

Faculty of Mechanical and Manufacturing Engineering Technology

ENVIRONMENTAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH/BEESWAX REINFORCED WITH SUGARCANE BAGASSE FIBER

Nurul'Ain Haniyun binti Mohamad Fodzi

Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours

2019

ENVIRONMENTAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH/BEESWAX REINFORCED WITH SUGARCANE BAGASSE FIBER

NURUL'AIN HANIYUN BINTI MOHAMAD FODZI

A thesis submitted

in fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: ENVIRONMENTAL AND PHYSICAL PROPERTIES OF THERMOPLASTIC CASSAVA STARCH/BEESWAX REINFORCED WITH SUGARCANE BAGASSE FIBER

Sesi Pengajian: 2019

Saya NURUL'AIN HANIYUN BINTI MOHAMAD FODZI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UteM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk

tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. **Sila tandakan (X)

т.	Sila tallaakali (2	(x)		
	SULIT*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.		
	TERHAD*	Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.		
	TIDAK TERHAD			
Yang	, benar,	Disahkan oleh penyelia:		
NURUL'AIN HANIYUN BINTIMOHAMAD FODZIDR. RIDHWAN BIN JUMAIDINAlamat Tetap:Cop Rasmi PenyeliaLOT 1140 KG ALOR TUAN HAJI,BESERAH 26100,KUANTAN,PAHANG DARUL MAKMUR				
Tarik	ch:	Tarikh:		
*Jika	*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak			
berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM				
ini perlu dikelaskan sebagai SULIT atau TERHAD.				
mi pe	IIII PERIU UIKEIASKAII SEDAGAI SULII ALAU IEKIAD.			

DECLARATION

I hereby declare that this thesis entitled "Environmental and Physical Properties of Thermoplastic Cassava Starch/Beeswax Reinforced with Sugarcane Bagasse Fiber" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

> Signature : Name : Nurul'Ain Haniyun Binti Mohamad Fodzi Date :

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours.

> Signature : Supervisor Name : Dr. Ridhwan Bin Jumaidin

Date :

DEDICATION

Alhamdulillah

Praise to Allah for the strength, guidance and knowledge that was given by Allah for me to complete this study

&

To my beloved parents and families for every support that was given to me

&

To my best friend, Aruhadeyana Arshad for her support to see the blessing given through the hardship, Amirul Hazim, my best friend companion since semester one of Bachelor

Degree

&

To my teammates for this study and all the people who supports me through my journey.

ABSTRACT

The non-biodegradable plastic has been causing many environmental to the flora and fauna due to its presence in the environment. Hence, many studies have been conducted recently in search for a new material that is more environmentally friendly and sustainable since the resources for the production of plastic, the petroleum, is nearing its end. Starch have become a focus to the recent studies due to its sustainability, abundant availability and also the capability of the starch to degrade in the natural environment easily. Other than that, the utilization of sugarcane bagasse fiber as the reinforcement have been gaining attention as it could reinforce the strength of the renewable material yet capable of degrading under natural condition and it is also highly available since it is abundantly disposed after the juice extraction. Due to the hydrophilic properties of the starch, the modification of the materials was conducted to improve the properties of the biopolymer. The modification includes the incorporation of the sugarcane bagasse fiber from 10 wt.% to 30 wt.% into the modified TPCS incorporated with beeswax. The physical and environmental properties on the modified material were then analyzed. The modification was successfully developed that starts with hand mixing the starch, glycerol, beeswax and sugarcane bagasse fiber are followed by mixing using a high-speed blender. The mixture then undergoes hot compression molding to form a sample of the new material. The analysis conducted on the new material shows that the incorporation of sugarcane bagasse fiber to the modified TPCS in general have improved the physical and environmental properties of the material. From the water absorption testing it was found that composite with 30wt.% fiber loading absorbed the least water compared to the other samples. However, the thickness swelling results indicate that the sample with 30wt.% fiber loading increase in its thickness the most. As for the moisture absorption found that the increase in fiber loading reduces the moisture absorption of the composite and sample with 30 wt.% fiber loading have the least moisture absorbed. In terms of environmental properties, it was found that the incorporation of 30wt.% sugarcane bagasse fiber reduces the weight reduction of the 2 and 4 weeks soil burial samples. Yet the solubility of the 30 wt.% composite is highest among all of the composites. Based on the results, it was seen that the incorporation of the sugarcane bagasse fiber to the modified thermoplastic cassava starch is improved the composite properties as compared to the matrix material without the reinforcement. In conclusion, the material has better potential to be commercialize is better with the new modification, other than its advantages of lower cost, more environmentally friendly and sustainable. The potential application for such biopolymer would be packaging and product with short lifespan.

ABSTRAK

Plastik tidak terbiodegradasi telah menyebabkan banyak isu alam sekitar disebabkan oleh kepada flora dan fauna di alam sekitar. Oleh kerana itu, banyak kajian telah dilakukan barubaru ini untuk mencari bahan baru yang lebih mesra alam dan mampan kerana sumber alam untuk pengeluaran plastik, iaitu petroleum, sudah hampir habis. Kanji telah menjadi tumpuan banyak kajian baru-baru ini kerana kelestariannya, ketersediaan yang banyak dan juga keupayaan kanji untuk terurai dalam alam sekitar dengan mudah. Selain itu, penggunaan hampas serat tebu sebagai penguat telah mendapat perhatian kerana ia dapat menguatkan kekuatan dan ketahanan bahan yang berasaskan dari sumber semula jadi yang mampu terurai dalam alam sekitar. Penggunaan hampas serat tebu adalah sangat berguna kerana ia untuk didapati kerana selepas pengekstrakan jus, kebiasaannya ia dilupuskan. Walau bagaimanapun, kerana sifat asas kanji adalah hidrofilik, pengubahsuaian bahandijalankan untuk meningkatkan sifat-sifat bio-polimer bahan telah berkenaan. Pengubahsuaian dijalankan dengan menggabungkan serat bagas tebu dari 10wt.% hingga 30wt.% kepada termoplastik kanji ubi kayu yang dicampurkan dengan lilin lebah yang telah dijalankan dalam kajian terdahulu. Sifat fizikal dan sifat persekitaran bahan diubahsuai kemudiannya dianalisis. Pengubahsuaian ini telah dilaksanakan dengan mencampurkan kanji ubi kayu, gliserol, lilin lebah dan hampas serat tebu yang kemudiannya kering dicampur dengan pengadun berkelajuan tinggi. Campuran ini kemudian dimampatkan dengan kaedah pemacuan pemampatan panas untuk membentuk sampel bahan baru. Analisis bahan baru mendapati bahawa penggabungan hampas serat tebu kepada termoplastik kanji ubi kayu yang diubahsuai secara amnya telah meningkatkan sifat bahan dari segi sifat fizikal dan alam sekitar. Dengan ujian penyerapan air, didapati bahawa komposit dengan serat 30wt% menyerap air paling sedikit berbanding sampel lain. Walaubagaimanapun, keputusan perubahan ketebalan menunjukkan bahawa sampel dengan 30wt.% telah berubah ketebalan paling tinggi berbanding sampel lain. Bagi penyerapan kelembapan didapati bahawa sampel dengan serat 30 wt% telah menyerap kelembapan paling minimum antara kesemua sampel. Bagi sifat-sifat alam sekitar, didapati bahawa penggabungan hampas serat tebu sebanyak 30wt.% telah mengurangkan pengurangan berat sampel 2 dan 4 minggu tanaman dalam tanah. Namun kelarutan komposit bagi sampel 30wt.% adalah yang tertinggi dalam kalangan semua komposit. Berdasarkan hasilnya, penggabungan hampas serat tebu ke kanji ubi kayu termoplastik yang diubahsuai telah memperbaiki sifat komposit dibandingkan dengan bahan asas tanpa penggabungan dengan bahan penguat. Sebagai kesimpulan, potensi material untuk dikomersialkan adalah lebih baik dengan pengubahsuaian, selain kelebihannya yang kos rendah, mesra alam dan mampan. Potensi aplikasi untuk bio-polimer adalah untuk menjadi bahan pembungkusan dan produk dengan jangka hayat yang pendek.

ACKNOWLEDGEMENT

Alhamdulilliah, Praise to Allah to the strength and knowledge given to me to finish this study. This research would not be possible for me to complete without the help and support of my family and close friends. A special thanks to my supervisor, Dr. Ridhwan Bin Jumaidin for his guidance and effort to complete this project from scratch and also the experience that was gathered through the participation of UTeM Innovation Expo 2019. I believe with his guidance through this project, I have learned many new knowledges for me to use in the future. I would also like to thank my teammates and also friends that have been giving me support in many ways. Thank you to my mother, Rahmah Binti Harun and my father, Mohamad Fodzi bin Mohd Salleh for supporting my dreams to pursue bachelor's degree. Not forgetting my sisters and my brothers. Also, the help and advice given by all technicians from Faculty of Mechanical and Manufacturing Engineering Technology during the BDP was carried out. Thank you.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF APPENDICES	xiii
LIST OF ABBREVIATION	xiv

CHAPTERS

1 INTRODUCTION

1.0	Background	1
1.1	Problem Statement	2
1.2	Objective	3
1.3	Significance of Study	4
1.4	Scope of Study	4
1.5	Structure of Thesis	5

2. LITERATURE REVIEW

2.0	Introduction	6
2.1	Polymer	7
2.1.1	. Synthetic Polymer	7
	2.1.1.1. Thermoset	8
	2.1.1.2. Thermoplastic	9
2.1.2	2. Biopolymer	10
	2.1.2.1. Poly-L-lactic acid Biopolymer	12
	2.1.2.2. Starch Biopolymer	14
2.2	Composite	16
2.2.1	. Metal Matrix Composite (MMC)	19
2.2.2	P. Polymer Matrix Composite (PMC)	19
2.3	Application of Composite	20
2.4	Fiber	24
2.4.1	. Synthetic Fiber	24

2.4	.2.	Natural F	Fiber	25
		2.4.2.1.	Jute Fiber	27
		2.4.2.2.	Application of Jute Fiber	28
		2.4.2.3.	Sugarcane	28
		2.4.2.4.	Sugarcane Bagasse Fiber	31
		2.4.2.5.	Application of Sugarcane Bagasse Fiber	32
2.5	Wa	xes		33
2.5	.1.	Synthetic	e Waxes	33
2.5	.2.	Natural V	Waxes	34
2.5	.3.	Beeswax		34
2.6	Pla	sticizer		35
2.6	5.1.	Glycerol		37
2.7	Sta	rch		40
2.8	The	ermoplasti	c starch	42
2.8	.1.	Thermop	lastic Sago Starch	43
2.8	8.2.	Thermop	lastic Cassava Starch	50
2.9	Ap	plication o	f Thermoplastic Starch	56
2.10	Nat	tural Fiber	Reinforced Thermoplastic Starch Composite	57
2.11	Sur	nmary		61

3. METHODOLOGY

3.0 Int	roduction	62
3.1. M	aterial	
3.1.1.	Cassava Starch	64
3.1.2.	Beeswax	65
3.1.3.	Glycerol	65
3.1.4.	Bagasse	67
3.2. Fa	brication of Samples	69
3.2.1.	Fabrication of Thermoplastic Cassava Starch	69
3.2.2.	Fabrication of Thermoplastic Cassava Starch/Beeswax	72
3.2.3.	Fabrication of Thermoplastic Cassava Starch/Beeswax	75
	reinforced with Sugarcane Bagasse Fiber	
3.3. Ch	aracterization of Samples	77
3.3. Ch	aracterization of Samples	77

	EFERENCI PPENDICE		I XIII
	5.3 Fabrica	ation of Potential Product	110
	5.2 Produc	ct Innovation and Acheivement	110
	5.1 Recom	nmendation for Future Research	109
	5.0 Conclu		107
э.	RESEAR		2
5.		JSION AND RECOMMENDATION FOR FUTURE	
	4.2.1.	Water Solubility	102
	4.2. En 4.2.1.	vironment Testing Soil Burial	102
	4.1.6. 4.2. En	Scanning Electron Microscopy (SEM)	99 102
	4.1.5.	Fourier-Transform Infrared Spectroscopy (FT-IR)	
	4.1.4.	Moisture Absorption	95
	4.1.3.	Thickness Swelling	94
	4.1.2.	Water Absorption	92
	4.1.1.	Moisture Content	91
	•	ysical Testing	91
	4.0 Int	troduction	90
4.	RESULT	AND DISCUSSION	
		3.3.2.2. Water Solubility	88
		3.3.2.1. Soil Burial	86
	3.3.2.	Environment Testing	86
		3.3.1.6. Swelling Thickness	84
		3.3.1.5. Moisture Absorption	82
		3.3.1.4. Water Absorption	80
		3.3.1.3. Scanning Electron Microscopy (SEM)	79
		3.3.1.2. Fourier-Transform Infrared Spectroscopy (
	0.011	3.3.1.1. Moisture Content	77
	3.3.1.	Physical Testing	77

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Classifications and Origins of biopolymers	11
2.2	Examples of sports equipment application using fiber	21
	reinforced composite materials	
2.3	Automotive industry application of natural fiber	23
	composite	
2.4	Synthetic fiber commonly used in aviation industry	25
2.5	Percentage of sugarcane production in the world	30
2.6	The chemical composition of bagasse fiber	32
2.7	Film properties from different starches and	41
	plasticizers	
2.8	Sources of starch and amylose/amylopectin ratio, and	43
	crystallinity	
2.9	Thermoplastic Sago Starch Composites	49
2.10	Physical properties of CS film, CS/CB composite	53
	film and CS-CB/SPF hybrid composites films	
2.11	Thermoplastic Cassava Starch Composite	56
2.12	Properties of Glass Fiber and Natural Fibers	59
3.1	General Properties of Cassava Starch	65
3.2	Chemical composition of QRëC Glycerol	67

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Example of the Structure of Polypropylene Chain	7
2.2	Thermoset, narrow link cross link	8
2.3	Thermoplastic, linear or with branches	9
	macromolecule chain	
2.4	Classification of Biopolymer	10
2.5	PLA and nanocomposites before degradation and	13
	after 3 and 4 weeks of degradation in compost at 40°C	
2.6	Blank for microbial test after 10 days for : (a) PLA,	13
	(b)PLA/CLO30B, (c) PLA/NAN804 (d) after 10 days	
	of microbial degradation	
2.7	FTIR spectra of thermoplastic chitosan (TPC),	15
	thermoplastic cornstarch (TPS) and TPS blends with	
	5 and 10 wt% TPC (TC5 and TC10)	
2.8	SEM micrographs of the fracture surface on (A) TPS;	16
	(B) TPC; (C) TC5; (D) TC10; and SEM micrographs	
	of the film surface of (E) TC5; (F) TC10	
2.9	Illustration of (a) fiber reinforced, (b)whiskers	17
	reinforced, (c) particle reinforced	
2.10	Classification of Composite Materials	18

2.11	(a) perfume bottle (b) cosmetic bottle (c) laptop	22
	packaging box (d) mobile phone (e) biodegradable	
	food container	
2.12	Structure of Biofiber	26
2.13	Classification of Plant Based Fibers	27
2.14	(a) Jute plant (b) Unidirectional jute fiber	28
2.15	The Classification of the Saccharum and its species	31
2.16	Bagasse Fiber	32
2.17	SEM images of : (a) whole bagasse (b) bagasse fiber	33
	(c) bagasse pith	
2.18	Classification of Waxes	37
2.19	Moisture content of SPS films with different	39
	concentration and plasticizer type	
2.20	Solubility of SPS films with different concentration	39
	and plasticizer type	
2.21	Water absorption of SPS films with different	40
	concentration and plasticizer type	
2.22	Chemical structure of amylose	42
2.23	Chemical structure of amylopectin	42
2.24	SEM micrograph of (a) Corn (b) Rice (c) Wheat (d)	43
	Potato	
2.25	FTIR result on day 1	45
2.26	FTIR result on day 14	45
2.27	Degradation Test	46

2.28	Natural weathering test percentage of weight loss	47
	versus degradation time of LDPE/sago starch (5wt.%	
	to 30wt.%)	
2.29	SEM micrograph surface part of LDPE/SS blend	48
	before and after 6 months natural weathering	
	exposure	
2.30	Water absorption of CS film, CS/CB composite film	52
	and CB/SPF reinforced CS hybrid composites films	
2.31	FTIR spectra of TPS matrix (CS film), CS/CB bio-	54
	composites and CB/SPF reinforced CS with different	
	sugar palm fibers loading	
2.32	SEM of: A) CS film, B) CS/CB composite film and	55
	C–F) CS-CB/SPF hybrid composites films	
2.33	The properties of lignocellulosics which cell wall	59
	polymers responsible for	
2.34	The relation of water contents in TPS with different	60
	fiber and storage time at RH=75%	
2.35	SEM micrograph of fragile fractured surface of TPS	61
	filled with (a) 5% Fiber, (b) 10% fiber	
3.1	General Process Flow	64
3.2	Packaging of the Cassava Starch	65
3.3	Aldrich Chemistry Beeswax	66
3.4	QRëC 99.5% Glycerol	66
3.5	Method of Bagasse Fiber Processing	69
3.6	Method of Fabrication Cassava Starch Mixture	71

3.7	Fabrication of Thermoplastic Cassava Starch	71
3.8	Fabrication of Cassava Starch/Beeswax Mixture	73
3.9	Fabrication of Thermoplastic Cassava	74
	Starch/Beeswax	
3.10	Fabrication of Thermoplastic Cassava	76
	Starch/Beeswax reinforced with sugarcane bagasse	
	fiber	
3.11	Moisture Content Methodology	78
3.12	FT-IR Spectroscopy Machine	79
3.13	Scanning Electron Microscopy (SEM) Machine	79
3.14	Method for Water Absorption Testing	81
3.15	Humidity Chamber	
3.16	Moisture Absorption Methodology	83
3.17	Thickness Swelling Methodology	85
3.18	Soil Burial Methodology	87
4.1	Water Solubility Methodology	89
4.2	Result of Moisture Content for TPCS/BW and its	92
	Composite	
4.3	Result of Water Absorption for TPCS/BW and its	93
	Composite	
4.4	Result of Thickness Swelling for TPCS/BW and its	95
	Composite	
4.5	(a) Sample before testing, (b) Arrow indicates the	95
	delamination of the specimen.	

4.6	Result of Moisture Absorption for TPCS/BW and its	97
	Composite	
4.7	FT-IR Result for Raw Material	98
4.8	FT-IR Result for TPCS/BW and Its Composites	99
4.9	SEM Micrograph of TPCS/Beeswax/Sugarcane	
	Bagasse (a) 0% Fiber, (B) 10% Fiber, (C) 20% Fiber	101
	and (D) 30% Fiber	
4.10	Percentage of Reduction Result From Soil Burial For	104
	TPCS/BW and Its Composites	
4.11	Soil Burial Sample After 4 weeks : (a) 0% fiber (b)	104
	10% fiber	
4.12	Result of Water Solubility for TPCS/BW and its	106
	Composite	
5.1	Picture taken during UTeMEX Innovation Expo 2019	110
5.2	Sample of tray produced using the material developed	111

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	Gantt Chart	XIII - XIV
В	Silver Award Certificate for UTeMEX Innovation	XV
	Carnival	

LIST OF ABBREVIATION

PLA	Poly-Lactic Acid
FT-IR	Fourier Transform Infrared
SEM	Scanning Electroscopy Microscope
PGA	Polyglycolic Acid
TPS	Thermoplastic Starch
TPC	Thermoplastic Chitosan
TPCS	Thermoplastic Cassava Starch
MMC	Metal Matrix Composite
РМС	Polymer Matrix Composite
BW	Beeswax
Wt.%	Weight percent

CHAPTER 1

INTRODUCTION

1.0. Background

Nowadays the non-biodegradable plastic has been causing many environmental issues all around the world, from water pollution to the degradation of plastic in landfill (Comăniță et al., 2016; Derraik, 2002). The problem has drawn attention to the new biodegradable material such as thermoplastic made from natural resources that will eventually degrade in the common environment condition. Green materials are now being developed with the need of material that is safe for the consumer and safe for the environment (Imre et al., 2013).

The recent interest of the material development scientist is the development of biopolymer made from starch. Starch is one of the most popular material to be used to create as thermoplastic with the aid of plasticizer and reinforcement to increase the mechanical, thermal and physical properties. The chemical properties of the material used are commonly with carbon chain will eventually degrade and incorporated to the carbon existed in the soil and environment (Zhang et al., 2013). The reinforcement that is being used in the biopolymer materials are the fibers obtained from plants and animal as it will provide a sufficient reinforcement to the material yet preserving the environmental properties of the material itself.

The development of the biodegradable materials was expected to reduce the environmental issues caused by the conventional thermoplastic and also to provide with a better material that is safe for the consumer and environment use.

1.1. Problem Statement

The use of conventional thermoplastic in everyday life may have been causing many issues to dispose it. The physical and environmental properties of the conventional thermoplastic possess caused difficulties for the material to degrade in the common environment condition. Most of the common issues related to conventional thermoplastic is the plastics accumulation in the landfill caused the volume of the landfill to be overwhelming (Webb et al., 2013). Apart from that, the material used for conventional thermoplastic may consists of hazardous material that will emit dangerous fumes when it is incinerated.

The depletion of petroleum in the world calls for a more sustainable material as the source of material. The availability of starch to be used as the thermoplastic with the addition of plasticizer caught the interest of many researchers as there are not many data related with thermoplastic starch for the thermoplastic starch to be used widely as a consumer product (Sherry et al., 2017).

However, the poor properties of thermoplastic starch call for a more detailed research data in order to improve the physical properties of the thermoplastic starch yet conserving the environmental properties (Cuevas-Carballo et al., 2017). This is done to ensure that the thermoplastic starch will be able to fulfils the needs for it to be applied as a product yet will be able to degrade in natural condition in less time required by the conventional thermoplastic starch.

Some studies have been carried out in the past in order to study the capability of the new material to replace the conventional thermoplastic. One of them includes the study done by Edhirej et al., (2017) which utilizes cassava peel and cassava bagasse in the thermoplastic cassava starch. It was found that the material produced have good tensile properties and the material could be further studied as the fiber could be treated chemically. In another study, the degradation behavior of the thermoplastic cassava starch reinforced with agar was studied by Maran et al., (2014). From the study, it was found that the degradation of the material most likely to be influenced by the water uptake of the water into the material and it is possible for the material to degrade under natural environment condition which compliments to the idea where the new material should be able to degrade in short amount of time.

Thus, the main idea in motivating the study is to provide better knowledge regarding the method to improve the drawbacks of the thermoplastic starch. Besides that, it is also done to produce a material will benefit in terms of environmental degradation and renewable material to replace petroleum-based product.

1.2. Objective

The main objective for the study includes:

- To produce thermoplastic cassava starch/beeswax reinforced with sugarcane bagasse fiber
- ii. To study the physical properties of thermoplastic cassava starch/beeswax reinforced with sugarcane bagasse fiber
- iii. To study the environmental properties of thermoplastic cassava starch/beeswax reinforced with sugarcane bagasse fiber.

1.3. Significance of Study

The justification of this study are as follows:

- i. To provide a better data based on the study carried out on the use of cassava starch as thermoplastic starch modification.
- ii. The usage of sugarcane bagasse fiber will provide a use to the fiber instead of disposal of the fiber, hence giving a value to the sugarcane bagasse fiber.
- iii. The development of the new material from cassava starch will provide another solution to the problem caused by the conventional thermoplastic.

1.4. Scope of Study

In this study, the raw material used is cassava starch, beeswax, glycerol and sugarcane bagasse fiber. The thermoplastic cassava starch mixture will be formed by combining the cassava starch with glycerol as plasticizer according to the suitable formulation percentage. The desired percentage of beeswax will then be added to the mixture. Beeswax functions as the protective agent against moisture and water absorption. Later on, the mixture is added with sugarcane bagasse fiber as the reinforcement. Hot compression molding will be carried out to produce the thermoplastic starch composite with beeswax reinforced with sugarcane bagasse fiber. The characterization of the physical properties of the material will be done through FTIR, SEM, thickness swelling test, moisture absorption test, density test and water absorption test. While environmental properties characterization will be done through soil burial and water solubility.