

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND CONSTRUCTION OF ORGANIC FOOD WASTE-FERTILIZER CONVERSION SYSTEM

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours.

by

SASITHARAN A/L RAJAH

B071610897

950303-10-5475

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2019/2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKA	AL MALAYSIA MELAKA	
BORAN	G PENGESAH	AN STATUS LAPORAN PROJEK SARJANA MUDA
Tajuk: DES	SIGN AND CO	NSTRUCTION OF FOOD WASTE-FERTILIZER SYSTEM
Sesi Pengajia	an: 19/20	
Saya SASIT Perpustakaar seperti beriku	T HARAN A/L n Universiti Te ut:	RAJAH mengaku membenarkan Laporan PSM ini disimpan d eknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaar
 Laporan Perpustal tujuan pe Perpustal institusi p **Sila tan 	PSM adalah ha kaan Universiti mgajian sahaja kaan dibenarkar pengajian tinggi ndakan (X)	k milik Universiti Teknikal Malaysia Melaka dan penulis. Teknikal Malaysia Melaka dibenarkan membuat salinan untuk dengan izin penulis. n membuat salinan laporan PSM ini sebagai bahan pertukaran antara i.
	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang penyelidikan dijalankan
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan
	TIDAK TERH	AD
Yang ben	ar,	Disahkan oleh penyelia:

SASITHARAN A/L RAJAH

MOHAMED SAIFUL FIRDAUS BIN HUSSIN

di

Alamat tetap: NO 80, JALAN UTAMA 28, TAMAN JAYA UTAMA, 42500 TELOK PANGLIMA GARANG, SELANGOR

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/ organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD

DECLARATION

I hereby, declared this report entitled

"Design and Construction of Food Waste-Fertilizer System"

is the results of my own research except as cited in references.

Signature:

Author: SASITHARAN A/L RAJAH

Date :

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical and Manufacturing in Automotive (Automotive Technology) (Hons.). The member of the supervisory is as follow:

Signature :

Supervisor : MR. MOHAMED SAIFUL FIRDAUS BIN HUSSIN

ABSTRAK

Projek ini bertujuan untuk menyiasat dan membuat prototaip yang dapat menghasilkan baja dalam masa 24 jam dan menjadikan sistem berjalan secara automatik. Prototaip baja ini adalah item diubah untuk meningkatkan suasana, masa, kos dan sebagainya prototaip baja semasa. Tujuan projek ini adalah untuk memperbaiki dan mengubah suai mesin baja yang sudah wujud di pasaran. Beberapa perbandingan telah dilakukan dalam kajian literatur seperti perbandingan antara perkakas rumah yang sudah wujud di pasaran dan perbandingan antara kaedah reka bentuk kejuruteraan. Beberapa prosedur telah dijalankan bermula dengan pengumpulan sisa makanan, dimasukkan ke dalam mesin prototaip bersama dengan 2kg tanah. Baja mengandungi sisa makanan dan ia digabungkan dengan prototaip untuk kompos di dalam tanah. Baja mengandungi sisa makanan dan ia dimasukkan ke dalam prototaip untuk kompos di dalam tanah. Dua jenis ujian yang digunakan untuk menguji baja, iaitu ujian tumbuhan dan Fourier Transform Infrared Spectroscopy (FTIR). Ujian tumbuhan menghasilkan kadar pertumbuhan tanaman sehingga 15 hari pertama dan FTIR menghasilkan data graf yang perlu ditafsirkan dengan merujuk kepada carta Spektroskopi. Keputusan menunjukkan bahawa kandungan tinggi Amine C-N, Alkene CC, Phosphorus P-H dan Urea, NH di tumbuhan itu menjejaskan penyusutan tindak balas pertumbuhan tumbuhan.

ABSTRACT

This project aims to investigate and fabricate a prototype which is able to produce fertilizer within 24 hours and make the system run fully automatic. This fertilizer prototype is an altered item to enhance the atmosphere, moment, costing and so on of the current fertilizer prototype. The purpose of this project is to improve and modify the fertilizer machine that already exist in market. Several comparison had been perform in literature review such as comparison between home appliance that already exist in market and comparison between engineering design method. Several procedure were carried out started with collection of food waste, inserted into prototype to compost in soil. The fertilizer contains food waste and it blend by prototype to compost in soil. Two types of testing used to test the fertilizer, which are plant testing and the Fourier Transform Infrared Spectroscopy (FTIR). The plant testing produced the plant growth rate until first 15 days and FTIR produced graph data that should be interpreted by referring to the Spectroscopy chart. The results showed that the high content of Amine C-N, Alkene CC, Phosphorus P-H and Urea, NH in the plant affected the degradation of plant growth response.

v

DEDICATION

A special appreciation, I dedicated this thesis to my lovely mother Chninnakolanthai A/P Periasamy and lovely father Rajah A/L Elamalai. Thank you to my friends, who help me day and night to complete this thesis.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Mr. Mohamed Saiful Firdaus Bin Hussin who have gave a lot of opinion to me when construct a final year project. I would like to appreciate that my supervisor has spent a lot of time to guide me throughout the process during final year project. My supervisor has guide me patiently even when there is lot of mistake being done.

Secondly, I would like to thank my parents who had always encourage me from any side in order to complete the project even when there is so many obstacle throughout the project process. Big thanks to my friends for helping each other to complete the project.

Finally, again a thousands more thanks to all the person that had support and help me throughout the completion of this project.

TABLE CONTENT

TAB	ABLE OF CONTENTS		
LIST	LIST OF TABLES x		
LIST	OF FIGURES	xiii	
LIST	OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE	xvi	
			
СНА	PTER 1: INTRODUCTION	1	
1.0	Background of study	1	
1.1	Problem Statement	4	
1.2	Objective of Study	5	
1.3	Scope of Study	5	
CHA	PTER 2: LITERATURE REVIEW	6	
2.0	Introduction	6	
2.1	Way to Make Own Fertilizer from Fertilizer	7	
	2.1.1 Organic fertilizer from kitchen waste	10	
2.2	Food waste to fertilizer	11	
2.3	Type of fertilizer conversion	11	
	2.3.1 Food waste to fertilizer by compost-free	11	

	2.3.2	Food waste turn to liquid fertilizer	11
	2.3.3	Food waste turn to crop fertilizer	12
2.4	Fo	od waste fertilizer system	12
	2.4.1	Industrial composting system	12
2.5	Re	view of home appliances fertilizer system	15
2.6	6 Co	mparison design of conceptual fertilizer maching	ne 16
2.7	' Su	vey	20
2.8	Co	mparison design method	21
	2.8.	1 Theory of inventive problem solving	21
	2.8.	2 Pugh method	22
	2.8.	3 Design thinking	23
	2.8.	4 Axiomatic design	23
CHA	PTER	3: METHODOLOGY	26
3.0	Introc	uction	26
3.1	Proje	et Planning	26
	3.1.1	Data collection	26
	3.1.2	Customer survey	27
3.2	Proje	et flow chart	28
	3.2.1	Flow chart	28

3.3	House of Quality 29			
3.4	Morphological chart 31			
3.5	Conceptual design development 32			
3.6	Selection of Pugh Method 3:			
3.7	Material of selection	34		
СНАР	TER 4: RESULT AND DISCUSSION	35		
4.0	Introduction	35		
4.1	Customer survey analysis	35		
4.2	Respondent Rate	36		
4.3	Frequency statistics	37		
4.4	House of Quality 66			
4.5	Morphological chart 67			
4.6	Pugh method 72			
4.7	Final design main component	75		
	471 Motorial solution	73		
	4.7.1 Material selection	73		
	4.7.2 Design the chamber	74		
	4.7.3 Selection of motor	74		
	4.7.4 Conceptual Design	74		
4.8	Testing waste food fertilizer prototype	77		
	4.8.1 Fourier transform infrared spectroscopy	, ,		
	4.8.2 Testing procedure	80		
	4.8.3 FTIR Result analysis	81		
	4.8.4 Plant testing	84		
	4.8.5 Plant test result	91		

CHAPTER 5: CONCLUSION 1		
5.0	Introduction	107
51	Summary and Research	107
5.1		107
5.2	Achievement of Research Objective	108
5.3	Significance of Research	108
5.4	Recommendation for Future Work	109

REFERENCE

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	List of material can be used and cannot be used	7
Table 2.2	Substance that produce nutrient rich fertilizer	9
Table 2.3	The differences between fertilizer system characteristics in the market	16
Table 2.4	The comparison between the three diagram alternatives	18
Table 2.5	The score relationship between the criteria and type of design	19
Table 2.6	Sample of Pugh decision matrix	20
Table 3.1	Combination of design from morphological chart	33
Table 4.1	Profile of questionnaire survey	37
Table 4.2	Combination part using morphological chart	70
Table 4.3	Pugh method that compare the conceptual design with datum	72
Table 4.4	Procedure for fourier transform infrared spectroscopy (FTIR)	83
Table 4.5	Process of making fertilizer using food waste by prototype machine	92
Table 4.6	Process of planting spinach for plant testing	95
Table 4.7	Plant testing final result (parameter 1)	100
Table 4.8	Plant testing final result (parameter 2)	104
Table 4.9	Waste food fertilizer pH and conductivity test	106

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Diagram Comparison of Natural and Engineered Fertilizers	9
Figure 2.2	Organic Waste to Fertilizer Production Line	13
Figure 2.3	K-chart of literature review	25
Figure 3.1	Flowchart of the project	28
Figure 3.2	Template of House of Quality	30
Figure 3.3	Morphological chart	32
Figure 4.1	Gender respondent to survey	37
Figure 4.2	Total Amount of Food Waste Gain in a Day	37
Figure 4.3	Public Opinion toward Waste Food and What to Do With Waste Food	38
Figure 4.4	Awareness of Changing Food Waste to Fertilizer	38
Figure 4.5	Amount of Fertilizer Needs from Waste Food	39
Figure 4.6	Public Perception of Important Waste Food Changing to Fertilizer	39
Figure 4.7	Importance of Waste Food Fertilizer towards Community	40
Figure 4.8	Realization For Reduce Pollution by Produce Fertilizer Machine	40
Figure 4.9	Importance of Fertilizer That Improve Nutrition to Plant	41
Figure 4.10	The cost-size partnership	42
Figure 4.11	Cost / tensile strength partnership	42
Figure 4.12	Project Costs and Corrosion Resistance Interaction	43
Figure 4.13	Best Connection between Project Costs and Simplicity of Design	44
Figure 4.14	Plan cost-to-tensile strength relationship	44
Figure 4.15	Project Cost and System Security Partnership	45
Figure 4.16	Lightweight and Prototype Size Partnership	46
Figure 4.17	The Partnership between Lightweight Plan and Machine Tensile Strength	46
Figure 4.18	Lightweight and System Corrosion Resistance Partnership	47
Figure 4.19	Relation between Project Light Weight and System Design Simplicity	48

Figure 4.20	The Strongest Link between Lightweight Project and Machine Fertilizer Rate	48
Figure 4.21	Lightweight project-machine safety partnership	49
Figure 4.22	Relation between Performance and System Size	50
Figure 4.23	The Relation between Project Reliability and System Tensile Strength	50
Figure 4.24	Relation of Machine Reliability to Machine Corrosion Resistance	51
Figure 4.25	Good Link between Project Reliability and System Design Simplicity	52
Figure 4.26	Relation between Project Reliability and Fertilizer Output Rate	52
Figure 4.27	The Link between Project Reliability and System Safety	53
Figure 4.28	Relation between System Size and Project Reliability	54
Figure 4.29	The Relationship of Reliability and Efficiency of Tensile System	54
Figure 4.30	Relation of Project Durability and Machine Size	55
Figure 4.31	Links between Durability and Flexibility of Design	56
Figure 4.32	Relation between Project Life and Fertilizer Rate	56
Figure 4.33	Relation between Project Durability and Machine Size	57
Figure 4.34	Project Maintenance and Project Size Partnership	58
Figure 4.35	Link between Tensile Strength and Project Maintenance	58
Figure 4.36	Plan Maintenance Alliance and Corrosion Resistance	59
Figure 4.37	Good Link between System Maintenance and Project Simplicity	60
Figure 4.38	Best Connection between Project Maintenance and Project Design Simplicity	60
Figure 4.39	Good Partnership between System Maintenance and Project Safety	61
Figure 4.40	Project High Efficiency and Project Size Relationship	62
Figure 4.41	The Correlation between High Efficiency and Strength of the Project	62
Figure 4.42	Strong Performance and Corrosion Resistance Partnership Project	63
Figure 4.43	High Efficiency and Design Simplicity Relationship	64
Figure 4.44	Relation between High Efficiency Project and Fertilizer Production Speed	64
Figure 4.45	High-Efficiency and Safety Project Partnership	65

Figure 4.46	House of Quality	66
Figure 4.47	Zera food recycler (DATUM)	71
Figure 4.48	3D design of prototype	75
Figure 4.49	3D design front view of prototype.	75
Figure 4.50	3D design side view of prototype	76
Figure 4.51	3D design top view of prototype	76
Figure 4.52	The waste food fertilizer prototype (front view)	77
Figure 4.53	The waste food fertilizer prototype (side view)	77
Figure 4.54	The waste food fertilizer prototype (upside view)	78
Figure 4.55	The waste food fertilizer prototype	78
Figure 4.56	The waste food fertilizer prototype (blender, chamber)	79
Figure 4.57	The waste food fertilizer prototype (blade)	79
Figure 4.58	Conventional Fertilizer FTIR Testing Result 1	84
Figure 4.59	Conventional Fertilizer FTIR Testing Result 2	84
Figure 4.60	Conventional Fertilizer FTIR Testing Result 3	85
Figure 4.61	Waste Food Fertilizer FTIR Testing Result 1	86
Figure 4.62	Waste Food Fertilizer FTIR Testing Result 2	87
Figure 4.63	Comparison between Conversional Fertilizer and Waste Food Fertilizer FTIR Testing Result	88
Figure 4.64	Mid-infrared absorption bond	89
Figure 4.65	Characteristic IR absorption frequencies of organic functional groups	89

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

CFT	-	Compost Free Technology
CO2	-	Carbon Dioxide
Etc.	-	Et Cetera (and other things)
FTIR	-	Fourier Transform Infrared Analysis
Kg	-	Kilogram
K	-	Potassium (Kalium)
Mil.	-	Million
Ν	-	Nitrogen
NPK	-	Nitrogen, Phosphorus, Potassium (Kalium)
n.d.	-	No date
RM	-	Ringgit Malaysia
WFF	-	Waste Food Fertilizer
USA	-	United State of America
UTeM	-	Universiti Teknikal Malaysia, Melaka
CF	-	Conventional Fertilizer

CHAPTER 1

INTRODUCTION

1.0 Background of study

The world faces many problems that can affect environment and also human. Food waste is one of the main problem that can affect environment. Food waste is cause of food that is failed uneaten or discarded by market. The leftover food waste smells bad and attracts rodents and insects which has significant impact on public health. The major cost of municipal waste management range from 75% to 80% of a municipal waste budget and additional 30% cost for landfilling (Unnisa, 2015). Food waste is global issue and threatening for human health and environment. The highest food waste produce by United Kingdom, United Kingdom is one of the leading country that produce waste food that approximately 6.7 million tons annually which costs 10.2billion per year (Abayomi Jegede, 2019). While Malaysia was ranked on 3rd highest countries food waste production in world and 1st in Southeast Asia. At the same time, statistics show that every person produces waste in a life span of about 540 kg to 560 kg of meat, Malay spends energy developing farming and supporting the economy (Abayomi Jegede, 2019). Next estimated 88 million tonnes of food is wasted annually, which is around 20% of food produced, or 95–115 kilograms of food per person each year (Alert, 2016). Different groups of food waste such as crop and residues, fruits and vegetables, sugar and starch can be separated. Different forms of using the by-products of food processing industry may mainly be categorized as a carbon source for the agriculture of useful microorganisms, as a source of direct energy generation / biogas output, as fertilizer by the composting industry, and as a source of value added

products (Malik & Grohmann, 2012). Food production may double by 2050 due to amount of world population growth rise to 2 billion. Food waste including fruit and vegetable that helps to increase vitamin, reduce the risk of some cancers and heart disease especially for kids (Food and Agriculture Organization of the United Nations, 2017).

According to the World Hunger Index 2018, some nations still have food deficiencies, such as Yemen, Madagascar, and Africa, etc. In Africa, the demographic growth level is higher than the food manufacturing that produces food scarcity. African food shortages create individuals hungry and often interconnected by many variables. In particular, poverty, war, environment and weather, absence of investment in farming and volatile economies are the main causes of starvation (World Food Program, 2018). Food shortage also occurs in the environment. Climate shift has decreased the output of meat and triggered by human operations such as pollution and the manufacturing of meat. Low malnutrition is the effect of shortage of food and famine kills people. It indicates that the world consists of two types of people, people who eat and others who suffer from water shortages.

Next, nutrients very important to plant and soil to conduct metabolic reaction because soil consists of standard chemical for plant growth but the standard chemical is supply limited to plant and soil. Once the plant was harvested, the nutrient which is content in plant will reduce and it may causes reduce of quantity and quality of plant. Eventually, the purpose of fertilizer is replace the chemical material from the soil and used for plant growth and development (Miller, 2014). Different fertilizers usually improve plant growth and development for different crop types. Fertilizers can be classified by amount of nitrogen and other element contain and the composition should equal to how much plant needs nutrients (Joseph, 2014). Fertilizer contain sodium nitrates, ammonium sulphate and ammonium salts. Sodium nitrates fertilizer improve and strengthen growth of plant from root to leaf to provide nitrogen which is plant can easily gain (Joseph, 2014). Ammonium sulphate fertilizer consist of sulphur and nitrogen, and it maintain the pH value of soil to an alkaline soil. Furthermore, there is two type of fertilizer made from plant and animal (organic fertilizer) and produced artificially (inorganic fertilizer). Inorganic fertilizer are synthetic and chemical

fertilizer that are made up of various formulation to apply to different types of crops (Joseph, 2014). Advantage of inorganic fertilizer is fast growth and rich with malnutrition such as nitrogen, phosphorus and potassium, this is can help to dissolve a solid salt stage to plant and fast reacting growth in plant. Organic fertilizer are made by naturally decompose from animal, plant and mineral (Joseph, 2014). Similarly, organic fertilizer used widely in agricultural sector because organic made up naturally and plant growth up without damage soil and ground water (Joseph, 2014). In addition too, organic fertilizer also improve soil quality and composition decomposed by soil organism slower compare to inorganic fertilizer (Miller, 2014).

Food waste is food material that is unused, discarded and not safe to be consumed by human for avoidable reasons at production line (Pleissner & Carol, 2013). Food waste is technologies treatment such as ammonia stripping, evaporation, fertilizer granulating and membrane separation as well to create combination of nutrient-rich product. Fertilizers offer three major macronutrients which is potassium, phosphorus, and nitrogen. Plants need a lot of that stuff. NPK (nitrogen, phosphorus, and potassium) needs to be available on the plant in the right ratio to ensure a good balance of carbohydrates, protein and fats. Fertilizers may also add secondary nutrients such as sulphur, magnesium, and calcium to the soil or growing media (Birgit, B., 2017). According to Birgit, there are different types of fertilizers that can be used on specific plants to promote the plant growth, such as coffee grounds, commonly used for plants that thrive on acidic substances, for example roses and tomatoes. Eggshells are also used as fertilizing agents for produce like peppers and tomatoes. High percentage of calcium may help prevent rot while boosting the plant's growth. Organic fertilizers are made by mixing natural ingredients, which is naturally high in N or P or K or all of them, and that also contain trace elements. Chicken poo or blood and bone meal or fish extract and things like that. They contain the NPK in varying ratios, and some trace elements. However, it is possible to get the balance wrong, if there is less knowledge on what exactly is in the bag and what exactly the plants need (Birgit, B., 2017). There is so many ideas around the world and each country have their own method of solution for food waste. In India, they convert human and animal waste into fertilizer. To

overcome this issue, each person can contribute to turn the food waste into fertilizer that fully natural and improve nutrient in plant.

Food waste can be reduced by converting into useful organic fertilizer to reduce health problem caused by food waste disposal (Pleissner & Carol, 2013). By recycle the food waste it help to reduce pollution and it can convert into organic fertilizer to reduce amount of food waste in landfill and neutralize of greenhouse gas to environment (Morash, 2014). Forms this project, uses microorganisms to process fresh food, maintain a nutrient value, create a nutrient and maintain fertilizer for healthy soils that produce food rich in nutrients. This process is carried out inside closed system equipment to avoid bad smell spread while decompose occur and final product as solid soluble state to easily dissolve in water and land without harm to any species.

1.1 Problem Statement

Customer encountered several problems such as available devices consume energy and operate at elevated energy usage, which raises costs indirectly. Then, available machines in market are very bulky and consume more space in house. Waste food might be smelly if keep too long in house and not eco-friendly. Some food waste can be a fertilizer to plant such as egg shells, fruits wastes but it take time to compost the food waste to fertilizer, even some fertilizer machine need time to compost the food waste. Available fertilizer machine in market, have some issue that come are not portable and heavy in size and less amount of waste food turn to fertilizer. Few machine have been done without customer requirement and made a simple machine but sale costly (Chen, Y.-T, 2016)

1.2 Objective

The objective of this project is;

- To conduct survey and collect data of customer need to create prototype.
- To design the concept of fertilizer machine prototype.
- To fabricate a portable prototype that is use to create fertilizer from food waste, consummate the customer requirements.

1.3 Scope of Study

In order to achieve the objective the scope are prepared shown below:

- According to survey, it can help to produce a product that is cheap and portable to keep in household as customer needs. The survey will be conduct in Ayer Keroh, Melaka and specific to house wife because to consummate customer requirement with house of quality.
- 2. Using SOLIDWORK software to draw a design the concept fertilizer prototype.
- 3. To construct food fertilizer machine that can store and produce fertilizer with automatic adding additive with amount of waste food insert into the machine.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

Food waste has become recognized as a significant social, nutritional and environmental problem in recent decades and has serious consequences for the environment and community health (Bond et al, 2013). Fertilizer contain natural substance and mineral that is used to enhance plant growth and improve nutrition in plant. According to Birgit, B, 2017, fertilizer have contain with three main substance which is Nitrogen (N) Phosphorus (P) and Potassium (K) or another name known as NPK. Since food waste make contributions to the landfill pollution in the world, some have discovered on how to decrease the pollution. Instead of throwing away the food waste which may additionally lead to the pollution, the meals waste can be used as a fertilizer thru some process (FAO, 2011). Different nations and corporations comes with one of a kind methodology this to relying on the environment, suitability and the ease of the process. Somehow in order to convert the food waste into fertilizer, some investigation want to be finished to keep away from any waste, air pollution or damage in any perspective. Different type of food waste have to go through specific processes. Not all type of food waste can be used as a fertilizer and restored the macronutrition. Food waste such as meals packaging, bones or different animal-based waste have to be cast off since it will only entice the attendance of pests which would damage the plant life (FAO, 2011).

2.1 Way to Make Own Fertilizer from Food Waste

A fertilizer was set a long way from home and a long way from stuffs that may draw in the creature participation. Fertilizer normally draws in creatures. A 1 inch straw was utilized to line the base of the manure receptacle. Set a fertilizer holder in the kitchen to gather reasonable green waste, for example, egg shells and utilized espresso beans for fertilizer heap. Things that won't fertilizer, for example, waste in a pack, creature bones or other creature based waste must be maintain a strategic distance from. The waste is then being hack to a littler pieces. (Andrews, A.J., 2013.). As per BBG Staff, nutrients from the natural things can really be consumed by the plants. To get the correct fixings with the correct amount, the least complex way that may help is by fertilizing the soil. This should even be possible at home with a correct conditions. By one way or another there is not many material that may hurt the plant brought about by a bug because of wrong material use.

Material can be used	Material cannot be used
Leaves and brush	Meat scraps
• Plant cutting, grass clippings	• Fish scraps
• Fruit scraps	• Dairy products
• Breads and grains	• Fats or oils
• Coffee ground and filters	• Grease
• Tea bags	• Dog feces
• Eggshells	• Kitty litter
• Wood chips	• Weed seeds
• Sawdust	• Charcoal ash
• Wood ash	• Non-organic materials
• Old potting soil	
• Cut flower	

Table 2.1: list of material can be used and cannot be used