

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF REGENERATIVE BRAKING

SIMULATOR USING PUGH'S METHOD

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical

Engineering Technology (Automotive) with Honours.

by

MOHAMAD QAIYUM BIN ZAIMI

B071610541

970407-08-5091

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DEVELOPMENT OF REGENERATIVE BRAKING SIMULATOR USING PUGH'S METHOD

SESI PENGAJIAN: 2019/20 Semester 1

Saya **MOHAMAD QAIYUM BIN ZAIMI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD

SULIT

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

X TIDAK TERHAD

Disahkan oleh:

Alamat Tetap: 201 Taman Dovemby Fasa 2, 31100 Sungai Siput (U), Perak. Tarikh: 3 Disember 2019

PROFESOR MADYA TS. DR. MUHAMMAD ZAHIR BIN HASSAN

Cop Rasmi:

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF REGENERATIVE BRAKING SIMULATOR USING PUGH'S METHOD is the results of my own research except as cited in references.

Signature:	
Author:	MOHAMAD QAIYUM BIN ZAIMI
Date:	3rd December 2019

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow

Signature:

Supervisor: PROFESOR MADYA TS. DR. MUHAMMAD ZAHIR BIN HASSAN

II

ABSTRAK

Sistem brek regeneratif adalah sistem yang digunakan dalam kenderaan hibrid dan kereta elektrik. Ramai pengguna hibrid tidak menyedari faedah dan prinsip kerja brek regeneratif di dalam kereta mereka. Sistem brek regeneratif dalam kereta sebenar terlalu rumit dan sukar untuk dipelajari. Antara isu yang membuat kajian ini dijalankan adalah penyediaan kenderaan yang hibrid mahal dan proses penukaran tenaga semasa proses brek regenerative sukar di fahami oleh pelajar. Sekiranya prototaip regeneratif telah dicipta pengguna mahu prototaip yang boleh menjalankan eksperimen di simulator untuk pemahaman yang lebih baik. Tujuan kajian ini adalah untuk mengenal pasti simulasi brek regeneratif. Di samping itu, simulasi ini dilakukan menggunakan kaedah Pugh. Sistem simulasi ini di pilih dengan beberapa kateria yang antaranya bentuk yang menarik dan simulasi yang mudah difahmi. Arduino Uno, motor dan jalur lampu adalah komponen penting bagi kejayaan projek ini. Produk ini dianalisis dengan merekod voltan yang dihasilkan daripada brek regeneratif berdasarkan 4 kelajuan yang berbeza. Voltan yang dihasilkan daripada brek regeneratif bergantung kepada kawalan kelajuan. Sebagai contoh, voltan meningkat apabila kelajuan meningkat. Ia juga, memberi kesan kepada masa untuk menghentikan aci kerana tenaga keupayaan yang besar dihasilkan kerana peningkatkan kelajuan, Kekuatan dan kelemahan juga disebutkan untuk penambahbaikan.

ABSTRACT

The regenerative brake system is a system used in both hybrid vehicles and electric cars. Many hybrid users are unaware of the benefits and working principle of regenerative braking in their car. The regenerative braking system within the real car is too complex and difficult for students to learn. Among the issues that made this study possible were the preparation of expensive hybrid vehicles, the cost of hybrid cars for exploratory regerative braking use requiring skilled professional and to show students how kinetic energy is converted to electricity. If a regenerative prototype has been created the user wants the prototype to include a simulator for better understanding. The purpose of this study is to identify regenerative brake simulations. In addition, this simulation was performed using the Pugh method. This new criterion system is a simple, easy-to-understand form that can be handled by ordinary people. The Arduino Uno, motors and led strips are key components to the success of this project. The advantages of the products that are produced can be taken anywhere other than the ordinary ones can handle. This product is analysed by a record of voltage generated from regenerative brakes based on 4 different speeds. The voltage generates from regenerative braking depend on speed control. For example, the voltage increases as the speed control increase. It also makes time to stop the shaft increase due the larger potential energy in increase speed, Strengths and weaknesses are also mentioned for further improvement.

DEDICATION

To my beloved parents Zaimi bin Kamaruddin, Khuzaifah binti Mohamed Damili. Thank you for all support, sacrifices, enduring and willingness to share with me. To my honored supervisor Profesor Madya Ts. Dr. Muhammad Zahir Bin Hassan, and all UTeM lecturers thank you for always giving me a supervision and persistent help to finish this project thesis.

ACKNOWLEDGEMENT

This effort is dedicated to my parents and family whose give interminable supports and prayers in a long period of my educations. Thank you very much for provided that me through greatest education.

Honest thankfulness is to my academic supervisor, Profesor Madya Ts. Dr. Muhammad Zahir bin Hassan from Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for unmatched guidance, invaluable advice and knowledge during the course of this research. Thanks for their expert advice and constructive suggestions throughout my study period. I am also thankful for the assistance and support from my classmates, BMMA 1/1.

My special thanks a lot to Zaimi bin Kamaruddin and Khuzaifah binti Mohamed Damili whom permanently be with me alongside my heart from the start with full support and inspiration throughout these hard periods. Express gratitude to everybody that retains me smile and glad in my period of study in Melaka. Finally, I would like to thank Universiti Teknikal Malaysia Melaka (UTeM) for the opportunity to education at this campus.

VI

TABLE OF CONTENT

	PAGE
DECLARATION	I
APPROVAL	п
ABSTRAK	ш
ABSTRACT	IV
DEDICATION	V
ACKNOWLEDGEMENT	VI
TABLE OF CONTENT	VII
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
LIST OF EQUATION	XVII
LIST OF SYMBOLS	XVIII
LIST OF ABBREVIATIONS	XIX
LIST OF APPENDIX	XX
CHAPTER 1	1
1.1 Background Research	1
1.2 Problem Statement and Objective of The Researcher	5

VII

1.2.1 Problem Statement	5
1.2.2 Objective	6
1.3 Scope	6
1.4 Methodology Overview	6
CHAPTER 2	8
2.1 Overview	8
2.2 Visual Education Aid	10
2.3 Brake Type	12
2.3.1 Mechanical Brakes	12
2.4 Standard Automotive Braking System.	13
2.4.1 Brake Pedal	13
2.5 Electric Motor	14
2.5.1 Permanent Magnet Brushed Dc Motor	15
2.5.2 Ac Synchronous Motor	16
2.5.3 Switched Reluctance Motor	17
2.5.4 Ac Induction Motor	17
2.6 Hybrid Electric Vehicle Overview	18
2.6.1 Hybrid Configurations	18
2.6.1.1 Series Hybrid	19

VIII

2.6.1.2 Parallel Hybrid	20
2.6.1.3 Series/ Parallel Hybrid	21
2.6.2 Degree Of Hybrid Overview	23
2.6.2.1 Mild Hybrid	23
2.6.2.2 Micro Hybrid	23
2.6.2.3 Fully Hybrid	24
2.6.2.4 Plug Hybrid	24
2.7 Regenerative Braking	24
2.7.1 Operation of Regenerative Braking	25
2.7.2 Advantage of Regenerative Braking System	27
2.7.3 Disadvantage of Regenerative Braking System	27
2.7.4 Method of Regenerative Braking	27
2.7.4.1 Serial Braking System	28
2.7.4.2 Parallel Regenerative Braking	28
2.8 Energy Store System	29
2.9 Design Process	30
2.9.1 Morphological Chart	30
2.9.2 Concept Screening	30
2.9.3 Pugh Matrix Method	31

IX

	2.10 Summary	31
C	CHAPTER 3	33
	3.1 Introduction to Present Methodology	33
	3.2 Research Background	34
	3.3 Batch Marking Product	35
	3.4 Prototype Design Development	36
	3.5 Design Process.	37
	3.5.1 Morphological Chart	37
	3.5.2 Concept Screening.	40
	3.5.3 Pugh Matrix Method.	42
	3.6 Engineering Drawing	45
	3.7 Questionnaire Survey Development of RBS	47
	3.8 Component Installation	48
	3.8.1 Wiring	48
	3.9 Model Testing And Analysing	49
	3.10 Summary	49
C	CHAPTER 4	51
	4.1 Overview	51
	4.2 Fabrication	53

Х

4.2.1 Fabricate And Assembly Of Rbs	53
4.2.2 Design Analysis	54
4.3 Experimental And Schematic	56
4.4 Regenerative Concept	58
4.4.1 Serial Hybrid	59
4.4.2 Parallel Hybrid	61
4.5 Survey Analysis	62
4.5.1 Survey Before Development	62
4.5.2 Survey After Development	64
4.5.3 Analysis of Before and After Development	66
4.6 Rbs Testing	68
4.6.1 Stage 1: Motor Running in 25% Rpm	68
4.6.2 Stage 2: Motor Running in 45% Rpm	70
4.6.3 Stage 3: Motor Running in 75% Rpm	72
4.6.4 Stage 4: Motor Dc Running in 100% Rpm	74
4.7 Analysis 4 Different Rpm	76
CHAPTER 5	78
5.1 Conclusion on Project	78
5.2 Future Work	79

XI

REFERENCE

APPENDIX

87

81

XII

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1: List of Hybri	d Type by Different Model of Company	(Atharva et al., 2017). 2
Table 3.1: Morphologic	al Chart.	38
Table 3.2: Concept Gen	eration.	41
Table 3.3:Concept Scree	ening	42
Table 3.4: Result of Pug	gh Method	44
Table 3.5: Expected Pro	vject.	46
Table 4.1: Survey Befor	re Development.	62
Table 4.2: Survey After	Development.	64
Table 4.3: Motor 25% I	RPM.	68
Table 4.4: Motor 25% F	RPM.	70
Table 4.5: Motor 75% F	RPM.	72
Table 4.6: Motor 100%	RPM.	74

XIII

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1: Overview Methodol	ogy Flow Chart.	7
Figure 2.1: Overview of Literatu	ure Review	9
Figure 2.2: Show A Visual Aid	Teaching for Combustion Engine.	11
Figure 2.3: List Part of Innovation	on of Drum Brake and Disc Brake. (Motorist. 2019)) 13
Figure 2.4: Three Type of Moto	r Electric. (J. Larminie and J. Lowry,2003)	15
Figure 2.5: Circuit of Brushed D	OC Motor (Engineering & Engineering, 2017)	16
Figure 2.6: Series Hybrid Archi	tecture.	20
Figure 2.7: Parallel Hybrid Arch	nitecture.	21
Figure 2.8: Parallel and Series H	Iybrid Architecture	22
Figure 2.9: Flow Normal Drive	Motor. (Engineering & Engineering, 2017).	26
Figure 2.10: Flow of During Re	generative Braking (Engineering & Engineering, 20)17). 26

XIV

Figure 2.11: Graph Brake Torque Versus Torque Brake Pedal (Varocky & Report, 2011).			
	29		
Figure 3.1: Flow Chart of Development of Regenerative Braking Simulator.	34		
Figure 3.2: Regenerative Braking 1. (Demers, 2008)	35		
Figure 3.3: Regenerative Braking 2. (Joshi, 2018)	36		
Figure 3.4: Design 1/ Concept 4.	43		
Figure 3.5: Design 2/ Concept 6.	44		
Figure 3.6: Design 3/ Concept 10.	44		
Figure 3.7: Waring of RBS.	49		
Figure 4.1: Flow Chart of Result and Discussion.	52		
Figure 4.2: Fabricate RBS.	53		
Figure 4.3: Force Applied on Pedal Brake RBS	54		
Figure 4.4: Force Applied on Fly Wheel RBS	55		
Figure 4.5: Experimental Equipment and Schematic Arrangement for RBS.	57		
Figure 4.6: Serial Regenerative.	59		
Figure 4.7: Parallel Hybrid.	61		

XV

Figure 4.8: Spider Web Mean Score Before Develop.	63
Figure 4.9: Spider Web Show the Means Score After Develop.	65
Figure 4.10: Difference Between After and Before Development.	66
Figure 4.11: Line Graph of 25% RPM.	69
Figure 4.12: Line Graph of 45% RPM.	71
Figure 4.13. Line Graph of 45% RPM.	73
Figure 4.14: Line Graph of 45% RPM.	75
Figure 4.15: Line Graph of 4 Different RPM.	76

XVI

LIST OF EQUATION

Equation List

Equation 3:1 Mean score

Page

47

XVII

LIST OF SYMBOLS

Negative --Positive + _ kW Kilowatt _ S Same -S Second -Voltage V _

XVIII

LIST OF ABBREVIATIONS

3D Three dimensions -AC Alternating Current -B _ Battery DC Direct Current -EV Electric Vehicle _ G -Generator HEV Hybrid Electric Vehicle _ ICE Internal Combustion Engine _ LCD -Liquid Crystal Display MC Motor Controller -MG Motor Generator _ Mechanical Power Distributer MPD _ RBS **Regenerative Braking Simulator** -RPM **Revolutions Per Minute** -SRBS -Simulation Regenerative Braking System TAD **Torque Implication Device** _ USB Universal Serial Bus -

XIX

LIST OF APPENDICES

Appendix	Tittle	Page
А.	Program Code	87
В.	Summary data before development of RBS	97
C.	Summary data after development of RBS	100

XX

CHAPTER 1

INTRODUCTION

1.1 Background Research

The development of regenerative braking system simulator to provide this tool is designed to help educators and visitors discover the regenerative braking process. They will apply the regenerative braking mentor theory in the regenerative braking simulator tool. This simulator is designed to enable them to quickly understand the concept of regenerative braking versus learning theory. In addition, most students who understand the theory are difficult to apply in the practical, this causes them to only memorize. Hence, the initiative to make students more understand and easy to apply them in a practical regenerative braking simulator has been made to better understand the concept regenerative braking. Pugh method is other of way from gain an information by compering and variance data (Gabriella Gustafsson and Sebastian Leo, 2018). This method evaluate by the value of scoring system on variance of important weigh of product result will show the rank for produce. Function of compare the scoring system and weight of product to expression a clear of obligation of the criteria product. Pugh matrix is conceptual strategy the common method uses because, it directly compares design against requirements criteria with the objective selecting.

Regenerative braking is heat was dissipated reason rubbing occur when braking that the heat energy is modification by change other type of energy is call energy recover mechanism or call regenerative braking. Regenerative braking occurs during wheel braking or going downhill. Most of regenerative braking apply in hybrid cars as show in **Table 1.1**.

Company	Model	Vehicle Class	Hybrid Type
Chevrolet	Tahoe	SUV	Full Hybrid
Ford	Escape	SUV	Full Hybrid
GMC	Silverado	Pickup Truck	Micro Hybrid
GMC	Sierra	Pickup Truck	Micro Hybrid
GMC	Yukon	SUV	Full Hybrid
Honda	Accord	Sedan	Mild Hybrid
Honda	Civic	Compact	Mild Hybrid
Lexus	RX 400h	SUV	Full Hybrid
Lexus	GS 450h	Sedan	Full Hybrid
Lexus	LS 600h L	Sedan	Full Hybrid
Mazda	Tribute	SUV	Full Hybrid
Mercury	Mariner	SUV	Full Hybrid
Saturn	Aura GreenLine	Compact	Micro Hybrid

Table 1.1: List of Hybrid Type by Different Model of Company (Atharva et al., 2017).

2