

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION ON FATIGUE PROPERTIES OF NATURAL COMPOSITE CONTAINING COCONUT COIR USING DOE METHOD

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance) with Honours.

By

MUHAMMAD AQIUDDIN BIN ISHAK B071610920 950630-08-5483

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2019

DECLARATION

I hereby, declared this report entitled "Investigation on Fatigue Properties of Natural Composite Containing Coconut Coir Using DOE Method" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	Muhammad Aqiuddin bin Ishak
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Maintenance Technology) (Hons). The member of the supervisory is as follow:

.....

(Ts. Mohd Harris Fadhilah bin Zainudin)

ABSTRAK

Projek Sarjana Muda ini menggariskan latar belakang projek "Penyiasatan Sifat Keletihan Komposit Semulajadi Yang Mengandungi Sabut Kelapa Mengunakan Kaedah DOE". Dalam penerapan industri seperti kenderaan, aeroangkasa, aplikasi ketenteraan, bangunan dan pembungkusan, minat dalam bio-komposit berkembang dengan pesat berikutan dengan boleh diperbaharui, kos rendah, mudah terurai, dan biodegradasi, bio-komposit juga semakin meningkat dalam terma penyelidikan asas. Sifat keletihan adalah antara aspek yang paling penting dalam tindak balas mekanikal bahan, dan rintangan keletihan yang mencukupi adalah penting untuk aplikasi praktikal bahan struktur. Ia dikaitkan dengan pengumpulan kerosakan di bawah pemuatan kitaran akhirnya membawa kepada patah. Oleh itu, laporan ini bertujuan untuk menyiasat kesan matriks dan berat diperkukuhkan kepada sifat keletihan menggunakan kaedah DOE. Metodologi kajian dalam projek ini telah dikaji dan dikenal pasti. Proses uji kaji yang telah dilakukan ialah ujian tegangan dan ujian keletihan pada setiap 8 sampel yang berbeza parameter. Setiap sample akan dilakukan ujian sebanyak 3 kali bagi mendapat nilai purata setiap sampel. Sample yang mempunyai parameter PVA yang tinggi menunjukkan kekuatan keletihan yang lebih berbanding dengan sampel yang PVA rendah. Kajian ini diharapkan membantu pengilang dalam menghasilkan produk yang lebih baik dalam industri pembungkusan.

ABSTRACT

This Bachelor Degree Project outlines the background of the project "Investigation on Fatigue Properties of Natural Composite Containing Coconut Coir Using DOE Method". In the application of industries such as automobiles, aerospace, military applications, building and packaging, interest in bio-composites has grown rapidly through renewable, low cost, easy to decompose, and biodegradation, bio-composites are also growing in terms of basic research. Fatigue properties are among the most important aspects of the mechanical response of materials, and adequate fatigue resistance is essential for the practical application of structural materials. It is associated with accumulation of damage under the loading cycle which eventually leads to fracture. Therefore, this report aims to investigate the effects of matrix and weight reinforced on fatigue properties using DOE method. The research methodology in this project has been studied and identified. The testing process was performed on the stress test and the fatigue test on each of the 8 sample parameters. Each sample will be tested 3 times to obtain the average value of each sample. Samples with high PVA parameters showed greater fatigue strength compared to low PVA samples. This study is expected to assist manufacturers in producing better products in the packaging industry.

v

DEDICATION

Dedicated to my beloved parents, Ishak bin Jaafar and Zalila binti Yahya. Thankyou for your sacrifice, patience and moral support along with me. To my honored supervisor, Ts. Mohd Harris Fadhilah bin Zainudin and all UTeM staff. Thank you to all my friends, for their encouragement and supports through the research. Thank you for your encouragement in preparing this thesis project.

ACKNOWLEDGEMENT

First of all, millions of thankful wishes to ALLAH S.W.T because with His permissions, I am able to complete my Bachelor Degree Project report. In studying this paper, I've been working with a lot of people to help me complete this project. I would like to express my sincere appreciation to my main thesis supervisor Ts. Mohd Harris Fadhilah Bin Zainudin, for encouragement, guidance, advices and motivation. Special gratitude to my lovely father, Ishak bin Jaafar, and to my lovely mother, Zalila binti Yahya, for their prayers and their constant support. It is also pleasure to thank all my siblings for encouragement from the first day I started for this project. Apart from that, thankful wishes were also given to all lectures, classmate, and all my friends were supported. Their undivided love and support in difficult times will never be forgotten. Thank you.

TABLE OF CONTENT

D	ECLARATION	ii
A	PPROVAL	iii
A	BSTRAK	iv
A	BSTRACT	v
D	EDICATION	vi
A	CKNOWLEDGEMENT	vii
T	ABLE OF CONTENT	viii
L	IST OF TABLES	xi
L	ST OF FIGURES	xii
L	ST OF APPENDICES	XV
L	ST OF SYMBOLS	xvi
L	ST OF ABBREVIATIONS	xvii
L	IST OF PUBLICATIONS	xviii
СНАР	TER 1 INTRODUCTION	1
1.1	Project Background	1
1.2	Problem Statement	3
1.3	Objective	5
1.4	Scope	6
СНАР	TER 2 LITERATURE REVIEW	7
2.1	Composite	7
2.2	Natural Fiber Composite	8
2.2	2.1 Coconut Fiber	9
2.2	2.2 Rice Husk	11
2.3	Bio-composites	12
2	3.1 Properties of Bio-composites	13
2	3.2 The Mechanical Properties of Bio-composites	13
2.3.3 The Environmental Impact of Bio-composites		20

2.4	Coconut Coir	21
2.4.	.1 Properties of Coconut Coir	22
2.4.	.2 Application of Coconut Coir	23
2.5	Synthetic Fiber Composite	24
2.6	Natural Polymer	25
2.6.	.1 Proteins and Polypeptides	26
2.7	Synthetic Polymer	27
2.7.	.1 Thermoplastics	28
2.7.	.2 Thermosets	29
2.7.	.3 Elastomers	29
2.8	DOE	30
2.8.	.1 Full Factorial	32
2.8.	.2 Taguchi	36
СНАРТ	FER 3 METHODOLOGY	39
3.1	Introduction	39
3.2	Flow Chart	40
3.3	Sample Preparation	41
3.4	Sample Testing	44
3.4.	.1 Tensile Test	44
3.4.	.2 Fatigue Test	46
3.4.	.3 Visual Microscopy	48
3.5	Full Factorial Design	50
3.6.	5.1 Factor and Level Selection	50
3.6.	5.2 Selection of Response Variable	50
3.6.	.3 Main Effects Interaction Plot	51
3.6.	.4 Choice of Design	51
3.6.	5.5 Conduct the Experiments	52
3.6.	.6 Statistical Analysis	52

CHAPTER 4 RESULT AND DISCUSSION

53

4.1	Introduction	53
4.2	Effect of Different Materials Parameter on Tensile Strength	53
4.3	Effect of Different Materials Parameter on Fatigue Strength	55
4.4	Effect of Different Materials Parameter on Microstructure	57
4.5	Analysis of Result by Design of Experiment	59
4.5	5.1 Fatigue Strength	61
4.6	Main Effects of Different Materials on Fatigue Properties	63
СНАР	TER 5 CONCLUSION & RECOMMENDATION	67
5.1	Conclusion	67
5.2	Recommendation	68
REFE	RENCE	69
APPE	NDICES	72

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	2^2 factorial design matrix and signs for effects	32
Table 3.1	Sample dimension of material	43
Table 3.2	Process parameter and levels	50
Table 3.3	Overview of factorial design	51
Table 4.1	Average value of tensile strength for different parameters	54
Table 4.2	Average value of fatigue strength for different parameters	56
Table 4.3	The experimental result of coconut coir fibers composite	60

LIST OF FIGURES

FIGURE	TITLE	PAGE	
Figure 1.1	Advantages and disadvantages of natural fibers	2	
Figure 2.1	Construction composite materials	8	
Figure 2.2	Coconut fiber	10	
Figure 2.3	Rice husk	11	
Figure 2.4	Hemp building materials	12	
Figure 2.5	Stress-strain diagram	14	
Figure 2.6	Tapioca starch strength reinforced composite coconut fiber	15	
	biopolymer with various PVA contents		
Figure 2.7	Tapioca starch's impact strength reinforced composite of coconut	16	
	fiber biopolymer with different PVA content		
Figure 2.8	Flexural strength and modulus of the different fiber content	17	
	composites		
Figure 2.9	The stress-strain curves of various composites of fiber content	18	
Figure 2.10	Coconut fiber production		
Figure 2.11	Physical properties of coconut / coir fiber	22	

Figure 2.12	Coir bricks	23
Figure 2.13	Current and emerging plastics and their biodegradability	27
Figure 2.14	DOE application in scientific research	30
Figure 2.15	Progressive use of DOE over the past two decades as a scientific	31
	method	
Figure 2.16	Full factorial design for reactor experiment	33
Figure 2.17	Examples of Half Normal Plot graph	34
Figure 2.18	Design flow of full factorial	34
Figure 2.19	Example complete Taguchi design table	35
Figure 2.20	Recommended statistics on performance	36
Figure 2.21	The common logarithm of the average of the squared reciprocals	36
	of the responses	
Figure 2.22	Best factor settings for Byrne Taguchi data	37
Figure 2.23	Flow of Taguchi design	37
Figure 3.1	Research flow chart	40
Figure 3.2	Process of sample preparation	42
Figure 3.3	Disk cutter machine table	43
Figure 3.4	Sample dimension of material	44
Figure 3.5	Universal testing machine in accordance to the ASTM D638	45

Figure 3.6	Specimen grip at tensile machine	46
Figure 3.7	Fatigue testing machine	47
Figure 3.8	Specimen grip at fatigue machine	48
Figure 3.9	Visual microscopy	49
Figure 3.10	Specimen under visual microscopy	49
Figure 4.1	Engineering stress-strain diagram	54
Figure 4.2	Microstructure of sample for highest parameters selected	57
Figure 4.3	Microstructure of sample for middle parameters selected	58
Figure 4.4	Microstructure of sample for lowest parameters selected	58
Figure 4.5	Pareto chart for fatigue strength	61
Figure 4.6	Half normal plot for fatigue strength	62
Figure 4.7	Main effect of factor C for fatigue result	64
Figure 4.8	Main effect of factor A for fatigue result	65
Figure 4.9	Main effect of factor B for fatigue result	65
Figure 4.10	Main interaction effect plot for fatigue result	66

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	Figure of the fatigue failure on the sample	76
A	Figure of the facigue failure on the sample	70

LIST OF SYMBOLS

%	-	Percentage
σ	-	Stress
3	-	strain
Ε	-	Young's Modulus
1	-	Length
m	-	Mass

LIST OF ABBREVIATIONS

DOE	Design of Experiment	
PVA	Polyvinyl Alcohol	
CSS	Cassava Starch	
PLA	Polylactic Acid	
DNA	Deoxyribonucleic Acid	
RNA	Ribonucleic Acid	
ASTM	American Society for Testing and Materials	

LIST OF PUBLICATIONS

xviii

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Project Background

A bio-composite could be a material shaped by matrix and natural fibers reinforcement. Composite materials are formed by consolidating materials together so as to shape a superior structure. The evolution of composite material started since 4000 B.C when people laminated writing materials from papyrus plant, 1300 B.C with the used of straw bricks by Egyptians and Mesopotamian, 1200 A.D during the invention of composite bows by Mongols. The advantages of forming composite materials can contribute to improving properties such as strength, stiffness, corrosion resistance, and fatigue life (Yusof et al., 2018). Polymers obtained from renewable and non-renewable resources create the matrix phase. The matrix is very significant for protecting the fibers from environmental degradation and mechanical damage, carrying the fibers along and transferring the loads. In the application of industry such as vehicles, railway coach, aerospace, military applications, building and packing, interest in bio-composites is briskly growing. In addition, because of its great advantages such as renewable, low-cost, decomposable and biodegradable, bio-composites are also increasing in terms of basic research.

Plants, animals and biological processes produce natural fibers. It can be used as a component of composite materials and for making products such as paper, felt or fabric it

can also be matted into sheets. Natural fibers such as composite parts for automobiles, can be used for the high-tech application. Natural fibers have advantages such as lower densities, better thermal insulation and less skin irritation in comparison to glass fiber-reinforced composites. All plant fibers contain cellulose as their main component of the structure, while animal fibers consist mainly of protein. Commonly, with the higher performance plant fibers, much higher strengths and stiffness can be achieved than the readily existing animal fibers. An exception is silk, which can be very strong but relatively costly, has lower rigidity and is less readily obtainable. This makes fibers based on plants the most appropriate for use with structural requirements in composites and thus the focus of this review. Plant fiber can also be grown appropriately in many countries and harvested after a not long period of time (Pickering, Efendy, & Le, 2016). Figure 1.1 shows the advantages and disadvantages of natural fibers.

Advantages	Disadvantages
 Low density and high specific strength and stiffness Fibres are a renewable resource, for which production requires little energy, involves CO₂ absorption, whilst returning oxygen to the environment Fibres can be produced at lower cost than synthetic fibre Low hazard manufacturing processes Low emission of toxic fumes when subjected to heat and during incineration at end of life Less abrasive damage to processing equipment compared with that for synthetic fibre composites 	 Lower durability than for synthetic fibre composites, but can be improved considerably with treatment High moisture absorption, which results in swelling Lower strength, in particular impact strength compared to synthetic fibre composites Greater variability of properties Lower processing temperatures limiting matrix options

Figure 1.1: Advantages and disadvantages of natural fibers (Pickering, Efendy, & Le, 2016)

One of the most valuable natural fibers made in tropical countries such as Malaysia, Thailand, and Indonesia is coconut coir. In the recent past, there have been many works dedicated to using other natural fibers in composites. Coconut coir is a natural fiber from the coconut husk. In products such as floor mats, doormats, brushes and mattresses, it has been used. Coir is that between the hard inner shell and therefore the outer layer of the coconut, the fibrous material found. In coconut coir, brown coir and white coir, there are two types of coir. Brown coir used in the padding, sacking and horticulture of upholstery. It has a thick, strong and high resistance to abrasion. It is then harvested from unripe coconuts for white coir and used to make finer brushes, string, rope, and nets for fishing. White coir advantage isn't sinking. It can be used on deep water in long lengths without dragging down boats and buoys by adding weight. With thick walls made of cellulose, the individual fiber cells are narrow and hollow. When immature, it is pale, but then it becomes hard and yellowed on their walls as a layer of lignin. Each cell has a diameter of approximately 1 mm and 10 to 20 μm. Typically, fibers are 10 to 30 cm long. It's relatively waterproof in addition to that. A viable worm bedding or worm composting for worms. It is also completely natural, holds water and also provides air pockets in the composting mixture, benefiting the compost mixture and the worms in it.

1.2 Problem Statement

Nowadays, the high demand for non-renewable polymer products have led to destruction of the environment due to the drastic increment of plastic disposal (Simp & Remoto, 2007). The application of biodegradable natural fiber reinforced polymer

composites as a replacement for petroleum-based polymers as well as conservative nonrenewable polymer composites has therefore been encouraged by new environmental legislature and consumer pressure. The petroleum resource will reduce over time and it takes hundreds of years to degrade (Yusof et al., 2018). Agricultural-based industries such as coconut industry make positive impact to the economy. However, it also contributes towards pollution in Malaysia. This happens because unused coconut waste is burned down and caused air pollution to occur due to open burning. Therefore it is important to adopt and consider new methods of treating agro-residues in order to achieve sustainable agricultural waste management (Ku, Wang, Pattarachaiyakoop, & Trada, 2011). Bio-composite consists of the matrix and reinforced. There are eco-friendly and the best options compared with petroleum-based composites (Pickering, Efendy, & Le, 2016). The examples of a matrix that have been used such as corn, tapioca, and cassava starch. Then, for the reinforced was coconut coir, rice husk, and bamboo.

Yusof et al., (2018) stated that the usage of polyvinyl alcohol (PVA) in the polymer matrix has been explored for natural fiber composites to enhance polymer's mechanical properties. The tensile strength increased when the contents of PVA increasing. Besides that, the effect of the contents of PVA after increased also makes the impact energy increased after the impact test has been done. In addition, PVA is dependent on humidity, when high the humidity more water is absorbed plus it is a water-soluble synthetic polymer. Saleh, Al Haron, Saleh, & Farag, (2017) stated that fatigue is one of the main reasons for failure in many structural materials. Fatigue occurs when repeated stress was placed until it cause the fracture. Most composites do not display endurance limits and residual properties such as strength and rigidity are often used to evaluate their fatigue properties as cyclic loading leads

4

to degradation. Besides that, to improve fatigue properties of the composites, high-quality natural fiber is required. High-performance composite polymer materials strengthened with long fibers have a reputation for good fatigue behaviour (Bathias, 2006). Aeronautical applications are successful in replacing metals with composite materials. However, for an engineering point of view, fatigue of composite materials is still an important problem, because its nature is fundamentally different from metal fatigue.

In this research, the factor affect fatigue properties of coconut coir reinforced composite will be investigated by using DOE method or can be defined as a design of experiment. The goal of this method is to approach the material that can materialize the fatigue properties. Coconut coir is a low-cost material. For this research, cassava starch is used as a matrix. The reason for choosing cassava because is most widely growth to produce a sustainable and cheap source of starch globally. Cassava starch (CSS) incorporated with PVA to enhance the physicomechanical properties of the CSS while glycerol is for lubrication and gelatinization (Sin, Rahman, & Salleh, 2011).

1.3 Objective

- 1) To investigate the effect of matrix and reinforced weight to the fatigue properties using DOE method.
- 2) To find the highest parameters of fatigue properties from full factorial designs.

5

1.4 Scope

By following the objectives of this research, the scope of this project is:

- Use full factorial method as finding the optimum weight of matrix and reinforced composition.
- 2) Use ASTM D638 to test the fatigue properties.
- Analysing the highest fatigue strength from varying the parameters of natural composites.