributions to multiply water materials for agriculture and domestic use (Fink and Ehrler, 1978). With rain water harvesting, water use can reduce by used the rain water for outdoor activities such as wash vehicle, landscaping, gardening, toilet flush and others (Thamer 2007). After that, now many people are moving to the installation of devices which reduce. overall cost and use and recycle whenever possible If the savings can be added by putting in a rainwater harvesting tank, then significant cost reductions can be considered, in particular if water companies start to increase their prices.

Furthermore, water crisis in 1998 Malaysia, faced by severe water crises (El Nino Phenomena) as shown in Figure 1.0, is affected by climate change drought. Lembah Klang is therefore one of the top critical locations for the water crisis. All water supplies must be rated by the state water board to ensure that the entire user gets enough water. The government list some attempts to deal with scarcity; the rainwater harvesting system form part of it (Mohd.Shawahid et al., 2007). However, because users are unaware of the fact, the implementation of this system is not always further transferred (Mohd.Shawahid et al., 2007).

Next, Rain water collection is to supply the household with water. Rainwater is a renewable clean water source that can be used for household, garden watering and small productivity activities. According to National Hydraulic Research Institute of Malaysia NAHRIM's research, 34 percent of accumulated rainwater has be utilized by household of

six people (two adults and 4 school going children) for non-potable purpose according to month. It means that 34 percentage of dealt with water has been saving from non-potable use in step with month, at the identical time can decrease water bill. Furthermore, it also helps to reduce the risk of floods and loads on sewer systems. Low cost, accessibility and easy household maintenance make the rainwater harvesting system more attractive. Though the cost of capital is high, but no significant expenditures generally entail either operation or maintenance. Rainwater production in developing countries seems to be a useful way to minimize the water shortage.

Figure 1.0: News on water crisis in 1998 (Berita Harian, 1998)

(a). The plant is dry due to drought; b). Water problem is getting critical; c). Water problem

is getting critical)

1.2 Objectives

The purpose of this study are:

- 1) To save the water usage for domestic application
- 2) To design a model of Rain Water Harvesting System

1.3 Scope Of Work

This project focuses on:

- To design and produce a prototype of Rain Water Harvesting System for a single-storey terrace house in Malacca.
- 2) To ensure each part of the system functions correctly.

CHAPTER 2

LITERATURE REVIEW

2.0 Water Supply System

The water supply system is a water supply distribution structure of plant treatment of buildings or residences and subsequently used by users. This system involves various infrastructure structures of infrastructure facilities consisting of distribution system, reticulation system and water supply system at in the building. Usually, a system of water reticulation infrastructure from pipes main or public piping is used for the supplier to a desired area.

In addition to the design criteria to be considered, research also run on water authority regulations to ensure the system designed to meet predetermined standards. This includes materials suitable for pipes, valves, and main storage tanks in the building.

Water supply to the building is one of the types of services which is important as it is a basic necessity for the occupants to live in a house. The absence or failure of this service system will only cause the residents not to enjoy their daily lives well and can cause a building to fail.

More than half of water use is for indoor use building. Activities done at home greatly affect rates water use and this is closely related to the user's economic status. Schedule below shows the percentage of water use for residential homes and it is important to estimate the design of the water supply system needed for a day for every home.

NO	USABILITY	USE
1	Toilet flush	35%
2	Washing and bathe	25%
3	Drinking, cook and preparing food	15%
4	Wash plate	10%
5	Washing clothe	10%
6	Washing car and garden	5%

Table 2.0: Domestic Water Usage (Azhar Kamaruddin, 2006)

2.1 Water Treatment Systems

According to Wiedeman (2012), water treatment system has various concept and size that are different, whether by public at private ownership. Despite having system or process that different, main objective is supply clean water and can be trusted to community. Quantity and agent type additive or cleaner used through public system water different from type and source quality. Water supplies systems generally rely on floor water sources quality, whereas smaller structures tend to rely on flow water. However, water systems are discovered and the ecosystem is thus easy to contaminate. Type of water treatment system for clean water.

Figure 2.0: Water treatment plant surface water supply. (http://cof-cof.ca/surfacewater-treatment-plant-flow-diagram/)

2.1.1 Flocculation/Sedimentation/Coagulation

Flocculation means water remedies that combine or coagulate small particles into larger particles, which become sedimentary out of the water. Used to promote coagulation is usually aluminum and iron salts or synthetic organic polymers. Settlement or sedimentation takes place naturally when flocculated debris are removed from the water. (Wiedeman, 2012).

2.1.2 Filtration

Many water treatment centers use filtration to remove all water particles. Such waste includes clays, silts, herbal, natural dependence, iron and manganese and microorganism, precipitating other treatment approaches in the facility. Filtration clarifies water and supplements disinfection efficiency. (Wiedeman, 2012).

2.1.3 Ion Exchange

Ion trade strategies are used to put off inorganic contaminants in the event that they cannot be eliminated safely by way of filtration or sedimentation. Arsenic, chromium, excess fluoride, nitrates, radium and uranium can be eliminated by using an ion alternate. (Wiedeman, 2012).

2.1.4 Absorption

Organic contaminants, undesirable colors and taste and odorous compounds may persist in the granular or powder active carbon floor, thereby eliminating them from potable water. Absorption allows more crystal-clear and odorless water production. (Wiedeman, 2012).

2.1.5 Disinfection

Water is disinfected earlier than getting into distribution device to make certain that doubtlessly dangerous microbes are killed. Chlorine, chloramines, or chlorine dioxide are by and big regularly used because they're very effective