

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF KITCHEN GAS LEAKAGE DETECTION USING ARDUINO TO PREVENT UNPLANNED TRAGEDY

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering

Technology (Industrial Electronic) With Honours.

by

MOGANA SUNDRAM A/L THAMIL SELVAN B071610827 951214-07-5061

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING
TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of Kitchen Gas Leakage Detection Using Arduino To Prevent			
Unplanned Tragedy			
Sesi Pengajian: 2019			
Saya Mogana sundram A/L Thamil selvan mengaku membenarkan Laporan PSM ini			
disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-			
syarat kegunaan seperti berikut:			
1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.			
2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan			
untuk tujuan pengajian sahaja dengan izin penulis.			
3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran			
antara institusi pengajian tinggi.			
4. **Sila tandakan (X)			
Mengandungi maklumat yang berdarjah keselamatan atau			
SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA			
RAHSIA RASMI 1972.			

	TERHAD*	Mengandungi maklu	mat TERHAD	yang te	elah ditentukan	oleh
	TERHAD	organisasi/badan di mana penyelidikan dijalankan.				
\boxtimes	TIDAK					
_	TERHAD					
Yang	benar,		Disahkan oleh	n penyeli	a:	
Mogana sundram A/L Thamil selvan		Pn. Nurliyana Binti Abd Mutalib				
Alamat Tetap:		Cop Rasmi Penyelia				
463-E Kampung Padang Kulim,						
Kelang Lama, 09000 Kulim,						
Kedah.						
Tarikh: 13/12/2019		Tarikh: 13/12/	/2019			

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled Development of Kitchen Gas Leakage Detection

Using Arduino To Prevent Unplanned Tragedy is the results of my own research

except as cited in references.

Signature:	
Author:	Mogana sundram A/L Thamil selvan

Date: 13/12/2019

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Industrial Electronic) With Honours. The member of the supervisory is as follow:

Supervisor:	Pn. Nurliyana Binti Abd Mutalib
a:	
Signature:	
Co-supervisor:	En. Shahrizal Bin Saat

Signature:

ABSTRAK

Projek ini adalah mengenai Pengembangan Pengesanan Kebocoran Gas Dapur Menggunakan Arduino Untuk Mencegah Tragedi Tidak Dirancang. Di rumah di mana gas petroleum cecair (LPG) dirawat dan digunakan, kebocoran gas mengakibatkan masalah yang serius dan perlu dipertimbangkan. Kebocoran gas mengakibatkan pelbagai insiden yang mengakibatkan kerugian kewangan, kecederaan kepada manusia dan kerosakan harta benda. Tujuan projek ini adalah untuk merekabentuk sistem yang mengesan kebocoran gas dan penggera pengguna dengan menunjukkan penggera dan status, serta mematikan injap bekalan gas sebagai langkah keselamatan utama. Shutdown injap solenoid berhenti aliran gas lebih jauh ke dalam periuk untuk mencegah wabak api daripada cuba menyalakan periuk. Tambahan pula, sistem ini datang dengan pencegahan kebakaran dengan menggunakan pemercik sistem sama. Sistem ini adalah pendahuluan, kerana ia tidak menimbulkan gangguan bunyi dengan amaran yang sentiasa dibunyikan, tetapi pembonceng berhenti bersuara apabila kepekatan gas di sekelilingnya jatuh selepas kebocoran dan membuka semula injap solenoid. Sistem ini akan mengurangkan kecederaan dan kerugian akibat kebocoran gas yang disebabkan oleh letupan dan meningkatkan keselamatan manusia.

ABSTRACT

This project is all about Development of Kitchen Gas Leakage Detection Using Arduino To Prevent Unplanned Tragedy. At homes where liquid petroleum gas (LPG) is treated and used, gas leakages resulting become a serious problem and need to be considered. Gas leakage results in multiple incidents resulting in financial loss, injury to humans and property damage. The purpose of the project is to design a system which detects gas leakage and alarms the user by showing the alarm and status, as well as switching off the gas supply valve as a primary safety measure. The solenoid valve shutdown stops further gas flow to the cooker to prevent fire outbreak from attempting to ignite the cooker. Moreover, this system comes with fire prevention by using system alike sprinkler. The system is an advance, as it does not establish noise disturbance by constantly sounding warning, but the buzzer stops beeping once the gas concentration in the surrounding drops after leakage and reopen the solenoid valve. This work would reduce injuries and losses due to gas leakage caused by explosions and improve the human safety.

DEDICATION

This dissertation is dedicated to my beloved parents whose unyielding love, support, and encouragement have enriched my soul and inspired me to pursue and complete this project.

ACKNOWLEDGEMENTS

First of all, I would like to thanks my supervisor, Puan Nurliyana binti Abdul Mutalib who gave me golden opportunity to do this wonderful project and also her guiding during my final year project period so that I will be able to finish Final Year Project 1 and Final Year Project 2 with successfully. On this occasion, it helps me in doing a lot of research and I come out with so many new things In addition, I would like to express my special thanks to my both final year project panels, IR Mohammad' Afif bin Kasno and Madam Izadora binti Mustaffa for their time to evaluate and observe my presentation as well. Furthermore, they recommend and give feedback to improvise my project.

In other hand, I would to appreciate my parents who support me financially and helped me a lot in finishing this project. Their advice and motivational words to build up myself. Apart from that, I thank to my friends who have helped with their valuable suggestions and guidance has been helpful in various phase pf the completion of the project.

I am making this project not only for marks but to also increase my knowledge as well.

Thanks again for those who help me directly or indirectly in completing this project.

TABLE OF CONTENTS

		PAGE
TAB	LE OF CONTENTS	x-xiii
LIST	OF TABLES	xiv
LIST	OF FIGURES	xv-xviii
LIST	OF APPENDICES	xix
LIST	OF SYMBOLS	XX
LIST	OF ABBREVIATIONS	xxi-xxii
СНА	PTER 1 INTRODUCTION	1-7
1.1	Background	1-2
1.2	Problem Statement	3-4
1.3	Objective	4
1.4	Scope	5-6
1.5	Outline of thesis	7
СНА	PTER 2 LITERATURE REVIEW	8-36
2.1	Efficient LPG Leakage Detector and Auto Turn-Off System Using	8-9
	Arduino Microcontroller	
2.2	LPG Gas Leakage Recognition and Aware System	10

2.3	GSM Based Gas Leakage Detection & Prevention System for Disabled	11-12
	and Handicapped	
2.4	LPG Gas Monitoring & Automatic Cylinder booking with Alert	13-15
	System Using Arduino	
2.5	Improvement on Gas Leakage Detection and Location System Based	15-16
	On Wireless Sensor Network	
2.6	Controlling Gas Leakage Detection	17-18
2.7	Smart Gas Cylinder Using Embedded System	18-19
2.8	Gas Leakage Alerting System Using GSM	20-21
2.9	Design and Development of Kitchen Gas Leakage Detection and	22
	Automatic Gas Shut off System	
2.10	Cylinder LPG Gas Leakage Detection for Home Safety	23-24
2.11	GSM Based Gas Leakage Detection System	24-26
2.12	Embedded system for Hazardous Gas detection and Alerting	26-27
2.13	A Security Alert System Using GSM For Gas Leakage	27-28
2.14	Design and Implementation of an Economic Gas Leakage Detector	29-30
2.15	Comparison table related previous research	31-35
2.16	Summary	36
СНАР	TER 3 METHODOLOGY	37-47
3.1	Block Diagram of Development Of Kitchen Gas Leakage Detection	37
3.2	Flowchart of Development Of Kitchen Gas Leakage Detection	38
3.3	Software Development	39-40
3.3.	1 Arduino Integrated Development Environment (IDE)	39

3.3.2	Eagle	40
3.4	Hardware Development	41-47
3.4.1	Arduino Nano	41
3.4.2	MQ-2 Gas Detection Sensor	42
3.4.3	KY-026 Flame Detector	43
3.4.4	Temperature Sensor (TMP36)	43-44
3.4.5	Solenoid valve	44
3.4.6	Water pump	45
3.4.7	DC Fan	45-46
3.4.8	Buzzer	46-47
3.4.9	16x2 Liquid Crystal Display (LCD)	47
CHAP	TER 4 RESULTS AND DISCUSSION	48-62
4.1	Introduction	48
4.2	Schematic Diagram of Development of Kitchen Gas Leakage Detection	48-49
	Using Arduino To Prevent Unplanned Tragedy	
4.3	Testing Phase	50-60
4.3.1	Initial Condition Testing	50-51
4.3.2	Gas, Fire and Temperature Condition Testing	51-52
4.3.3	Fire and Temperature Condition Testing	53-54
4.3.4	Gas and Fire Condition Testing	54-55
4.3.5	Gas and Temperature Condition Testing	55-56

4.3.7	Gas Condition Testing	58-59
4.3.8	Fire Condition Testing	59-60
4.4	Prototype of project	61
4.5	Summary	62
CHAP	TER 5 CONCLUSION	63-64
5.1	Introduction	63
5.2	Project observation	63
5.3	Recommendation	64
REFER	RENCES	65-66
APPEN	IDIX	67-76

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1	Causes of Gas Accidents from year 2009 - 2018	4
Table 2.1	Results according to test surroundings	30
Table 2.2	Comparison Table 1	31
Table 2.3	Comparison Table 2	32
Table 2.4	Comparison Table 3	33
Table 2.5	Comparison Table 4	34
Table 2.6	Comparison Table 5	35
Table 4.1	Analysis based on test surroundings	62

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Block diagram of Efficient LPG Leakage Detector	9
Figure 2.2	Prototype of Efficient LPG Leakage Detector	9
Figure 2.3	LPG Gas Leakage Recognition and Aware System	10
Figure 2.4	Flow chart of GSM Based Gas Leakage Detection &	12
	Prevention System	
Figure 2.5	Block Diagram of LPG Gas Monitoring & Automatic	14
	Cylinder Booking	
Figure 2.6	SMS sent to the user mobile	14
Figure 2.7	LCD display and status of LPG Gas Monitoring & Automatic	15
	Cylinder Booking	
Figure 2.8	Block diagram for Transmitter Section	16
Figure 2.9	Block diagram for Receiver Section	16
Figure 2.10	Block diagram of Gas Leakage and Control	18
Figure 2.11	Flow chart Of Smart Gas Cylinder Using Embedded System	19
Figure 2.12	Block diagram of Gas Leakage Alerting System	20
Figure 2.13	The flowchart of Gas Leakage Alerting System	21
Figure 2.14	SMS outcome	21
Figure 2.15	Block diagram of Cylinder LPG Gas Leakage Detection for Home	23
	Safety	

Figure 2.16	Weight of Gas Cylinder Leakage	24
Figure 2.17	The sensitivity characteristics of the MQ-6 gas sensor towards	25
	several gases	
Figure 2.18	Block diagram of GSM Based Gas Leakage Detection System	26
Figure 2.19	Block diagram of Hazardous Gas detection	27
Figure 2.20	Flow chart of Security Alert System Using GSM for Gas Leakage	28
Figure 2.21	Block diagram of Security Alert System Using GSM for Gas	28
	Leakage	
Figure 2.22	Flowchart of Design and Implementation of an Economic Gas	30
	Leakage Detector	
Figure 3.1	Block diagram of Kitchen Gas Leakage Detection	37
Figure 3.2	Flow chart of Kitchen Gas Leakage Detection	38
Figure 3.3	Arduino IDE Software	39
Figure 3.4	Eagle Software	40
Figure 3.5	Pin Configurations of Arduino Nano	41
Figure 3.6	MQ-2 Gas Detection Sensor	42
Figure 3.7	KY-026 Flame Detector	43
Figure 3.8	Temperature Sensor	44
Figure 3.9	Solenoid valve	44
Figure 3.10	Water pump	45
Figure 3.11	DC Fan	46
Figure 3.12	Buzzer	47
Figure 3.13	16x2 LCD Display	47
Figure 4.1	Schematic Diagram of Development of Kitchen Gas	49

Leakage Accidents Detection Using Arduino To Prevent

Unplanned Tragedy

Figure 4.2	Initial condition of system	51
Figure 4.3	Start up LCD display	51
Figure 4.4	LCD display after 3 seconds	51
Figure 4.5	Coding of Gas, Fire and Temperature Condition	52
Figure 4.6	Gas, Fire and Temperature Condition Testing	52
Figure 4.7	LCD display "GAS FIRE TEMP"	52
Figure 4.8	Coding of Fire and Temperature Condition	53
Figure 4.9	Fire and Temperature Condition Testing	53
Figure 4.10	LCD display "FIRE TEMP"	54
Figure 4.11	Coding of Gas and Fire Condition	54
Figure 4.12	Gas and Fire Condition Testing	55
Figure 4.13	LCD display "GAS FIRE"	55
Figure 4.14	Coding of Gas and Temperature Condition	56
Figure 4.15	Gas and Temperature Testing	56
Figure 4.16	LCD display "GAS TEMP"	56
Figure 4.17	Coding of Temperature Condition	57
Figure 4.18	Temperature Testing	57
Figure 4.19	LCD display "TEMP"	58
Figure 4.20	Coding of Gas Condition	58
Figure 4.21	Gas Testing	59
Figure 4.22	LCD display "GAS"	59
Figure 4.23	Coding of Fire Condition	60

Figure 4.24	Fire Testing	60
Figure 4.25	LCD display "FIRE"	60
Figure 4.26	System after operate	61
Figure 4.27	System before operate	61

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Gantt Chart 1 of PSM 1	67
Appendix 2	Gantt Chart 2 of PSM 2	68
Appendix 3	Arduino Coding for Development of Kitchen Gas Leakage	69-74
	Detection Using Arduino To Prevent Unplanned Tragedy	
Appendix 4	Annual Report on Liquefied Petroleum Gas (LPG) Related	75
	Accidents by The High-Pressure Gas Safety Institute of	
	Japan (KHK)	
Appendix 5	New Straits Times News Report	76

LIST OF SYMBOLS

V - Voltage

LIST OF ABBREVIATIONS

LPG Liquid Petroleum Gas

LED Light Emitting Diode

GSM Global System for Mobile communications

ARM Advanced RISC Machine

LCD Liquid Crystal Display

SMS Short message service

PIC Peripheral Interface Controller

IDE Integrated Development Environment

IC Integrated Circuit

ppm Parts Per Million

WSN Wireless Sensor Network

AVR Alf Vegard's RISC

CNG Compressed Natural Gas

UK United Kingdom

HEX Hexadecimal source file

USB Universal Serial Bus

PCB Printed Circuit Board

DC Direct Current

MCU Microcontroller unit

ASCII American Standard Code Integration Interchange

ADC Analog Digital Converter

xxi

CHAPTER 1

INTRODUCTION

1.1 Background

In the 21st century home provides safety and convenience for many people. A smart home comes with many functions, features and system. In every house the need of gas is much considered. For instance, like Liquid Petroleum Gas (LPG), butane and some other. LPG gas leak accidents have occurred due to human error or in other word manmade factors. Gas leakage is very harmful for the safety of human life. The appliance of gas leakage detection system is a best effective solution to avoid leakage of gas. Gas leakage endangers people's life.

There have many cases regarding gas accident in the world due to gas leakage. As reported by statistics of Institute of Japan in appendix 4 from the year of 1972 to 1989 the number of gas accidents increase dramatically and it's decrease from the year of 1990 to 2001. From 2002 to 2012 the number of accidents starts to increase and decrease slightly in the year 2013 to 2016. Meanwhile, in the year 2017 onwards it's started to increase again and it's needs to be considered. In addition to lives, the number of properties damaged because of gas leakage are enormous. Apart from the detection, the controlling of gas leakage plays an important role. Mostly LPG used in houses or manufacturing. In household appliances LPG mainly used for purpose of cooking.

This project is designed to detect LPG and it will aware the user regarding gas leakage. The buzzer will beep loudly to alert the user and shut off the supply from the cylinder. The exhaust fan run after the gas supply has shut off. Meanwhile, the flame

detector will be active always to avoid the fire burn from happen. At the same time, this will help to reduce the explosion accident. This system also helps to detect early of fire before the fires getting spread over every place.