

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A NEW DESIGN CONCEPT OF LIGHTWEIGHT KNUCKLE FOR B-SEGMENT PASSENGER CAR

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

ALIF AIMAN BIN MOHAMAD DAUD B071610758 950604-01-7081

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: A New Design Concept of Lightweight Knuckle For B-segment Passenger Car

Sesi Pengajian: 2019

Saya ALIF AIMAN BIN MOHAMAD DAUD mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

ii

TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,

Disahkan oleh penyelia:

.....

.....

ALIF AIMAN BIN MOHAMAD DAUD

MOHD HAFIZI BIN ABDUL RAHMAN

Alamat Tetap:

Cop Rasmi Penyelia

67B Jalan Srikandi,

Felda Bukit Besar, 81450,

Kulai, Johor

Tarikh: 21/5/2019

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report A New Design Concept of Lightweight Knuckle For Bsegment Passenger Car is result of my own research except as cited in references

Signature:Author's Name: ALIF AIMAN BIN MOHAMAD DAUDDate: 9/12/2019

APPROVAL

This report is submitted to the Faculty of Engineering Technology Mechanical in Manufacturing as a partial fulfilment of the requirements for the Bachelor of Engineering Technology in Mechanical (Automotive) with Hons. The member of supervisor is as follow:

.....

(Mohd Hafizi bin Abdul Rahman)

ABSTRAK

Buku jari kemudi adalah komponen yang bergabung pada kemudi dan sistem brek, hub roda kepada casis dan penggantungan. Ia adalah komponen yang sangat kritikal dan memerlukan kualiti yang tinggi, ketahanan dan ketepatan. Di dalam automotif industri, masalah yang utama adalah berat komponen untuk meningkatkan ciri-ciri keselamatan di sesebuah kenderaan. Pengurangan jisim komponen kenderaan sangat penting kerana ia akan menyumbang kepada pengurangan jisim kenderaan dan seterusnya akan meningkatkan penggunaan tenaga dan kuasa yang berkesan. Jadi, objektif utama penyelidikan ini adalah untuk mencadangkan sebuah konsep reka bentuk yang baru dengan menggunakan bahan yang berbeza dan pengurangan berat untuk sesebuah buku jejari kemudi yang telah sedia ada dengan menggunakan kaedah pengoptimuman. Untuk proses mereka semula, perisian CATIA V5 akan digunakan dan perisian Solid Thinking akan digunakan untuk proses pengoptimuman dan proses analisis kekuatan. Untuk proses pengoptimuman, berat hendaklah berkurang sebanyak 20% minimum daripada berat komponen asal yang sedia ada tanpa menjejaskan kekuatan komponen dengan faktor keselamatan hendaklah di atas 1.2. Akhir sekali, keputusan yang diperolehi adalah tekanan maksimum tidak melebihi kekuatan hasil bagi kes beban lelurus dan kekuatan tegangan muktamad bagi kes beban tidak lelurus.

vi

ABSTRACT

Steering knuckle is a component that attached to the steering and braking system, wheel hub to the chassis and suspension. It is a very critical component and requires high quality, durability and precision. In automotive industry, the main issue of this component is weightiness due to increasing safety features on a vehicle. It is so important to reduce mass of vehicle component that will automatically contribute to the reduction of the vehicle's mass and this will improve the energy consumption and power efficiency. So, the main objective of this research is to propose a new concept design by using different material and reduce weight of the existing steering knuckle by applying topology optimization technique. For redesign process, CATIA V5 will be used and solid thinking will be used for optimization process and strength analysis process. For optimization process, the weight must be reducing at least 20% from the original component and not compromising the strength of the component which is the safety factor must be above 1.2. At the end, the maximum stress does not exceed yield stress and ultimate tensile strength for linear and nonlinear loadcases respectively.

DEDICATION

I dedicate this report to both of my lovely parents Mr Mohamad Daud bin Harun and Mdm Fazilah binti Senan. my supervisor Mr Mohd Hafizi bin Abdul Rahman.

ACKNOWLEDGEMENT

I would like to extend my greatest gratitude to the Almighty with His permission and blessing for granting me the resilience and knowledge to complete my Final Year Project for this semester. The acknowledgement of special thanks also applied to my beloved Supervisor, Mr Mohd Hafizi bin Abdul Rahman and Co-Supervisor, Mr Mohammad Rafi bin Omar for their undisputed commitment in helping me reaching the end goal. I also would like to give my very special thanks to my parents for their support and always hope for the best from me. This special attribution also dedicated to all lectures and technicians in Universiti Teknikal Malaysia Melaka that helped me in finishing my degree.

TABLE OF CONTENTS

		PAGE
	DECLARATION	iv
	APPROVAL	V
	ABSTRAK	vi
	ABSTRACT	vii
	DEDICATION	viii
	ACKNOWLEDGEMENT	ix
	TABLE OF CONTENTS	x
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
CHAI		1
CHAI	PIER I INTRODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objective	4
1.4	Work Scope	4
CHA	PTER 2 LITERATURE REVIEW	5
2.1	Background	5
2.2	Design	6

2.3	Design C	riteria	6
	2.3.1	Benchmarking	7
	2.3.2	Analysis tool	7
2.4	Software		8
	2.4.1	CATIA V5	8
	2.4.2	Solid Thinking Inspire	9
	2.4.3	HyperWork	10
2.5	Optimiza	tion	11
	2.5.1	Shape Optimization	12
	2.5.2	Topology Optimization	13
	2.5.3	Lattice Structure Optimization	14
2.6	Analysis	and Testing	17
	2.6.1	Virtual Testing	17
	2.6.2	Fatigue Testing	18
	2.6.3	Structural Strength Analysis	19
2.7	Developn	nent	20
	2.7.1	Materials and Mechanical Properties	20
2.8	Process F	abrication	24
	2.8.1	3D Printer	24
	2.8.2	Forging	26

xi

	2.8.3	Casting	28
	2.8.4	CNC Machining	29
СНАН	PTER 3	METHODOLOGY	32
3.1	Background		32
3.2	Benchmarkin	ng	33
	3.2.1	Material	38
3.3	Base Design		41
	3.3.1	3D Scanning	41
	3.3.2	Editing Data	43
	3.3.3	Redesigning	44
3.4	Optimization	n and Analysis	45
	3.4.1	Topology Optimization	45
	3.4.2	Structural Strength Analysis	47
3.5	Final Design		48
3.6	3D Printing		49
СНАР	PTER 4	DISCUSSION	52
4.1	Result and D	Discussion	52
4.2	Optimization	n & Strength Analysis for Base Design	52
4.3	Optimization	n & Strength Analysis for Design 1	55

xii

СНАР	TER 5	CONCLUSION	69
	4.6.3	3D Printing Result	67
	4.6.2	Weight Reduction Result	67
	4.6.1	Optimization and Strength Analysis Result	64
4.6	Result Sumn	nary	64
4.5	Optimization	h & Strength Analysis for Design 3 (Final design)	62
4.4	Optimization	h & Strength Analysis for Design 2	59

- **REFERENCES** 70
- APPENDIX 72

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Compa	arison of advantages between MMC, PMC and CMC	21
Table 2.2: Mecha	nical properties of MMC	22
Table 2.3: Physica	al properties of MMC	22
Table 2.4: Mecha	nical properties of AlSi10Mg_200c samples	24
Table 2.5: Advant	tages and limitations type of casting processes	29
Table 2.6: Advant	tages and disadvantages of CNC machine	31
Table 3.1: The co	mparison of steering knuckles	33
Table 3.2: The ch	aracteristics of steering knuckle that already in market	35
Table 3.3: The co	mponents that attached to steering knuckle	37
Table 3.4: Mecha	nical properties steel (AISI 4142)	38
Table 3.5: Static a	abusive loadcases	46
Table 4.1: Optimi	ization and analysis result (base design & optimization 1)	65
Table 4.2: Optimi	ization and analysis result (optimization 2 & optimization 3)	66
Table 4.3: Weight	t reduction (%)	67

xiv

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: P	hoto of Steering Knuckle	1
Figure 2.1: K	C-Chart for Literature Review	5
Figure 2.2: P	hoto of CATIA V5 environment	9
Figure 2.3: P	hoto of Solid Thinking Inspire environment	10
Figure 2.4: P	hoto of HyperWork environment	11
Figure 2.5: C	Optimization by using Solid Thinking Inspire	12
Figure 2.6: L	attice optimized hinge and sized lattice end diameter	15
Figure 2.7: P	late and solid component without lattice structures under axial loads	16
Figure 2.8: P	late and solid component with lattice structures under axial loads	16
Figure 2.9: P	late and solid component with lattice structures under bending loads	16
Figure 2.10:	Graph of stress vs strain of AlSi10Mg_200c sample	23
Figure 2.11:	Photo of the whole system of 3D printer	25
Figure 2.12:	Photo of extruder design	25
Figure 2.13:	Photo of control electronic	26
Figure 2.14:	Closed-forging	27
Figure 2.15:	Open-forging	28

XV

Figure 2.16: Name of CNC components	30
Figure 2.17: The main components of CNC	30
Figure 3.1: Flowchart of methodology	32
Figure 3.2: 3-jaw pilot bearing puller	36
Figure 3.3: Hydraulic press machine	36
Figure 3.4: Products of steel (AISI 4142)	39
Figure 3.5: Products of FS3200PA Nylon powder	39
Figure 3.6: Mechanical properties of FS32000PA Nylon powder	40
Figure 3.7: Based design of steering knuckle	41
Figure 3.8: T-SCAN LV	42
Figure 3.9: T-TRACK LV	42
Figure 3.10: T-POINT LV with probe	43
Figure 3.11: Concept design	44
Figure 3.12: Loadcases points of steering knuckle (Finite Element model)	45
Figure 3.13: Multiaxial load direction	46
Figure 3.14: Final design (CATIA V5 environment)	48
Figure 3.15: Final design (SolidThinking environment)	48
Figure 3.16: Farsoon SS 402P laser sintering system	49
Figure 4.1: Base design (steering knuckle).	53
Figure 4.2: Strength analysis result (base design)	54
Figure 4.3: Optimization on base design xvi	55

Figure 4.4: Design 1 (steering knuckle)	56
Figure 4.5: Strength analysis result (design 1)	57
Figure 4.6: Optimization result (design 1)	58
Figure 4.7: Design 2 (steering knuckle)	59
Figure 4.8: Strength analysis result (design 2)	60
Figure 4.9: Optimization result (design 2)	61
Figure 4.10: Design 3	62
Figure 4.11: Strength analysis result (design 3)	64
Figure 4.12: 3D printing result (front)	68
Figure 4.13: 3D printing result (back)	68

xviii

C Universiti Teknikal Malaysia Melaka

CHAPTER 1

INTRODUCTION

1.1 Background

Steering knuckle is a component that attaches between steering system and braking system, suspension to a wheel hub. The function of this component is to convert linear motion into angular motion and vice versa. So, this component wills experiences various type of loads depend on different conditions. For example, during turning and steering condition this component will experience a high tension loads and due to rotation of wheel, steering knuckle also experience high torsional load. To experience these conditions, steering knuckle must be very sturdy, stiff and light. It is a very critical component and requires high quality, durability and precision.

Figure 1.1: Photo of Steering Knuckle

1

For automotive application, normally steering knuckle manufactured either by forging or casting. A part from that, castings usually could have blow-holes which are can affect durability compared to forgings process which are free blow-hole (B.Babu, 2015). In fact, forging is more suitable manufactured process compared to castings. But at certain part especially critical part such as hole to install wheel bearing, it used CNC machine to drill that hole. This is because CNC machine can control tolerance either clearance fit, transition fit or interference fit. Usually to install the bearing part must be set into interference fit. This is important to make sure that the wheel bearing cannot easily come out.

In automotive industry, the main issue of this component is weightiness due to increasing safety features on a vehicle. It is so important to reduce mass of vehicle component that will automatically contribute to the reduction of the vehicle's mass and this will improve the energy and power efficiency. So, the main objective of this research is to propose a new concept design by using different material and reduce weight of the existing steering knuckle by applying optimization technique. For redesign process, CATIA V5 will be used to design and Solid Thinking will be used for optimization process. For strength analysis process, finite element software which is Hyperwork will be used to achieve this objective.

1.2 Problem Statement

Nowadays, most of automotive manufacturers are investing a lot in reduction of vehicle's weight. Based on previous studied stated that for typical front wheel drive vehicle distribute 60% of the weight on front axle while 40% of the weight are distribute on rear axle. This can lead to emission, fuel efficiency and environment problems. So, to solve the 60% of weight distribution on the front axle, the component on that particular area must go through weight reduction process. One of the components is steering knuckle(Gore, 2017).

Besides, in order to improve fuel efficiency, emission and save environment, weight reduction has been the main aim of manufacturers. This is because the lighter steering knuckle will affect greater power and less vibration cause by less inertia. It also will improve handling performance of the vehicle (B.Babu, 2015).

So, these are the main problems statement in this research:

- i. How to design a new concept of lightweight steering knuckle?
- ii. What is the best material that can lead to weight reduction without compromise the strength of the component?
- iii. What is the best fabrication process to develop lightweight steering knuckle?

3

1.3 Objective

The main objectives of this project are:

- i. To design a new concept of lightweight steering knuckle
- ii. To reduce 20% of weight of steering knuckles by using topology optimization and strength analysis methods without affecting its strength.

1.4 Work Scope

The scopes of this project are as follow:

- i. Design the 3D model of steering knuckle by using CATIA V5.
- The concept design process is based on benchmark products that already in market
- iii. For topology optimization and strength analysis processes are by using Solid Thinking Inspire
- iv. The actual material for fabrication process applies on analysis process only.
- v. Fabricate the prototype steering knuckle by using 3D printer.

CHAPTER 2

LITERATURE REVIEW

2.1 Background

This chapter consist of all the information regarding design and development of steering knuckle from previous articles, journals and books. All the information will be presented according to the flow chart.

Figure 2.1: K-Chart for Literature Review

2.2 Design

The definition of design is a set of decision-making process that used to determine the form and function to fulfil the customer requirement. It can be divided into many phases which involved many forms of sketching, drawing and technical drawing. Sometimes the idea can be triggered by observe the problem that people may experience. Then the product designer will try to solve the problem through their sketching and drawing.

2.3 Design Criteria

In order to declare this research to be successful, there are certain designs criteria that must be fulfil. These criteria come from various sources such as customer, related designs and analysis method. For customer, the information can be extract from their feedback through surveys and marketing data. Besides, the criteria also can be determined from previous design specification that related to the component. Next, information from previous technical report, journals and books also can set criteria for this research.

The design criteria for steering knuckle are as follows:

- i. A new design concepts
- ii. Lightweight product
- iii. Minimum 20% of weight reduction

6