

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SOUND AND VIBRATION ANALYSIS OF PORTABLE AIR-CONDITIONING SYSTEM USING PELTIER MODULE AS POWER SOURCE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Refrigeration and Air Conditioning Systems) with Honours

by

MUHAMAD HILLMI NADIM BIN AZMAN B071610868 930913-08-5055

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY 2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Sound And Vibration Analysis Of Portable Air Conditioning System Using Peltier Module As Power Source

SESI PENGAJIAN: 2019/20 Semester 1

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan (▼	·)	
SULIT	(Mengandungi n kepentingan Ma AKTA RAHSIA I	naklumat yang berdarjah keselamatan atau Iaysia sebagaimana yang termaktub dalam RASMI 1972)
TERHAD	(Mengandungi m organisasi/badar	naklumat TERHAD yang telah ditentukan oleh n di mana penyelidikan dijalankan)
TIDAK TER	HAD	
		Disahkan oleh:
Muhamad Hillmi Nadim Bin Azman Alamat Tetap:		Nor Azazi Bin Ngatiman
		Cop Rasmi:
No. 5, Persiaran Puncak	Iskandar	
2A/4, Puncak Iskandar, 3	2610 Seri	
Iskandar, Perak.		
Tarikh:		Tarikh :

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby declared this report entitled "Sound And Vibration Analysis Of Portable Air-Conditioning System Using Peltier Module As Power Source" is the results of my own research except as cited in references.

Signature	:	
Name	:	Muhamad Hillmi Nadim Bin Azman
Date	:	27 December 2019

i

APPROVAL

This report is submitted to the Faculty of Mechanical And Manufacturing Engineering Technology of UTeM as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Refrigeration and Air Conditioning System) with Honours. The member of the supervisory is as follow:

Signature	:	
Supervisor Name	:	Nor Azazi Bin Ngatiman
Date	:	

ABSTRACT

This report is about Sound And Vibration Analysis Of Portable Air-Conditioning System Using Peltier Module As Power Source. Usually, unlike other places that has heavy work activities, cooling load of small private office room is low due to its limited space. It is a big waste to use a compressor-based unit air conditioning in this small area in terms of power consumption and cost. So, the usage of small portable air-conditioning is recommended. The small portable air-conditioning system by using Peltier effect module is subjected to control the comfort level by removing the sensible and latent heat inside the space. Peltier is thermoelectric semiconductor that provides cool and hot plate after electric is supply to the plate. The cool side use to reduce temperature and the hot side is treat in the system. Besides that, the development of this product should consider the noise outcome from the product while its operating because noise level is also one of element to ensure comfortness to the consumer. This is to analyse how product sound level (Primary Sound) would give effect to private office room sound level (Background Sound) and also analyse the vibrations level that emitted from each parts inside product by using suitable measurements instruments to generate statistical analysis for both sound and vibrations level of product that contribute to overall noise level of product. Sound level of product when put inside private office room was measure using Sound Level Meter and the result is when compared to the standard range of sound level in private office room (50 dB), product average sound level did have a little increment which is 68.7 dB. But this result still in safe range of noise level because according to sound level standard range, sound level below 85 dB is consider as in safe range. To prove the result of product sound level, same method of measuring was use and product was measure in acoustic room and the average sound level result obtain was nearly same as in private office room which is 62.4 dB. For vibrations level, each components inside product that produce vibrations was measure using Accelerometer to obtain signal waveform in Time Domain and Frequency Domain. Based on value and patterns of Time Domain and Frequency Domain waveform, components that lead to higher vibration amplitudes was Water Pump.

ABSTRAK

Laporan ini adalah mengenai Analisis Bunyi Dan Getaran Sistem Penyaman Udara Mudah Alih Menggunakan Modul Peltier Sebagai Sumber Kuasa. Biasanya, tidak seperti tempattempat lain yang mempunyai aktiviti kerja yang berat, beban penyejukan bilik pejabat swasta kecil adalah rendah disebabkan ruang yang terhad. Ia adalah sisa besar untuk menggunakan penyaman udara unit pemampat di kawasan kecil ini dari segi penggunaan kuasa dan kos. Oleh itu, penggunaan penghawa dingin mudah alih kecil adalah disyorkan. Sistem penghawa dingin mudah alih kecil dengan menggunakan modul kesan Peltier tertakluk untuk mengawal tahap keselesaan dengan mengeluarkan haba yang masuk akal dan terpendam di dalam ruang. Peltier adalah semikonduktor termoelektrik yang menyediakan plat sejuk dan panas selepas bekalan elektrik ke plat. Penggunaan sisi sejuk untuk mengurangkan suhu dan bahagian panas merawat dalam sistem. Di samping itu, pembangunan produk ini harus mempertimbangkan hasil bunyi dari produk semasa operasi kerana tahap bunyi juga merupakan elemen untuk memastikan keselesaan pengguna. Ini adalah untuk menganalisis bagaimana tahap bunyi produk (Bunyi Primer) akan memberi kesan kepada tahap bunyi bilik pejabat peribadi (Latar Belakang) dan juga menganalisis tahap getaran yang dikeluarkan dari setiap bahagian di dalam produk dengan menggunakan instrumen ukuran yang sesuai untuk menghasilkan analisis statistik untuk kedua-dua bunyi dan tahap getaran produk yang menyumbang kepada tahap bunyi bising keseluruhan produk. Tahap bunyi produk apabila dimasukkan ke dalam bilik pejabat swasta diukur menggunakan 'Sound Level Meter' dan hasilnya adalah apabila dibandingkan dengan tahap piawai tahap bunyi di bilik pejabat swasta (50 dB), tahap bunyi purata produk mempunyai sedikit kenaikan iaitu 68.7 dB. Tetapi hasil ini masih dalam tahap bunyi bising yang selamat kerana menurut julat piawai tahap bunyi, tahap bunyi di bawah 85 dB dianggap dalam julat selamat. Untuk membuktikan hasil tahap bunyi produk, kaedah pengukuran yang sama digunakan dan produk diukur di bilik akustik dan memperoleh keputusan tahap bunyi purata hampir sama seperti di ruangan pejabat swasta iaitu 62.4 dB. Untuk tahap getaran, setiap komponen di dalam produk yang menghasilkan getaran adalah diukur menggunakan 'Accelerometer' untuk mendapatkan bentuk gelombang isyarat dalam Domain Masa dan Domain Frekuensi. Berdasarkan nilai dan corak gelombang isyarat Domain Masa dan Domain Frekuensi, komponen yang membawa kepada amplitud getaran yang tinggi ialah Pam Air.

DEDICATION

This project and research work are dedicated to my precious parents, Azman Bin Abu Hassan and Norsalasani Binti Abd Rahman for their love and sacrifice throughout my life. Their sacrifice had inspired me from the day I learned how to read, write and until what I have become now.

ACKNOWLEDGEMENT

First of all, all praise to Allah the Almighty for giving me the strength, health and patience to working on this project. I would like to express my gratitude to my supervisor, Nor Azazi Bin Ngatiman for his supervision and guidance that have guided me. Futhermore, I would like to thanks my beloved parents for their unstop support throughout the entire life. Finally, thanks a lot to everyone that directly and indirectly involved in helping me regarding this project. Thank you so much.

TABLE OF CONTENTS

DECLARATION	i
APPROVAL	ii
ABSTRACT	iii
ABSTRAK	iv
DEDICATION	V
ACKNOWLEDGEMENTS	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xi

CHAPTER 1 : INTRODUCTION

Background	1
Problem Statement	2
Objectives	2
Scope	3
	Background Problem Statement Objectives Scope

CHAPTER 2 : LITERATURE REVIEW

2.0	Introd	uction	4
2.1	Therm	nal Comfort	4
2.2	Coolin	ng Load	5
	2.2.1	Cooling Load Calculation	6
2.3	Norma	al Offices Cooling Environment	8
2.4	Privat	e Office	8
	2.4.1	Private Office Cooling Load	8
	2.4.2	HVAC system commonly used in private office	9
2.5	2.5 Differences between Split Unit and Portable Air Conditionin		
	Unit		9
	2.5.1	Cost	10
	2.5.2	Power Consumption	11
	2.5.3	Space and noise	11
2.6	Heat 7	Fransfer	11
2.7	Convection		12
	2.7.1	Convection at the heat sink	12
	2.7.2	Convection coefficient	13
2.8	Condu	iction	14

vii

	2.8.1	Conduction at the heat sink	15
2.9	Therm	al Conductivity	16
2.10	Therm	oelectric module (peltier)	17
	2.10.1	Composition of peltier	17
	2.10.2	Modes of peltier	18
2.11	Heat si	ink to increase the efficiency of peltier	20
2.12	Noise		21
	2.12.1	Source of sound	21
2.13	Sound	Level	22
	2.13.1	Decibels	22
	2.13.2	Standard of sound level range (dB)	22

CHAPTER 3 : METHODOLOGY

3.0	Introduct	ion	24
3.1	Flowchar	t of methodology	24
3.2	Process in	nvolved	26
3.3	Prelimina	ary design	26
	3.3.1 M	Iorphological chart	26
	3.3.2 P	ugh method	27
3.4	Fabricati	on	28
	3.4.1 In	stalling heat sink	28
	3.4.2 B	uilding casing device	29
	3.4.3 P	roduct development	30
3.5	Testing		30
3.6	Collectin	g Data	31
	3.6.1 P	ortable Sound Level Meter (Model SE-390)	31
	3.6.1.	1 Measuring Sound Level	32
	3.6.2 Ac	ccelerometer Sensor (National Instruments)	35
	3.6.2.	1 Measuring Vibration Level	35

CHAPTER 4 : RESULT AND DISCUSSION

4.0	Introd	uction	40
4.1	Sound	Analysis in Private Office Room	40
4.2	Sound	Analysis in Acoustic Room	46
4.3	Vibrat	ion Analysis	53
	4.3.1	Power Supply Acceleration	54
	4.3.2	Water Pump Acceleration	56
	4.3.3	Draw Through Fan (BIG) Acceleration	58
	4.3.4	Left Draw Through Fan (SMALL) Acceleration	60
	4.3.5	Right Draw Through Fan (SMALL) Acceleration	62
	4.3.6	Occupant Table Acceleration	64

viii

CHAPTER 5 : CONCLUSION AND RECOMMENDATIONS

5.0	Summary of the project	66	
5.1	Achievement of project objectives	66	
5.2	Recommendations	67	
REFERENCES 6			

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Acceptable range of parameter in average for up to 8 hours/day	5
2.2	Table of coefficient convection (Rohsenow, Hartnett and Cho,	
	1998)	14
2.3	Table of the material's thermal conductivity (Burger et al., 2016)	16
2.4	Standard sound level range at random situation (Rockfon, 2018)	23
3.1	Morphological chart of portable air conditioner by peltier	27
3.2	Weightage of Pugh Method	28
4.1	Comparison of statistics between background sound and primary	
	sound in Private Office Room	42
4.2	Details of 60 data recorded at sampling rate of 10 seconds in	
	measurement of 10 minutes for background and primary sound in	1
	Private Office Room	44
4.3	Comparison of statistics between background sound and primary	
	sound in an Acoustic Room	48
4.4	Details of 60 data recorded at sampling rate of 10 seconds in	
	measurement of 10 minutes for background and primary sound in	ı
	an Acoustic Room	50
4.5	Mean and Standard Deviation calculation value of each sound	
	measurement data	52

LIST OF FIGURES

FIGURE	TITLE										
2.1	Psychrometric chart of comfort zone (ASHRAE, 2009)	5									
2.2	Various type of cooling load sources in an office	6									
2.3	Design and cooling load check figure (ASHRAE, 2014)	7									
2.4	Split unit (DAIKIN, 2017)	10									
2.5	Portable unit (DAIKIN, 2017)	10									
2.6	Heat Transfer method	12									
2.7	Force convection through heat sink by a fan	13									
2.8	The conductivity of a material	15									
2.9	Conduction through the heat sink	16									
2.10	Mechanism of peltier	18									
2.11	T-shape of N & P-type	18									
2.12	Movement of electron that provide cooling and heating effect	20									
2.13	Type of heat sink	20									
3.1	Flowchart of project process	25									
3.2	Heat sink installation on portable air conditioning	29									
3.3	Actual product developed	30									
3.4	Portable Sound level Meter	31									
3.5	Top view of private office room	33									
3.6	Portable Sound Level Meter setting button	34									
3.7	Accelerometer Sensor (National Instruments)	35									
3.8	NI-DAQmx software interface after successfully read the hardware	36									
3.9	SignalExpress 2015 sofware interface step setup	37									
3.10	Accelerometer on Draw Through Fan (BIG)	37									
3.11	Accelerometer on Right and Left Draw Through Fan (SMALL)	38									

xi

3.12	Accelerometer on Power Supply	38
3.13	Accelerometer on Water Pump	38
3.14	Accelerometer on occupant table	39
4.1	Comparison between background sound and primary sound of Private	
	Office Room in 10 minutes of actual time	41
4.2	Bar Chart of Type of sound and Average sound level (dB) in private	
	office room	43
4.3	Comparison between background sound an primary sound of Acoustic	
	Room in 10 minutes of actual time	46
4.4	Bar Chart of Type of sound and Average sound level (dB) in an acoustic	с
	room	49
4.5	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Power Supply 1st Trial)	54
4.6	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Power Supply 2nd Trial)	54
4.7	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Power Supply 3rd Trial)	55
4.8	Comparison of Average Time Domain waveform value for each trial at	
	Power Supply	55
4.9	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Water Pump 1st Trial)	56
4.10	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Water Pump 2nd Trial)	56
4.11	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Water Pump 3rd Trial)	57
4.12	Comparison of Average Time Domain waveform value for each trial at	
	Water Pump	57
4.13	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Draw Through Fan (BIG) 1st Trial)	58
4.14	Acceleration Response in Time Domain and Frequency Domain	

	waveform (Draw Through Fan (BIG) 2nd Trial)	58
4.15	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Draw Through Fan (BIG) 3rd Trial)	59
4.16	Comparison of Average Time Domain waveform value for each trial at	
	Draw Through Fan (BIG)	59
4.17	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Left Draw Through Fan (SMALL) 1st Trial)	60
4.18	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Left Draw Through Fan (SMALL) 2nd Trial)	60
4.19	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Left Draw Through Fan (SMALL) 3rd Trial)	61
4.20	Comparison of Average Time Domain waveform value for each trial at	
	Left Draw Through Fan (SMALL)	61
4.21	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Right Draw Through Fan (SMALL) 1st Trial)	62
4.22	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Right Draw Through Fan (SMALL) 2nd Trial)	62
4.23	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Right Draw Through Fan (SMALL) 3rd Trial)	63
4.24	Comparison of Average Time Domain waveform value for each trial at	
	Right Draw Through Fan (SMALL)	63
4.25	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Occupant Table 1st Trial)	64
4.26	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Occupant Table 2nd Trial)	64
4.27	Acceleration Response in Time Domain and Frequency Domain	
	waveform (Occupant Table 3rd Trial)	65
4.28	Comparison of Average Time Domain waveform value for each trial at	
	Occupant Table	65

CHAPTER 1

INTRODUCTION

1.0 Background

In human life, the thermal comfort zone is one of the important requirement to ensure a better lifestyle so our physical and mental sensation is always in a comfortable condition. To provide thermal comfort zone, hot temperature from a space must be evacuated. The conventional unit like split unit looks like not economical to be used in private office area that commonly are more smaller size than normal office size because much energy will be waste, extra cooling effect and the usage of refrigerant for small working area are not economic to its environmental. For private office, commonly it contains light occupant so to remove the low cooling load it requires less energy. Another requirement in human life that is important to care is our surrounding noise level. In daily life, constant noise that happen in space can lead to the raise of stress level and it plays a large part in human productivity. When an occupant in private office need concentration in a task, the effect of any noise will effect their productivity of work. A previous research (Saifulzaman, 2018) has developed a portable air conditioner that fully utilized both cool and hot side peltier effects to overcome the wastage of energy consumptions. But there are no sound and vibration analysis to analyse the outcome level of noise from the portable air conditioning that may disturb human hearing sense or may not suitable to be use in private office room in terms of its level of noise emitted.

1

1.1 Problem Statement

Stay in comfort when in an area that has air conditioner is a must for every user. Users definitely prefer minimum low noise from air conditioner as much as possible to avoid hearing disturbing. A frequent problem of the air conditioner is the noises that produce from sound and vibration of air conditioner. Noise is considered undesirable and it is necessary to find a way to analyse its level. To achieve the target, this research will redesign a new portable air conditioner by using peltier effects and identify its level of sound and vibration whether its level is acceptable for human hearing comfort or not.

1.2 Objectives

This project aims to develop a Portable Air Conditioning System by Peltier Module, then analyse the noise level that come from sound and vibration of the design product. There are several objectives to achieve the aims :

- 1) To develop portable air conditioning by using peltier as power source.
- To analyse sound and vibration generated from portable air conditioning using statistical analysis.
- To compare the sound level in private office room without the existence of portable aircond and after the existence of portable aircond.

1.3 Scope

There are several unavoidable limitations in this project. First, this sound and vibration analysis only limit for normal human comfort hearing sense which is below 60 db and for one occupant only due to the usage of this product is suitable for one occupant. Second, the selected room for this noise level analysis is a private office or restricted area that has light activity.

Third, due to the size of this project is small and it is portable, the amount of energy use for this project is limited.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter is to identify more about why the outcome level of sound and vibration on Portable Air Conditioning System in private office should be analysed. It also discussing the relevance of this project to avoid problems and provide better research in Portable Air Conditioning System by using Peltier Module in private office room.

2.1 Thermal Comfort

A person's thermal comfort state has an intimate relationship with himself physically and mentally. In our life, many factors influenced thermal comfort. For example the air movement in space, moisture content in air, air temperature, individuals choice in clothing, amount of activity level done by occupants in a space that can effect the metabolic rate and solar infiltration. Based on psychrometric chart at Figure 2.1, the green space is the comfort zone area which is thermal comfort is achieved there. Thermal comfort is influenced by many factors, such as thermal surroundings (temperature, humidity, radiation flux, air flow), human activities, clothing, and perception of how hot an area is. It is not simply the complexity and methodological differences observed in the related literature that make any comparison with available results difficult to assess comfort outdoors. Comfort can generally be assessed through indices of comfort. The literature contains a large number of indices, including predicted mean vote, thermal stress index, perceived temperature,operating temperature, standard effective temperature, mean radiant temperature, and physiological equivalent temperature.(Hui Li, 2016).

Figure 2.1 : Psychrometric chart of comfort zone (ASHRAE, 2009)

Table 2.1 shows in average for up to 8 hours per day, that is the acceptable range of each parameter for thermal comfort. These factors include the need for real life user guidelines to achieve the best thermal comfort for people in a building.

Table 2.1 : Acceptable range of parameter in average for up to 8 hours/day

Parameter	Acceptable range (TWA)
Temperature (°C)	22-27
Relative humidity (%)	40-70
Air velocity (m/s)	0.15-0.50

*TWA= time-weighted average for up to 8 hours/day

2.2 Cooling load

Cooling load is the rate at which insistence must be evacuated from a space to keep up the temperature and moistness at the arrange regards. Figure 2.2 shows there is five sources of heat generate which is from sun situated radiation, heat conduction, heat convection, ventilation, and filtration air.

5

Figure 2.2 : Various type of cooling load sources in an office

Figure 2.2 shows the cooling load component including external load (e.g.; heat gain through exterior walls & roof, infiltration of outdoor air) and internal load (e.g.; occupants, electric lights, equipment, and appliances). For a person to feel comfortable in a cubical office, cool air needs to be distributed directly to a person at range 1-1.5 meter surrounding an occupant that will limit the consumption energy use air hence will lower the energy consumptions. In fact, air-conditioning represented around 90% of the total private section utilization (Wong, Wan and Lam, 2010).

2.2.1 Cooling Load Calculation

There are many type of method to calculate cooling load such as rule of thumb, cooling load temperature different (CLTD) and software. It is important to do the calculation of cooling load because its help in selecting the suitable system to be installed to remove heat efficiently. The building cooling loads computed by simulation based on local weather data can form a good basis for plant sizing (Li, Wong, & Lam, 2003). Rule of thumb is the easiest way to find cooling load but not accurate as other method. Hence, rule of thumb is use in common to predict the cooling

load of space. The calculation is only need area of selected space to calculate the cooling load.

Applications		Occupancy Sq Ft / Person			Lighting Watts / Sq Ft			Fresh CFM / Porson			Air CFM / Sq Fi			Room Sensible Bruh / Sq Ft			Room Total Bluh / Sq Fl			Grand Total Bluh / Sq Ft			Refrigeration Sq Ft / Ton'			Supply Air CFM / Sq Ft		
	٥ı	Avg	Hi	Lo	Avg	Hi	Lo	Avg	Hī	ما	Avg	н	La	Aug	H	Lo	Avg	Hi	ы	Avg	Hi	Lo	Avg	Hi	ما	Avg	H	
Apartments (Flats) Auditoriums, Theaters	150 15	100 10	50 5	1.0 1.0	20 20	4.0 3.0	25 5.0	35 15	40 30	25 .50	.35 1.6	.50 25	15 25	25 35	45 50	20 45	30 55	50 70	30 60	40 80	60 120	400 200	300 150	200 100	.75 1.25	1.25 1.5	1.75 2.5	
Educational Facilities Classrooms Laboratories Cafeteria-Coffee House	30 75 20	25 60 15	20 40 10	2.0 2.0 1.5	4.0 3.0 3.0	60 6.D 4.5	5.0 10 7.5	7.5 15 10	10 20 15	22 22 42	.30 .40 .60	,40 ,60 ,80	25 30 25	40 40 45	55 55 65	35 35 35	50 45 60	65 65 75	45 45 55	80 60 80	80 75 110	275 275 225	200 200 150	150 180 110	1.0 1.0 1.0	1.4 1.4 1.5	1.8 1.8 2.1	
Factorios Public Areas Light Manufacturing Heavy Manufacturing**	50 200 300 20	35 150 250 15	25 100 200 10	3.0 9.0‡ 15.0‡ 1.0	4.5 10.04 45.04 1.5	6.0 12.0‡ 60.0‡ 2.0	5.0 5.0 5.0 5.0	10 10 10 10	15 15 15 15	.10 .05 .03 .50	.25 .10 .08 .75	.50 .15 .10 1.0	20 35 75 30	45 55 115 35	75 75 155 50	39 49 89 49 49	60 60 120 50	85 80 160 70	50 60 120 60	80 80 150 85	130 120 200 120	240 200 100 200	150 150 80 150	90 100 60 100	1.0 1.5 3.0 1.0	2.25 2.75 4.0 1.1	3.0 3.0 6.5 1.4	
Hospitals Patient Roomst Public Areas Laboratories Libraries Doctors Clinics	100 130 150 150 150	60 100 100 100 100	40 65 50 50 50	1.0 2.0 2.0 2.0 2.0	2.0 3.0 5.0 4.0 4.0	3.0 4.0 10.0 6.0 6.0	75 10 20 5.0 20	90 20 30 7.5 25	100 30 50 10 30	.75 .25 .20 .10	1.6 .75 .50 .20 .40	2.5 1.5 1.0 .30	15 10 25 20 20	35 15 45 30 40	50 35 60 50 60	20 15 30 25 25	\$ \$ \$ \$ \$ \$ \$ \$	55 40 70 55 65	60 30 45 30 40	120 45 70 45 60	165 100 100 70 80	200 400 275 400 300	100 275 175 275 200	75 120 120 120 175 150	.75 .75 1.0 1.0 1.0	1.2 1.2 1.5 1.1 1.4	1.7 1.7 2.0 1.7 2.0	
Offices Privete General-Perimeter General-Interior Conference Rooms Restaurants	150 125 125 45 25	125 100 100 30 20	100 75 75 15	4.0 4.0 4.0 4.0 1.5	6.0 6.0 6.0 8.0 1.7	8.0 8.0 8.0 8.0 2.0	20 10 10 20 10	25 15 15 30 15	30 20 20 50	.25 .15 .15 .40	.40 .25 .25 1.0 .75	.00 .40 .40 1.5 1.0	25 20 15 30 30	50 35 20 55 35	75 70 30 80 50	30 20 20 20 20 20 20 20 20 20 20 20 20 20	55 40 25 85 50	80 75 35 90 70	40 30 25 50 50	75 50 30 85 85	90 85 40 120	300 400 475 200 200	175 250 400 150	135 150 300 100	1.0 1.0 .75 1.0 1.25	1.7 1.2 1.0 1.8 1.5	24 2.3 1.1 2.7 2.0	
Shopping Carllers Beauty & Barber Shops Department Stores -Basement -Main Floor -Upper Floors Snecially Shops	45 49 49 49 49 60 60	40 30 25 50 30 25 40 50	20 20 20 20 20 20 20 20 20 20 20 20 20 2	3.0 3.0 4.0 2.0 2.0 3.0 1.0 2.0	5.0t 4.0 5.0t 4.0 3.0 4.0 1.5 3.0	9.01 5.0 9.01 6.01 4.0 6.0 2.0	7.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	15 7.5 7.5 7.5 7.5 7.5 7.5	20 10 10 7.5 20 10 10	.20 .10 .15 .05 .25 .15 .10	.50 .20 .25 .10 .35 .25 .20 .20	1.0 25 .35 .50 .35 .30	25 20 25 15 30 25 10 25	35 30 35 25 35 35 15 35	55 45 45 45 45 45 45 45 45	38 25 38 38 39 38 15 39	40 35 40 35 40 20 5	888845588	50 35 40 30 60 40 25	60 45 50 40 55 50 50 50 50	80 60 60 50 75 60 40	250 325 300 400 200 500 500	200 275 250 300 180 250 400	150 200 200 250 160 200 300	1.25 1.0 1.0 1.25 1.0 .75	1.5 1.4 1.5 1.0 1.5 1.4 1.2	2.0 1.75 2.0 1.2 2.0 1.5 2.0	

Figure 2.3 : Design and cooling load check figure (ASHRAE,2014)

2.3 Normal Offices Cooling Environment

Office is a place where a business is run by a company. A company may have only one office, known as their home office, a head office, a variety or branch offices. All these offices are involved in the business of the company in some way. Keeping each staff cool in all wheather conditions is a one way to keep them motivated to provide the best working quality and create a comfortable working environment to work as a team. There's nothing worse than going into a hot and sweaty office working area. When installing air conditioners in an office, there are a number of factors that need to be considered. The type and specifications of air conditioners to be install must properly selected and fully consider the shape and layout of the office to be cooled because to avoid the workspace receiving much air flow than its needed and avoid energy wasted to occur. It is not uncommon to find that half an office is too cold while the other half is too hot with a poorly designed system, which can cause office temperature disagreements.

2.4 Private Office

Private office is a small room separated by partitions from the open office. Sometimes, private office is own by a people who are doing special project, performing confidential nature of work or need extra concentration in work. To create a great concentration of mind possible, usually private office provide better ventilation, heating and cooling, and absence of any noise to gives space for improvement of efficiency.

2.4.1 Private Office Cooling Load

Due to the area and volume of space give affected in cooling load, private office cooling load is not as much as factory and larger space. The larger the space, the larger the area that exposes to the sunlight and also higher chances of external

8

loading into the space. The private office occupancy is 150 ft²/person based on the thumb table rule, the lighting watt is 4 watt/ft2 and the sensitive room is 25 btuh/ft². It shows that the cooling load of office is possible to determine by depending on the size of office. The office cooling load is small and requires a small system to remove sensible and latent heat within the office from 3000 btu/hr to 5000 btu/hr (SAHU, 2014).

2.4.2 HVAC system commonly used in private office

Portable air conditioners are commonly used for the cooling of a single room and are great tools to support a central air system. Most of them are easily set up due to their one unit system. A portable air conditioning entire point is to discharge hot air during cooling. Because of this, these units need a way to throw that warm air to somewhere else. The most common way that these air conditioners use are vented it through an outside window, but some models may be exhausted through a drop ceiling or a wall.

2.5 Differences between Split Unit and Portable Air Conditioning Unit

Figure 2.4 and Figure 2.5 is the image of Split Unit and Portable Air Conditioning Unit which is each type have their own characteristics and different specifications. The purpose of it is to differentiate and determine which unit is the most convenient in terms of system efficiency, power consumptions, initial cost and space/noise.