

Faculty of Mechanical and Manufacturing Engineering Technology

INVESTIGATION OF THE LENGTH OVER DIAMETER RATIO OF TANDEM PIPE BY COMPUTATIONAL FLUID DYNAMICS METHOD

Dolly Po Jin Ming

Bachelor's Degree in Mechanical Engineering Technology (Refrigeration and Air-Conditioning Systems) with Honours

2020

INVESTIGATION OF THE LENGTH OVER DIAMETER RATIO OF TANDEM PIPE BY COMPUTATIONAL FLUID DYNAMICS METHOD

DOLLY PO JIN MING

This report submitted of the fulfillment of the requirements for the Bachelor of Mechanical Engineering Technology (Refrigerant and Air-Conditioning) with Honors

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020

C Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: Investigation of Length Over Diameter Ratio of Tandem Pipe By Computational Fluid Dynamics (CFD) Method

SESI PENGAJIAN: 2019/20 Semester 2

Saya DOLLY PO JIN MING

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (✓)

(Mengandungi maklumat yang berdariah keselamatan
atau kepentingan Malavsia sebagaimana yang termaktub
dalam AKTA RAHSIA RASMI 1972)
(Mensendungi meldumet TEDLIAD verscheleb ditentulen

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

TERHAD

SULIT

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

17B, Jalan Undan,

96000, Sibu,

Sarawak.

Tarikh: _____

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Investigation of The Length Over Diameter Ratio of Tandem Pipe By Computational Fluid Dynamics (CFD) Method" is the result of my work except as cited in references.

Signature :_____

Name

: Dolly Po Jin Ming

:_____

Date

C Universiti Teknikal Malaysia Melaka

APPROVAL

I at this moment declare that I have read this project report. In my opinion, this report is enough in term of scope and quality for the award of bachelor's degree in Mechanical Engineering Technology.

Signature :_____

Name : Dr Abdul Munir Hidayat Syah Lubis

Date :_____

DEDICATION

To my beloved mother and father

ABSTRACT

The aim of this research was to study the effect of the length over diameter ratio in tandem pipe to the fluid pressure and fluid vortex characteristic. Failure due to vibration was the primary concern in oil and gas plant either in offshore or onshore plant. When vortex was shed, a force was produced and act to the inner pipe wall which can cause a vibration named as Flow-induced vibration (FIV). This study was performed using ANSYS FLUENT. A main pipe (MP) inlet with diameter of 0.7112m and two branch pipes which were Remote Controlled Valve (RCV) and Automatically Controlled Valve (ASV) with diameter of 0.6069m were used as parameter. Fluid with the speed of 30m/s were flowed from MP to inlet elbow, then pass through RCV continues with ASV then meet outlet elbow. Valve at both RCV and ASV were assumed fully closed. The initial case of study of the length over diameter ratio was 2. Modification will apply to the length of the pipe where the ratio become 2.5 and ratio 3. According to the result obtained, it was found that tandem branches can cause velocity and pressure drag. Besides, vortex mainly shed at the bending corner and tandem branches mouth. The vorticity increase when increasing the distance between branches. The velocity and dynamic pressure increase as the length over diameter ratio increase.

i

ABSTRAK

Tujuan kajian ini adalah untuk mengaji kesan nisbah panjang ke atas garis pusat dalam paip tandem pada tekanan cecair dan ciri-ciri vorteks bendalir. Kegagalan akibat getaran adalah persetujuan utama dalam loji minyak dan gas sama ada di loji luar pesisir atau di darat. Apabila vorteks ditumpahkan, daya yang dihasilkan akan bertindak ke dinding paip dalaman yang boleh menyebabkan getaran yang dinamakan sebagai getaran disebabkan vorteks. Kajian ini dilakukan dengan mengunakan ANSYS FLUENT. Satu paip utama dengan garis pusat 0.7112m dan dua paip cawangan dengan garis pusat 0.6096m yang dinamakan injap kawalan jauh (RCV) dan injap kawalan secara automattik (ASV) dibentukan. Cecair dengan kelajuan 20m/s, 30m/s, 40m/s daripada MP akan mengalir RCV, ASV dan akhir sekali mengeluar daripada outlet. Kedua-dua injap di RCV dan ASV diangkap tutup. Kes awal mengajikan nisbah panjang ke atas garis pusat adalah 2. Pengubahsuaian akan digunakan dengan nisbah panjang ke atas garis pusat mencapai 2.5 dan 3. Berdasarkan keputusan yang didapati bahawa cawangan tandem boleh menyebabkan halangan dan tekanan seret. Selain itu, vortex terutamanya susut lenturan dan persimpangan cawangan tandem. Vorticity akan tinggi apabila jarak antara cawangan paip meningkat. Apabila peningkatan nisbah halaju dan tekanan dinamik juga meningkat.

ACKNOWLEDGEMENTS

First, I would like to express my appreciation to my supervisor Dr Abdul Munir Hidayat Syah Lubis for his patient guidance and excellent advice. He always provides useful ideas and suggestions to solve the problem faced during the progress.

Next, my sincere appreciation to my parents and my siblings for their love and prayers who always gives full support on my study along these few years. Their support is my motivation to complete the task.

Finally, I must special thanks to my friends who always encourage me throughout my study.

TABLE OF CONTENTS

Contents		Pages
DECLARA	ATION	
APPROVA	۱L	
DEDICAT	ION	
ABSTRAC	T	i
ABSTRAK		ii
ACKNOW	LEDGEMENTS	iii
TABLE OI	F CONTENTS	iv
LIST OF T	TABLES	vii
LIST OF F	IGURES	viii
LIST OF S	YMBOLS AND ABBREVATION	x
CHAPTER	ł	
1. INTROE	DUCTION	1
1.1. Intro	oduction	1
1.2. Prob	blem of Statement	2
1.3 Obje	ective	3
1.4. Scor	pe of study	4
2. LITERA	TURE REVIEW	5
2.1 Pipe		5
2.1.1	Circular pipe	6
2.1.2	Non-circular pipe	6
2.1.3	Pipe fittings	7
2.2 Cha	racteristic of flow	8
2.2.1	Laminar flow in pipe	8
2.2.2	Turbulent flow in pipe	9
2.2.3	Reynold number	10
2.2.4	Viscosity	11
2.2.5	Dynamic pressure	12
2.3. Gov	verning equation	12
2.3.1	Energy equation	12
2.3.2	Bernoulli equation	14
2.3.3	Continuity equation	14
2.3.4	Panhandle equation	16
2.3.5	Navier-Stoke equation	17

2.3.6 Standard K-Epsilon Theory	19
2.4 Flow Induced Vibration (FIV)	20
2.4.1 Water hammering	21
2.5 External flow	23
2.5.1 Drag force	23
2.5.2 Lift force	24
2.6 Vortex-Induced Vibration (VIV)	24
2.6.1 Vortex shedding	25
2.7 Computational fluid dynamic (CFD)	26
2.7.1 Finite Element Method (FEM)	27
2.7.2 Finite Volume Method (FVM)	28
3. METHODOLOGY	29
3.1 Introduction	29
3.2 CFD simulation	30
3.3 Pre-processor	31
3.3.1 Generation of geometry	31
3.3.2 Meshing	33
3.4 Solver	35
3.4.1 General and Models	35
3.4.2 Material	36
3.4.3 Cell zone condition	36
3.4.4 Boundary condition	37
3.4.5 CFD solution	38
3.5 Post processor	40
3.6 Case modification	41
4 RESULT AND DISCUSSION	43
4.1 Scaled residual	43
4.2 Fluid characteristic for case without tandem branch	44
4.3 The effect of tandem branches	46
4.3.1 Velocity streamline	46
4.3.2 Velocity magnitude contour	47
4.3.3 Dynamic pressure contour	48
4.3.4 Static pressure contour	50
4.3.5 Vorticity magnitude contour	51
4.4 The effect of tandem distance over diameter ratio to fluid characteristic	52
4.4.1 Velocity magnitude	52
4.4.2 Velocity streamline	55
4.4.3 Dynamic pressure contour	57
4.4.4 Static pressure contour	59
4.4.5 Vorticity magnitude contour	61
4.5 Fluid characteristic at reference line	63

4.5.1 Velocity drags4.5.2 Total pressure drags

64 65

4.5.3 Eddy viscosity	66
4.6 Wall shear stress	67
5. CONCLUSION AND RECOMMENDATION	69
5.1 Conclusion	69
5.2 Recommendation	70
REFERENCES	71

LIST OF TABLES

TABLE	TITLE	PAGES
2.1	Reynolds number for the fluid flow	10
3.1	Mesh detail	34
3.2	Fluid properties	36
3.3	Length and diameter ratio for each cases	41

LIST OF FIGURES

FIGURE	TITLE	PAGES
2.1	A complex piping system	5
2.2	Circular pipe	6
2.3	Pipe fittings	7
2.4	Typical dye streak	8
2.5	Velocity profile for laminar flow	9
2.6	Velocity profile for turbulent flow	9
2.7	Cartesian coordinate for energy equation	13
2.8	Cartesian coordinate for continuity equation	15
2.9	Region experiencing FIV (a) Tandem branches (b) elbow	20
2.10	A horizontal pipeline	21
2.11	Pressure diagram after the valve close instantaneously	22
2.12	Definition sketch of VIV	25
2.13	Vortex shedding over a circular cylinder	25
2.14	Basic concept of CFD simulation	27
2.15	2-Dimensional and 3-Dimensional elements of finite element	27
2.16	Control volume variants used in	28
3.1	Flow chart of the project	29
3.2	Flow chart for CFD simulation	30
3.3	Geometry layout view of piping system in ANSYS	31
3.4	Geometry of piping system modelled in ANSYS	32
3.5	Meshed model	33
3.6	Viscous model	35
3.7	Solution method dialog box	38

3.8	Solution control dialog box	39
3.9	Residual monitors dialog box	39
3.10	Run calculation dialog box	40
3.11	Front view of modified geometry : (a) Ratio 2 (b) ratio 2.5 (c) ratio 3	41
3.12	Front view of piping sytem without branch	42
4.1	Scaled residual for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	44
4.2	The fluid charateristic of pipe without tandem branch (a)Velocity magnitude	
	(b)Dynamic pressure (c)Static pressure (d)Vorticity	45
4.3	Streamline velocity for (a) without (b) with tandem branches	46
4.4	Velocity magnitude for (a) without (b) with tandem branches	47
4.5	Dynamic pressure for (a) without (b) with tandem branches	49
4.6	Static pressure for (a) without (b) with tandem branches	50
4.7	Vorticity magnitude for (a) without (b) with tandem branches	51
4.8	Velocity contour for (a) R2 (b) R2.5 (c) R3	53
4.9	Graph of velocity against line A for (a) R2 (b) R2.5 (c) R3	54
4.10	Velocity streamline for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	56
4.12	Static pressure (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	60
4.13	Vorticity magnitude for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	62
4.14	Line C for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	63
4.15	Graph of velocity against line C for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	64
4.16	Graph of total pressure against line C for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	65
4.17	Graph of eddy viscosity against line C for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3 66	
4.18	Line D for (a) Ratio 2 (b) Ratio 2.5 (c) Ratio 3	67
4.19	Graph of wall shear stress against Line D for for (a) Ratio 2 (b) Ratio 2.5 (c)	
	Ratio 3	67

LIST OF SYMBOLS AND ABBREVATION

FIV	-	Flow Induced Vibration
CFD	-	Computational Fluid Dynamics
HVAC	-	Heating Ventilation Air-Conditioning
Re	-	Reynolds number
FEM	-	Finite Element Method
FVM	-	Finite Volume Method
RCV	-	Remote Controlled Valve
ASV	-	Automatically Shut-Off Valve
MP	-	Main Pipe
ID	-	Inner Diameter
ρ	-	Density
V	-	Velocity
D	-	Diameter
А	-	Area
μ	-	Viscosity
V	-	Kinematic Viscosity
τ	-	Shear Stress
$\frac{du}{dy}$	-	Velocity Gradient
f	-	Friction Force
C _D	-	Drag Coefficient

F _D	-	Drag Force
CL	-	Lift Coefficient
F_L	-	Lift Force
k	-	Thermal Conductivity
E _p	-	Potential Energy
E _k	-	Kinetic Energy
U	-	Internal Energy
F	-	Force
m	-	Mass
a	-	Acceleration
g	-	Acceleration due to gravity
h	-	Elevation
L	-	Length
f_h	-	Frictional Loss
Ра	-	Pascal
Ss	-	Second

CHAPTER 1

INTRODUCTION

1.1. Introduction

In recent decade, piping systems are widely used for fluid distribution system in various industry fields. Based on the geometry, there are two types of fluid conductor employed in most industries, circular and non-circular pipe. When fluid conveys through a round conductor, it is named as pipe, tube or hose, whereas when fluid pass through a non-circular cross-section conductor, it is named as duct (Schirber, 2015). Normally, a circular pipe is used in fluid transportation purpose whereas non-circular pipe is usually used in application which involved heating and cooling process (Ziada & Buhlmannt, 1992). Fluid not only flow in straight line but also flow in direction via different pipe fittings such as tee, elbow, Y-shape and T-shape (Liestyarini, 2016). Often, the existence of such fittings will produce hydraulic loses to the fluid flow. the loses produce velocity and pressure drop in the piping or pipeline system which relate to friction factor (Mormanto, 2014). Friction factor is a quantity used to descript frictional losses in a pipeline where the factors are pipe material, Reynold number, viscosity and fitting size.

Flow-induced vibration (FIV) is a vibration or vortex shedding due to internal flow of fluid in a piping system (Siemens,2017). Velocity, density, length of pipe and pressure of fluid are the hydrodynamic quantity that will influence the FIV (Luo et al., 2015). However, the main cause of FIV is the shed vortex generated during the fluid flow. Vibration will occur when a

body is exposed to fluid that produce vortex shedding. Bai (2005) stated that vortex shedding frequency that approximate or same as natural frequency of an object will cause FIV to happen. Vortex can easily be shed when the fluid velocity is high or when the inlet is disturbed. Years after years, this phenomenon can bring damages to the pipe component in a piping system such as breaking and leaking (Duan et al., 2018).

1.2. Problem of Statement

Addition of branched joint is common method to change the direction of fluid flow in pipeline. A tandem branched pipe is commonly installed to control the fluid flow direction. Fluid can be distributed or accumulated by installing the tandem pipe. However, since additional of pipe fitting known to be related to friction loses, the existing of fittings should be taken into account in design of piping and pipeline.

Cole (1999) stated that friction losses can happen in any pipe fitting such as tandem pipe and elbow. Vibration such as flow-induced vibration (FIV) will happen when fluid passed through these pipe fitting. These pipe fitting interrupt the smooth fluid flow thus cause additional losses because of the flow separation (Cengel & Combala, 2014). When fluid pass through pipe fitting, separation region will be created. These fluid separations can lead the internal fluid flow become unsteady due to the formation of vortex and usually can cause a large drag force (Snoorri, 2014). Furthermore, vortex shedding can create an oscillatory force which cause vibration to the piping system.

Fatigue damage caused by vibration is a serious challenge faced by most oil and gas industry. Bruce (2013) mentioned that more than twenty percent of pipe failures were because of vibration. A piping system might be broken due to strong shear force (Li et al., 2017). Once

2

the piping structure is broken, the replacement cost will be very high. This phenomenon always happens in a turbulent flow where high Reynolds number occurs (Lim, 2003), low-pressure area (Giosan, 2006), slender structure (Fu, 2018) and non-straight-line piping.

In the past, most existing studies concentrated on the FIV of straight cylinders with different parameters. In a study conducted by (Wu et al, 2012) found that the vibration behavior for long slender cylinder and short rigid cylinder are significantly different. Keshtkar (2017) examined that by increasing fluid velocity, the inflicted vibration will increase in frequency. Although there are numerous researches or study about FIV are carried out in the past, however the research on the relationship between branches distance over the main pipe diameter ratio $(\frac{L}{p})$ in the tandem pipe is still limited. Therefore, such study is still required.

1.3 Objective

- II. To investigate the effects of the pipe's length and diameter ratio of tandem pipe to the fluid flow characteristic.
- III. To observe the effects of the pipe's length and diameter ratio of tandem pipe to the fluid pressure.

1.4. Scope of study

- I. This study only performed simulation and analyses to the internal fluid flow in tandem pipe arrangement.
- II. The analysis on the effect of fluid force to structural vibration is exclude in this project.
- III. The study performed based on simulation through ANSYS FLUENT CFD software.
- IV. Fluid used in the simulation is gases, other fluid's is not considered in this project.
- V. The study performed for length over diameter ratios $(\frac{L}{D})$ of 2, 2.5 and 3. Other ratio are excluded from the project.

CHAPTER 2

LITERATURE REVIEW

2.1 Pipe

A pipe is a hollow cylinder which is usually used to transport fluid from a place to another. Industry always uses different pipe of sizes and material depending on the fluid that conveys. Piping with various shapes and size can be joined together by using pipe fittings. Sometimes, several pipes joined in a system in an industry can be very complex as shown in figure 2.1. The piping system not always constructed in a straight line but also in a non-straight or crossing line so it can transport the fluids to a different direction.

Figure 2.1 A complex piping system (Walter, 2015)

2.1.1 Circular pipe

Industry often use circular pipe to transport fluid. This is because circular pipe has a small cross-sectional area compared to the non-circular pipe with the same diameter. As the cross-sectional area of the internal pipe is smaller, the friction between the internal wall and the fluid is smaller as well. A circular pipe can withstand higher fluid pressure than the non-circular pipe (Cengel & Combala, 2014). Besides, a round circular does not consist any sharp edge such as triangular and rectangular pipe. The sharp edge can cause high friction loss in a fluid flow. As the friction losses are high, the energy loss also high. To reduce high energy losses, a round pipe is usually being selected.

Figure 2.2 Circular pipe (Rodriguez, 2018)

2.1.2 Non-circular pipe

Non-circular pipe such as rectangular usually called duct, is typically used in heating, ventilation and air conditioning (HVAC) system. The friction between fluid flow and internal wall is high in rectangular duct because of the large cross-sectional area. High cross-sectional area will cause high energy loss or pressure drop in the system. However, square or cylinder duct is easier to manufacture compared to the round duct.

2.1.3 Pipe fittings

Several pipes can be connected or joined together in a piping system by using pipe fitting such as elbow, tee, reducer and end cap. The purpose of using these fittings are to change the direction of the fluid flow, change the pipe size and stop the flow. The material of pipes can either be metallic or plastic, whereas the pipe fittings vary depending on the type of pipe installed.

Figure 2.3 Pipe fittings (Shearer, 2014)

