'I/We* hereby declare that this composition has been read and on my/our* opinion this composition is acceptable from the scope and the quality for being awarded Bachelor Degree of Mechanical Engineering (Design and Innovation)'

Signature	·
1 st Supervisor's Name	·
Date	:

Signature	·
2 nd Supervisor's Name	·
Date	·

* Cut where unnecessary

C Universiti Teknikal Malaysia Melaka

DESIGN AND ANALYSIS OF MECHANICAL HAND USING COMPUTER AIDED MECHANISM DESIGN (CAMD) TECHNIQUE

MUHAMAD KHALIS BIN RAMLI

This thesis submitted in partial fulfillment of the requirements for the degree of Mechanical Engineering (Design & Innovation)

> Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka

> > MAY 2009

C Universiti Teknikal Malaysia Melaka

"I confess that this work is the result of my own investigations. All sections of the text and results, which have been obtained from other workers/sources, are fully referenced"

Signature	<u>:</u>			
Name	: Muhamad	Khalis	bin	Ramli
Date	:18 th May	2009		

I dedicate this thesis to my beloved family

ACKNOWLEDGEMENT

"In The Name of Allah, The Merciful, The Beneficent"

Glory to Allah S.W.T, The Most Gracious, The Most Merciful, and peace is upon His messenger Holy Prophet Muhammad S.A.W. All the worship belongs to only Allah. We seek refuge with Allah from the wickedness within and from the evil deeds. We also praised to Allah S.W.T for giving us courage, time, and knowledge in completing this thesis for my bachelor project.

I would like to take this opportunity to thank my project supervisor, Mr. Faiz bin Redza for his invaluable guidance, assistance, and support throughout this work. Under his supervision, many aspects regarding on this project has been explored, and with knowledge, idea and support received from him, this thesis can be presented in the given time.

I'd also like to especially thank my family for their patience, support, and words of encouragement that have been crucial to this thesis completion. My parents, Mr. Ramli bin Jantan, and Mrs. Khatijah binti Johar, and also to my sister, Ms. Rosilawati binti Ramli.

Finally, I would like to dedicate my gratitude to all my lecturers involved in teaching my course, thanks for the lesson that been delivered. Not forget to all my friends, course mate, especially Mr. Abu Hanzalah bin Omar and Mr. Azrul bin Omar for being my teacher for SolidWorks, and anyone that has provided whether an idea or support, directly, or indirectly, that played a role towards in completing this work.

ABSTRACT

Robotic hands are still long way from matching the grasping and manipulation capability of their human counterparts. One way to push the research further along is to use computer modeling and simulation to learn more about human and robotic grasping. This project have used LEGO MINDSTORMS model to construct the robotic hand for replace robotics that present nowadays. This project also analyzed by using three software to design, simulating something and analysis for this model. Among them is, COSMOSMotion, Lego Digital Designer, and SolidWorks 2007. All software that has been used provides the convenience type of design hand from the various aspects. It can accommodate a wide variety of hand designs, and it can evaluate grasps formed by these hands, as well as perform full dynamic simulation of the grasping process. In this research, it presents the various components of the systems, and describes the projects which use it as an integral part of larger grasp planning systems. This project also discusses the development of a human hand model that uses accurate geometry and kinematics derived from experimental measurements. This is part of current project to create a biomechanically realistic human hand model to better understand what features are most important to mimic in the designs of robotic hands by using this LEGO MINDSTORMS model.

ABSTRAK

Keupayaan tangan robotik masih lagi jauh untuk dibandingkan dengan keupayaan genggaman dan manipulasi daripada tangan manusia. Salah satu cara untuk membawa kajian ini lebih jauh ialah dengan menggunakan pembentukan dan simulasi komputer untuk mempelajari dengan lebih lanjut berkenaan dengan genggaman manusia dan robotik. Projek ini telah menggunakan model "LEGO MINDSTORMS" untuk membina model tangan berkenaan bagi menggantikan robotik yang sedia ada. Projek ini juga dianalisis dengan menggunakan tiga perisian untuk mereka bentuk, membuat sesuatu simulasi dan analisis terhadap model berkenaan. Antara perisian yang dimaksudkan adalah "COSMOSMotion", "Lego Digital Designer", dan "SolidWorks 2007". Semua perisian yang digunakan ini memberikan kemudahan dari segi pelbagai jenis reka bentuk tangan, serta menjalankan simulasi dinamik penuh tentang proses menggenggam. Kajian ini juga memperkenalkan pelbagai komponen untuk sistem ini dan menerangkan segala projek yang menggunakan komponen tersebut sebagai bahagian penting untuk sistem genggaman yang lebih besar. Projek ini juga membincangkan tentang pembangunan sebuah model tangan manusia yang menggunakan geometri yang tepat dan kinematik yang diterbitkan daripada pengukuran eksperimen. Ini adalah sebahagian daripada projek terkini untuk menghasilkan sebuah model tangan manusia realistik biomekanikal untuk memahami dengan lebih baik tentang apakah ciri-ciri yang penting untuk ditiru dalam rekabentuk tangan robotik dengan menggunakan model "LEGO MINDSTORMS" ini.

TABLE OF CONTENT

CHAPTER	ΤΟΡΙΟ	PAGE
	CONFESSION	ii
	DEDICATION	111
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF APPENDIX	xvii
CHAPTER I	INTRODUCTION	1
	1 1 Objective	1
	1.2 Scope	2
	1.3 Problem Statement	2
CHAPTER II	LITERATURE REVIEW	4
	2.1 Related Work	4
	2.2 High Level Grasp Synthesis	4
	2.3 The Mechanics of Grasping	7

CHAPTER TOPIC

PAGE

2.3.1 Theoretical Bounds on the Necessary	8
and Sufficient Number of Contacts	
Required for Form- and Force-	
Closure	
2.3.2 Quality Measures	9
2.3.3 Contact-level Synthesis Algorithms	10
2.3.4 Hand-level Grasp Synthesis Systems	11
2.3.5 Optimal Force Distribution	13
2.4 LEGO MINDSTORMS NXT	14
2.4.1 Introduction	14
2.4.2 The NXT	15
2.4.3 Output (motor) ports and the USB	16
port	
2.4.4 The input (sensor) ports	17
2.4.5 The servo motor	18
2.4.6 The Sensors	19
2.4.6.1 Passive Sensors	19
2.4.6.2 Digital sensor	23
2.5 LEGO MINDSTORMS NXT pieces	25
2.5.1 Classifying the pieces	26
2.6 Software Description	29
2.6.1 SolidWorks 2007	29
2.6.2 COSMOSMotion	30
2.6.2.1 User Interface	31
2.6.2.2 Constraints	32
2.6.2.3 Forces	33
2.6.2.4 Results visualization	34

CHAPTER	TOPIC	PAGE
CHAPTER III	METHODOLOGY	35
	3.1 Methodology Flow Chart	35
	3.1.1 Literature Review	37
	3.1.2 Designing	37
	3.1.3 Analysis	37
	3.1.4 Result and Discussion	38
	3.1.5 Conclusion	38
CHAPTER IV	BUILDING LEGO MINDSTORMS NXT	
	PIECES	
	4.1 The Beams	39
	4.1.1 The Straight Beam	41
	4.1.2 The Angled Beam	42
	4.2 The Connectors	43
	4.2.1 The Axles	46
	4.2.2 The Pegs	48
	4.3 The Gears	48
	4.3.1 Spur Gears	50
	4.3.2 Turntable Gears	50
CHAPTER V	DETAILED DESIGN	52
	5.1 Introduction	52
	5.2 Part Design	52
	5.2.1 Mechanical Base	54
	5.2.2 Mechanical Arm	55
	5.2.3 Mechanical Hand	56
	5.2.4 Full Assembly	57

CHAPTER	TOPIC	PAGE
CHAPTER VI	ANALYSIS DESIGN	60
	6.1 Introduction	60
	6.2 Analysis with COSMOSMotion 2007	60
	6.2.1 Procedure of analysis using	61
	COSMOSMotion	
	6.2.2 Motion after simulation	66
CHAPTER VII	RESULT AND DISCUSSION	69
	7.1 Results with COSMOSMotion 2007	69
	7.1.1 Velocity Analysis	69
	7.1.2 Acceleration	73
CHAPTER VIII	CONCLUSION & RECOMMENDATION	78
	8.1 Conclusion	78
	8.2 Recommendation	79
	REFERENCES	80

APPENDIX A-C	84

LIST OF TABLES

NO.	TITLE	PAGE
2.1	The Default Sensor Ports On The NXT	18
4.1	The NXT Beams	40
4.2	The Connectors In The NXT Set	43
4.3	The Gears In The NXT Set	49

LIST OF FIGURES

NO.	TITLE	PAGE
2.1	Taxonomy Of Human Grasps By Cutkosky And Wright's (1986)	5
2.2	NXT Programming With Four Types Of Sensor And Three Servo Motor	14
2.3	The NXT, A LEGO MINDSTORMS Microcomputer	15
2.4	Output Ports A, B, C; And The USB Port	16
2.5	The Input Ports On The NXT	17
2.6	The MINDSTORMS NXT Servo Motor	18
2.7	The Built-In Rotation Sensor Or Tachometer	19
2.8	The MINDSTORMS NXT Touch Sensor	20
2.9	Functions Of The Touch Sensor	21
2.10	The MINDSORMS NXT Light Sensor	21

NO.	TITLE	PAGE
2.11	The Comparison Between When Human Eyes See The Light and When Robot Sees Using The Light Sensor	22
2.12	The MINDSTORMS NXT Sound Sensor	22
2.13	The MINDSTORMS NXT Ultrasonic Sensor	24
2.14	The Ultrasonic Sensor Sends and Then Receives A Sound Wave to Determine The Distance Between Itself and an Object	24
2.15	The Types and Quantities Of Pieces In The NXT Set	26
2.16	The Beams In The NXT Set	27
2.17	The Connectors In The NXT Set	27
2.18	The Gears In The NXT Set	28
2.19	The Miscellaneous Elements In The NXT Set	28
2.20	SolidWorks Official Logo	29
2.21	COSMOSMotion Logo	30
3.1	Methodology Flow Chart	36
4.1	The 7M (Straight) Beam	42

NO.	TITLE	PAGE
4.2	A Module (M) is about 8 Mm, the Distance from The Centre Of One Hourglass-Shaped Depression to The Center Of One Adjacent Depression	42
4.3	The 7M Perpendicular Angled Beam	43
4.4	The 7M Axle	47
4.5	The Bushing And Half-Bushing are Assistants to The Axles	47
4.6	3M Friction Peg	48
4.7	The 8t Gear	50
4.8	The Turntable Gear	51
5.1	Mechanical Base Assembly	54
5.2	The Servo Motor Was Located In The Center of The Mechanical Base Assembly	55
5.3	The Assembly of Mechanical Arm	56
5.4	The Assembly of Mechanical Hand	57
5.5	Full Assemblies That Joint From Three Small Parts Assemblies	58

C Universiti Teknikal Malaysia Melaka

NO.	TITLE	PAGE
5.6	The Mechanical Hand Want to Grasp The Red Ball	59
6.1	Add-Ins Tab	61
6.2	"Motion" Menu	62
6.3	Intellimotion Builder	62
6.4	Mechanical Hand	64
6.5	Orange Motor and Motor is the Revolute Between These Parts	65
6.6(a)	First Description about Simulation when The Mechanical Hand to Grasp The Red Ball	66
6.6(b)	Second Description about Simulation when The Mechanical Hand to Grasp The Red Ball	67
6.6(c)	Third Description about Simulation when The Mechanical Hand to Grasp The Red Ball	67
6.6(d)	Fourth Description about Simulation when The Mechanical Hand to Grasp The Red Ball	68
6.6(e)	Fifth Description about Simulation when The Mechanical Hand to Grasp The Red Ball	68

NO.	TITLE	PAGE
7.1	CM Velocity Beam Angled Below	70
7.2	CM Velocity Beam Angled Upper	71
7.3	CM Velocity 8t Gear	71
7.4	CM Velocity 24t Gear	72
7.5	CM Velocity Orange Motor	73
7.6	CM Acceleration Beam Angled Below	74
7.7	CM Acceleration Beam Angled Upper	74
7.8	CM Acceleration 8t Gear	75
7.9	CM Acceleration 24t Gear	76
7.10	CM Acceleration Orange Motor	77

LIST OF APPENDIX

NO.	TITLE	PAGE
A	PROJECT PLANNING	84
В	ENGINEERING DRAWING	86
С	BUILDING LEGO ACTIVITY	123

CHAPTER I

INTRODUCTION

Grasping is one of the primary ways for a robot to interact with objects in its environment. Assembly line robots use simple end-effectors such as suction cups or parallel jaw grippers to accomplish pick and place tasks with a high degree of reliability. However, the factory environment is highly structured, and each robot usually only grasps one type of object until it is reprogrammed to handle another object type. This reprogramming is done simply using operator knowledge or more recently using software to automatically pick the contact points (Smith *et al.*, 1999). As robots are being required to work in more unstructured environments, such as service robots in the home, bomb disposal robots, and robots used in space missions, more general purpose hands are being designed that are capable of grasping and manipulating a much wider range of objects. Hence, in these projects, one model of mechanical hands will be constructing by using LEGO MINDSTORMS model to study the movement mechanism by grasp any objects. This project also can put something more clearly about the mechanical hand in diurnal life.

1.1 Objective

The objective of this project is to design and analyze a mechanical hand that can grasp object using CAMD (Computer Aided Mechanism Design) Technique, which is building the mechanical hand by using LEGO MINDSTORMS NXT. With using the touch sensor to trace object, the touch sensor will work to take the object and move it from one place to another place.

1.2 Scope

Following are the scope of the projects to make sure this project is successful:

- Design mechanical hand by using 3D CAD software, such as SolidWorks 2007 and Lego Digital Designer.
- ii. Study the mechanism of mechanical hand by using CAMD techniques, likes COSMOSMotion.
- iii. Then, use the COSMOSMotion to do the analysis about the acceleration and the velocity. To do the simulation by using the same software to investigate the mechanical hand when grasp object.
- iv. Also, use COSMOSMotion to make the animation how it works.
- v. Analyze and suggest improvement of mechanical hand mechanism so that the model must be in the best condition and able to function in a long period of time.

1.3 Problem Statement

Nowadays, LEGO MINDSTORMS NXT becomes smartest, strongest, and most advanced in many ways. Even the LEGO MINDSTORMS NXT becomes the next generation of robots, in Malaysia doesn't have any platforms for the society to develop any idea to make the new robot. The best design of the mechanical hand model to be developed using LEGO MINDSTORMS. The designs are limited to the components which are provided with the set of the LEGO MINDSTORMS, or better known as bricks. In other words, the model needs to be designed with taking into account on the limited amount of bricks provided. Apart from that is to determine which software can give the accurate value when do the analysis. For example, between SolidWorks and ADAMS, which software can give the actual value with the origin condition?

Other than that is how to identify the limitation factors of the model, such as the types of objects that can be grasped, the object's minimum and maximum weight, and other factors. For example, the simulation data taken from COSMOSWorks Designer and COSMOSMotion, which can give the accurate data with the real condition when grasp the object.

Lastly, the software which is files that saved can it moves from the SolidWorks to ADAMS? Which software that can use to draw the bricks (small) part of LEGO MINDSTORMS to make the mechanical hand? Which software that can use to do the animation? All this are the problem statement.

CHAPTER II

LITERATURE REVIEW

2.1 Related Work

Because of the versatility of the human hand, there has been a great deal of research devoted to studying the hand and to building robotic hands that can mimic some of its functionality. This thesis focuses on grasp analysis as well as simulation, and this chapter reviews the significant body of work in these areas. A clear division of approach in grasping was illustrated by Mishra and Silver, (1989) who separated the previous work into higher level of physiological studies of the human hand and lower level studies of the mechanics of contact. While this thesis is primarily concerned with simulating and analyzing the grasping mechanics, the synthesis techniques of the higher level approach cannot be ignored. This chapter begins by reviewing these techniques, and then it presents the large body of previous work concerned with the mechanics of grasping which is further divided into several sub-areas. Finally, the chapter concludes by reviewing research in the area of general robotic simulation.

2.2 High Level Grasp Synthesis

One difficulty in synthesizing grasps in the large number of degrees of freedom possessed by typical robotic hands. This flexibility gives rise to an enormous set of possible hand configurations. However, in choosing their own grasps, humans unconsciously simplify the task to selecting one of the only a few different prehensile postures appropriate for the object and for the task to be performed. Medical literature has attempted to classify these postures into grasp taxonomies as seen in McBride (1942), Griffiths (1943), and Slocum and Pratt (1946), but the most well known grasp taxonomy was proposed by Napier (1956). His work establishes the fundamental differences between power grips, which envelop the object and offer maximum manipulability. Cutkosky and Wright (1986) extended this classification to the types of grips needed a manufacturing environment and examined how the task and object geometry affect the choice of grasp. Their tree-like classification can be seen in Figure 2.1.

Figure 2.1: Taxonomy of human grasps by Cutkosky and Wright's, (1986)

Iberall (1987) saw this classification as too rigid, since in practice, the human hand often uses a combination of grasps to accomplish a task. She defined grasps

with respect to two virtual fingers which apply opposing forces on the objects, and only later maps these virtual fingers onto physical fingers based on object characteristics. The basic oppositions of the virtual fingers are divided into pad opposition, which is between the thumb and finger pads and used for precision type grasps, palm opposition, which is between the palm and the digits and used for power type of grasps, and side opposition, which is between the thumb and the side of the index finger and is compromise between the flexibility of the pad opposition grasps and the stability of the palm opposition grasps. Lyons (1985) uses the concept of the virtual fingers in his development of a grasp index that that selects a grasp on the basis of two object characteristics, shape, and size, whether the grasp should be firm or not and whether the grasp should be precise or not. Unfortunately, his categories are quite broad and make it difficult to create a grasp tailored to specific objects.

Stansfield (1991) built these classifications into a rule based system that, when given a simplified object description from a vision subsystem, will provide a set of possible hand preshapes and reach directions for the pre-contact stage of grasping. However, many problems are left unsolved. She only examines five possible approach directions, she does not try to choose the best grasp from this set of possibilities, and for any grasp that is chosen, the hand simply closes its fingers; no attempt is made to optimize the grasp for stability.

Pao and Speeter (1989) developed a method of solving for a transform that maps human hand poses to poses of the robotic hand, and using a Data Glove to measure the joint angles of a human hand, they were able to recreate a variety of poses with the robotic hand. Speeter (1991) later created HPL, Hand Programming Language that simplifies the problem of coding robotic grasps and dexterous manipulation tasks. The language consists of a number of motion primitives that are related to common human grasps and manipulation motions, providing a high-level abstraction of the grasping process.