

Faculty of Mechanical and Manufacturing Engineering Technology

EFFECT OF SINGLE SELF CONTAINED DUAL VACUUM CLAMPING ON ACRYLICS END MILLING PERFORMANCE

Nur Shasha Fatihah Bt Mohd Apandi

Bachelor of Manufacturing Technology (Process and Technology) with Honours

2019

i

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Effect of Single Self-Contained Dual Vacuum Clamper On Acrylic Endmill Performances

Sesi Pengajian: 2019/2020

Saya NUR SHASHA FATIHAH BT MOHD APANDI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.

2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT*

kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK **TERHAD**

TERHAD*

Yang benar,

Disahkan oleh penyelia:

NUR SHASHA FATIHAH BT MOHD APANDI Alamat Tetap:

TS. DR. NORFARIZA BT AB WAHAB

Blok A-3-8 KIP Desa 17 Taman Melati Setapak 53100 Kuala Lumpur Wilayah Persekutuan.

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled Effect of Single Self-Contained Dual Vacuum Clamping for Acrylic Endmill Performances is the results of my own research except as cited in references.

> Signature: Author : NUR SHASHA FATIHAH BT MOHD APANDI Date :

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process

& Technology) with Honours. The member of the supervisory is as follow:

Signature:

Supervisor: TS. DR. NORFARIZA BINTI AB WAHAB

ABSTRACT

Clamping in workshop practice usually use tools and holding devices such as a vice to clamp the workpiece. Hence, thin wall components have always been a challenging problem due to the low stiffness of work parts during machining. Therefore, the right selection of vice is important to obtain the desired performance due to machining. In this study aims to relate the research literature review by providing the new experimental results based on a measurement of the process consist of the response of machining parameters in terms of thrust force and surface roughness. Experiments were carried out on acrylic towards endmill machining with chosen cutting parameters. Furthermore, the analysis was carried out in achieving thrust force by a dynamometer and good surface roughness for the influence of process parameters on the suction vacuum clamp during machining. Cutting tool 2 flutes of 3mm diameter were chosen in these experiments to study the superior surface quality to the acrylic material at the velocity of cutting tool speed during machining in surface roughness analysis. The result shows that vacuum clamping has better surface roughness result with the average of surface analysis is 0.585µm for continuously pressure (CP) method and 0.663µm for remain pressure (RP) method. As a conclusion, all the various result and data is taken from experiments conducted against vacuum clamping to the machining performances.

ABSTRAK

Pengepit dalam amalan bengkel biasanya menggunakan alat dan pemegang peranti seperti vise untuk mengepit bahan kerja. Oleh itu, komponen yang berketebalan nipis sentiasa menjadi masalah yang mencabar kerana ketahanan yang rendah pada bahagian bahan kerja semasa pemesinan. Oleh itu, pemilihan vise yang betul adalah penting untuk mendapatkan prestasi yang diingini ketika pemesinan. Dalam kajian ini bertujuan untuk mengaitkan kajian kesusasteraan sebelum ini dengan memberikan hasil eksperimen yang terkini berdasarkan respon proses pengukuran parameter yang sistematik dari segi daya pemotongan dan kekasaran permukaan. Eksperimen dijalankan pada akrilik terhadap pemesinan 'endmill' dengan pemotongan parameter yang dipilih. Tambahan pula, analisis telah dijalankan untuk mencapai daya pemotongan oleh dinamometer dan kekasaran permukaan yang baik bagi mengkaji pengaruh proses parameter pada sedutan pengapit vakum semasa pemesinan. Alat pemotongan 2 flutes diameter 3mm telah dipilih dalam eksperimen ini untuk mengkaji kualiti permukaan pada bahan akrilik pada kelajuan halaju alat pemotong semasa pemesinan dalam ujian kekasaran permukaan. Hasilnya menunjukkan bahawa pengepit vakum mempunyai hasil kekasaran permukaan yang lebih baik dengan menghasilkan analisis purata permukaan 0.585µm untuk kaedah tekanan masuk (CP) dan 0.663µm kaedah tanpa tekanan (RP). Sebagai kesimpulan, semua pelbagai hasil dan data diambil dari eksperimen yang dijalankan terhadap pengepit vakum dari persembahan pemesinan.

DEDICATION

To my beloved parents

Mohd Apandi bin Abdul Rahman Wan Noor Aini Bt Wan Ahmad

To my beloved siblings

Muhamad Shahin Fathi Bin Mohd Apandi Nur Sharah Salsabila Bt Mohd Apandi Muhamad Syamil Sabil Bin Mohd Apandi

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor Dr. Norfariza Bt Ab Wahab from the Faculty of Mechanical and Manufacturing Engineering Technology, Universiti Teknikal Malaysia Melaka (UTeM) for her essential supervision, support and encouragement towards the completion of this thesis.

I would also like to express my greatest gratitude to Ts.En. Muhammad Syafik Bin Jumali and En. Mohd Azimin bin Ibrahim from CNC laboratory Faculty of Mechanical and Manufacturing Engineering Technology for his advice and suggestions in evaluation of jig clamping of dynamometer. Particularly, I would also like to express my deepest gratitude to Mr. Basri Bin Bidin the technicians from Sheet Metal Laboratory and En. Zulkifli Bin Jantan from DFX Laboratory Faculty of Manufacturing Engineering for CNC Gantry Router Machine. Because of them and their assistance and efforts in all the lab and analysis works for my thesis.

Special thanks to all my lecturers, my parents, and friends for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

This work is partially supported by Universiti Teknikal Malaysia Melaka (UTeM) and the Malaysia Ministry of Higher Education for the financial funding under Grant No. FRGS/2018/FTKMP-AMC/F00387

v

ABS ABS TAF LIS	STRA STRA BLE C T OF	СТ	NTENT ES	iii iii ii vi ix xiii
	АРТЕ			
1.			CTION	1
		Introd		1
		•	t background	1
			em statement	3
		Object		4
		-	s of work	4
	1.6	Projec	t significance	5
CHA	арте	R		6
2.	LIT	ERATU	JRE REVIEW	6
	2.1	Introd	uction of clamping	6
	2.2	Types	of clamping	9
		2.2.1	Vacuum Clamping	9
			2.2.1.1 Pneumatic clamping system	9
			2.2.1.2 Hydraulic clamping system	10
		2.2.2	Magnetic Clamping	13
			2.2.2.1 Permanent magnet clamping	13
			2.2.2.2 Electromagnetic clamping	14
		2.2.3	Mechanical clamping	14
			2.2.3.1 Bench vice	15
			2.2.3.2 Milling machine vise	16
	2.3		y of vacuum suction	17
		2.3.1	1 1	17
			Pump suction	17
	2.4		cations and Types of vacuum clamper	18
		2.4.1	Flexible vacuum clamping for CNC lathe machine	18
		2.4.2	Portable vacuum clamping on conventional milling machine	19
	2.5.		of Cutting parameter of machining performance	20
		2.5.1	Cutting tool	20
		2.5.2	Cutting Parameter of machining	22
			2.5.2.1 Flexible vacuum clamping on lathe machine	22
	• •	0	2.5.2.2 Portable vacuum clamping on conventional milling n	
	2.6	-	t of experiments	24
		2.6.1	Flexible vacuum clamping	24

vi

	2.6.2 Portable vacuum clamping	26
2.7	Suction force	27
	2.7.1 Flexible vacuum clamping	27
	2.7.2 Portable vacuum clamping	28
2.8		28
2.9		amps
	Error! Bookmark not	t defined.
2.1	0 Summary	29
CHAPTI	ER	30
8. ME	CTHODOLOGY	30
3.1	Introduction	30
3.2	Project Flowchart	30
3.3	Vacuum clamping system	33
	3.3.1 Vacuum block	37
	3.3.3 Multistage Vacuum pump AZL112	38
	3.3.4 Silicon hose	39
	3.3.5 3/2 solenoid pneumatic valve	40
	3.3.6 Air Pressure Suction	41
3.4	Development of jig clamping	41
	3.4.1 Drawing or sketch extra clamping	44
	3.4.3 Fabricate of jig clamping and diameter bolt M8	45
	3.4.4 Turning process for bolt M8	46
	3.4.5 Laser cut process to develop jig clamping	48
3.5		52
3.6		53
3.7		59
3.8		60
	3.8.1 Gantry router HAAS GR-510 machine	60
3.9		64
	0 Experiment set up	66
	3.10.1 Experimental and measurement of analysis procedure	68
3.1	1 Measure thrust force using dynanometer type 9257BA	70
	2 Material Testing using Surface roughness Mitutoyo SJ-410	76
	3 Summary	79
	4 Comparison between Previous Vacuum Clamping and Current Vacuur	m Clamping
		80
CHAPT		84
	SULT AND DISCUSSION	84
4.1	Introduction	84
4.2	Analysis of experimental result for thrust force by different clamping	method 84
4.3	Analysis of experimental result for surface roughness by different clan	
	thod	11pmg 90
1110	4.3.1 Influence in process parameter on surface roughness	91
	4.3.2 Influence of dual vacuum clamper on surface roughness	98
	1.5.2 minuence of dual vacuum champer on surface roughness	70

	4.4	Summary	101
СН	APTE	CR	102
5.	CO	NCLUSION AND RECOMMENDATION	102
	5.1	Introduction	102
	5.2	Summary research	102
	5.3	Recommendation for future study	103
	5.4	Future Project Potential	105
RE	FERE	NCES	106

REFERENCES APPENDICES

Error! Bookmark not defined.

LIST OF TABLES

TABLE

TITLE

PAGE

Table 2.1: Feed rate and surface roughness at constant RPM	23		
Table 2.2: Feed rate and surface roughness at constant RPM			
Table 2.3: DOC and surface finish for inner rough process.			
Table 2.4: DOC and surface finish for outer rough process	25		
Table 2.5: Surface roughness result different depth of cut	26		
Table 2.6: Evaluating vacuum pressure for Outer Rough	27		
Table 3. 1: Analysis Testing Pressure by Human Load	41		
Table 3. 2 : Table sheet of experiment	63		
Table 3. 3 : Cutting parameter	65		
Table 3. 4: Machining parameter for both methods			
Table 4.2 : Thrust Force Data for Continuously pressure method			
Table 4.3 : Thrust Force Data for Without Continuously pressure			
Table 4.4:Result of acrylic after machining	86		
Table 4.5: The Average Readings Of The Thickness Of The Acrylic's For Continu	iously		
Pressure Method Error! Bookmark not defi	ned.		
Table 4.6: The Average Readings Of The Acrylic's Sides For Continuously Pressur ${f E}$	rror!		
Bookmark not defined.			
Table 4.7: The Average Readings Of The Thickness Of The Acrylic's For Remain Pr	essure		
Method	93		
Table 4.8:The Average Readings Of The Acrylic's Sides For Remain Pressure	95		
Table 4.9 : Surface roughness result for both methods	96		
Table 4. 10: Table sheet of Parameter Process9			

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Single	e and Double vertical clamping	12
Figure 2.2: Togg	le clamp for hydraulic clamping system	12
Figure 2.3: Perm	anent magnet clamping	13
Figure 2.4: Electr	romagnetic clamping	14
Figure 2.5: Bencl	h vice	16
Figure 2.6: Millin	ng clamping vise	16
Figure 2.7: Vacu	um pump type VE115N	18
Figure 2.8: Side	view of chuck base plate where vacuum clamp	ing system to be installed19
Figure 2.9: Portal	ble vacuum clamping on the milling table	20
Figure 2.10: Type	es of flutes cutting tool	22
Figure 3.2: Proje	ct Flowchart	32
Figure 3.3: Vacu	um clamping system	34
Figure 3.4 : Vacu	um clamping system flowchart	36
Figure 3.5 : Vacu	um Block	37
Figure 3.6: Reser	voir	38
Figure 3.7: Multi	stage Vacuum pump AZL 112	38
Figure 3.8: Silico	on hose	39
Figure 3.9: 3/2 so	plenoid pneumatic valve	40
Figure 3.10: Jig c	clamping on dynamometer type 9257BA	43
Figure 3.11: D1.2	25 bolt which being problem between jig clam	ping and 43
Figure 3.12 : Din	nensions of dynamometer type 9257BA (Kistle	er, 2003) 44
Figure 3.13 : Dra	wing extra clamping using CATIA V5	45
Figure 3.14 : : Di	ameter of head bolt before turning	46
Figure 3.15 : Spin	ndle speed of turning process	47
Figure 3.16 : Fab	ricate Bolt	47
Figure 3.17 : Las	er cut machine AMADA FO MII 3015 NT	48
Figure 3.18 : Dimension of jig clamping using AP1000 software 4		

Figure 3.19 : Numbering of starter point to cut on the laser cut machine	50
Figure 3.20 : NC programme in G code	51
Figure 3.21: Development of extra clamping	51
Figure 3.22 : Assemble of dynanometer, acrylic panel, vacuum block	52
Figure 3.23 : Set up dynanometer, vacuum block and acrylic panel on the	53
Figure 3.24 : Hole on the Gantry Router HAAS GR-510 machine table	54
Figure 3.25 : CKD filter regulator W4000	54
Figure 3.26 : CKD filter regulator W4000	55
Figure 3.27 : Connection Pneumatic Solenoid Valve to Vacuum distributor	56
Figure 3.28: Connection Vacuum Distributor to Vacuum Pressure	56
Figure 3.29: Vacuum system setup from top side	57
Figure 3.30 : Vacuum meter pressure	58
Figure 3.31 : Leakage Vacuum Clamping	59
Figure 3.32 : Using thread seal tape to improve the bolt	59
Figure 3.33 : Gantry Router HAAS GR-510 machine	61
Figure 3.34 : NC program CNC Gantry Router Machine	61
Figure 3.35 : Flatness measure	62
Figure 3.36 : Setting jig using dial gauge	62
Figure 3.37 : Setting the distance between acrylic and vacuum clamping	63
Figure 3.38: Acrylic Material and Cutting tool	64
Figure 3.39: Experimental setup vacuum clamper on machining	67
Figure 3.40: Experimental setup and measurement methodology	69
Figure 3.41 : Dynanometer Kistler Type 9257BA	71
Figure 3.42 : Installation type of cable on the dynamometer software	72
Figure 3.43 : Installation of board by instacal	72
Figure 3.44: Thrust force measurement system on dynamometer type 9257BA	73
Figure 3.45: Dynanometer software	74
Figure 3.46: Edit acquisition	74
Figure 3.47: Setting the channel	74
Figure 3.48: Setting the view setup	75
Figure 3.49: : Cycle time experiment	75
Figure 3.50: Measure Thrust Force	76

Figure 3.51: Measure surface roughness using Mitutoyo SJ-410	78		
Figure 3.52 : Feed direction of the stylus at the panel	78		
Figure 4.1: Line graph of thrust force for Fx	88		
Figure 4.2: Line graph of thrust force for Fy			
Figure 4.3: Line graph of thrust force for Fz			
Figure 4.4: Surface Roughness result for Remain Pressure MethodError! Bookmark	not		
defined.0			
Figure 4.5: Surface Roughness result for Continously Pressure Method by sides	91		
Figure 4.6: Line graph of Continuously pressure method and Remain Pressure method 9			
Figure 4.7: End milling surface process	97		
Figure 4.8: Flow continuously pressure to vacuum clamping	98		
Figure 4.9: Surface roughness	100		
Figure 4.10: Effect of bending due to panel by vacuum suction	100		

LIST OF SYMBOLS

Vc	-	Cutting speed
S	-	Spindle speed
D	-	Tool Diameter
CNC	-	Computer Numerical Control
FPT	-	Feed per tooth
Ν	-	Number of tooth of flute
F	-	Feed rate
СР	-	Continuously Pressure
RP	-	Remain Pressure

xiii

CHAPTER 1

INTRODUCTION

1.1 Introduction

Generally, the manufacturing process is the process of machining especially for sheet metal parts. In machining, there are various axis been operated to improve the undesired workpiece shape by produce the required shape using a cutting tool device. This problem can be done by a manual process or machining but it has to use clamp devices to hold the workpiece before machining is operated. Other than that, in this project have calibrated with industry Kurnia Al Rizq from Johor. Technical part and all details vacuum clamper system is come from them while all the vacuum clamper testing experiment were obtained by this project. This chapter will discuss about the overall of flow of the project consists of project background, problem statement, objectives, project scope and project significance.

1.2 Project background

A milling machine is the flexible conventional machine tools with extensive metal cutting capabilities. Milling includes various types of operations and machines, based on the scale from small individual parts to large and heavy grinding operations. This is one of the most usually used processes for specialized parts machining with accurate and tolerance. Many complicated operations such as indexing, straddle milling and gang milling can be done on milling machines. Milling is additionally a machining process utilizing a rotary cutter to remove material from the workpiece by moving the cutter into the workpiece in a certain direction. The cutter can withal be held at an angle relative to the axis of the

implement. In technology nowdays, machines have the capability to machine up to five axes compared conventional clamping.

With the unique features of vacuum clamps, it can increase the productivity and efficiency of material clamper on machine milling. These vacuum clamps usually use pneumatic suction to hold materials or workpieces during machining. Vacuum clamping systems are used for wood, plastics and non-ferrous metals. Vacuum clamper compatible with CNC machine tools. Here vacuum technology is used in connection with special handling systems. Then, the sliding force of the workpiece depends on its surface structure, the pressure differential and the area on which the vacuum acts. Vacuum clamper can increase productivity and cost-effectiveness. The fixing does not cause any damage to the workpiece, and no laborious, time-consuming aligning of the workpiece is required

Portable vacuum clamping was developed by Bachelor of FTK student's cohort 3, and then continued for this final year project as dual vacuum clamper. Among the objectives of this project is to improve the holding mechanism and functionality of a vacuum clamper. The mechanism of previous clamping has change in terms of design from round shape to square block, material of surfaces mounted block from metal material to the lightweight delrin material. While irregularities in the workpiece surface are compensated for by the sealing cord change to silicon rubber. Aside, method of vacuum clamper also was improved which direct continuously pressure from compressor to two method vacuum clamper which is continoulsy pressure and remain pressure.

The previously designed portable vacuum clamp has been preserved in spiral round shape. The portable vacuum clamper is continuously pressure which direct air pressure from compressor. Besides that, this portable vacuum clamp was designed with has grooves and one suction points on its upper side. By inserting the sealing cord, one or more fields can be defined for the desired workpiece size. Suction points are interconnected. Lateral grooves or fastening holes allow the vacuum clamping plate to be fastened to a baseplate.

1.3 Problem statement

This project is focusing on effect of single self-contained dual vacuum clamper on acrylic end mill process. Based on the previous research of vacuum clamper, it found that the vacuum system is not suitable as the portable because heavy and not efficiency to setup because too much step to setup on macine which using tool devices on the left and the right base plate clamping. Then, that need to carry vacuum pump everywhere when needed in operation. To overcome this problem, the dual vacuum clamping system was improve by previous clamping with design and develop top and bottom side clamper by delrin material without vacuum pump to become portable. This new develop vacuum clamper also is lightweight and more efficiency to setup.

Irregularities in the workpiece surface are compensated for by the sealing cord on portable vacuum clamping is not suitable to clamp for soft material. Sealing cord by previous clamping was imporved to silicon rubber on dual vacuum clamper to become more elastic and can clamp various material compared to previous clamper which only can clamp metal material. Advantages of silicon rubber is it can grip the workpiece according to various surface roughness material.

Additionally, experiment outcome by previous clamping project was focuses on surface roughness and various depth of cut only by 3 different thickness of mild steel testing on the vacuum clamper experiment testing. Meanwhile, in this project was improved to more emphasis of experiment analysis in terms of surface roughness and thrust force to two method vacuum clamper with continuously pressure and remain pressure towards constant parameter end mill process. In milling process, thrust force analysis are related using

3

dynamometer kistler type 9257BA to the axes of motion of the machine. An end milling process consists of a cylindrical cutter that has multiple cutting edges on both its periphery and its tip, permitting end cutting and peripheral cutting. These cutting edges or flutes are usually made helical to reduce the impact that occurs when each flute engages the workpiece. Lastly, surface roughness analysis data was maintain likely previous research vacuum clamper project to measure the quality surface of material testing when using vacuum clamper on machining performances.

1.4 Objective

In this objective are optimize the output of experiment to prove in result as follows:

- i. To develop an experiment of new design dual vacuum clamping during the machining process.
- To analyse the thrust force of the dual vacuum clamper that presents as a function of machining performance on acrylic sheet in 15 minutes.
- iii. To analyse the average surface roughness as function of machining performances after finished machining.

1.5 Scopes of work

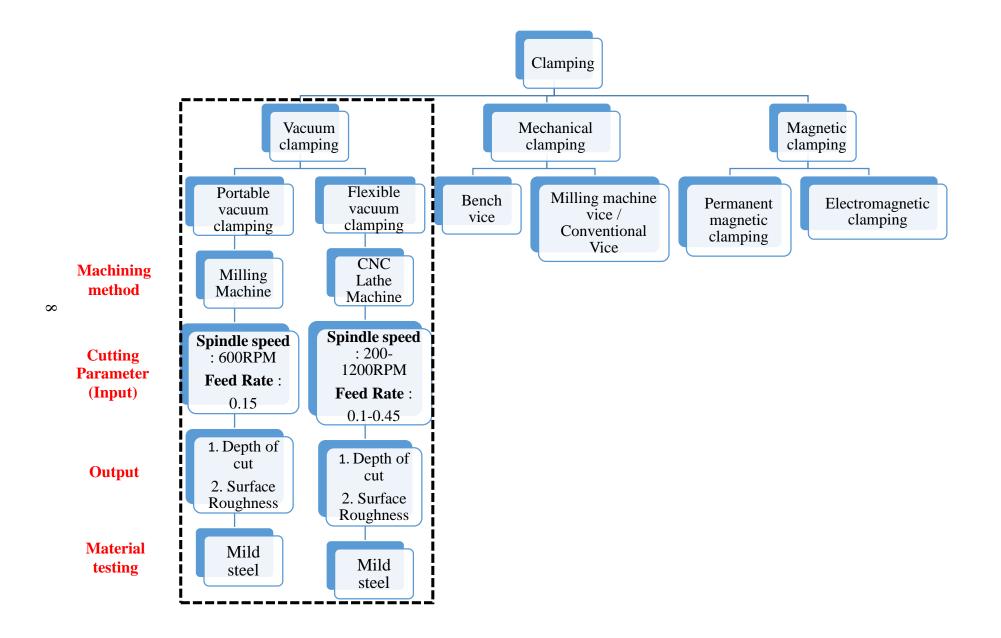
The research project will focus primarily on the dual vacuum clamping by two methods consist of continuously pressure and remain pressure towards machining performances to observe the thrust forces on the acrylic effect through end mill process. After that, to measure the surface acrylic to observe the roughness of material sheet which using dual vacuum clamper towards machining performances. Thrust force will be measured using dynamometer type 9257BA while surface roughness will be calibrating by feed

4

direction on the surface roughness Mitutoyo SJ-410. All the experimental will be using constant parameter on the CNC machine within 15minutes. Both methods will be testing in same process by different method to analyze the effect of single self-contained dual vacuum clamper towards machining performances. This system is using multiple parts to generate the air suction on the vacuum clamper which generated from pneumatic solenoid valve, vacuum distributoe to vacuum pressure and reservoir as extra storage to keep the pressure when pressure is removed. From that, it wants to compared and prove the functionality and sustainability of dual vacuum clamper can be undergoing in machining performances as experimental testing in project.

1.6 Project significance

The purpose of this project is to improve the clamping levels and accurately clamping can hold the various workpiece. A workpiece has a different shape, curve, thickness, and properties. The dual vacuum clamping system is to reduce the probability effect of clamping on the workpiece during the machining process is run in speed rate. The novelty of this clamping based on a minimum and maximum force can be reached to clamp the workpiece by sensor detected on dynamometer during an end mill machining process with support by reservoir as extra storage when clamping in OFF mode. Lastly, the target of this project is to help the industrial manufacturing and manufacturing practice to enhance the diversity of more technology clamping functions in reducing their time and energy to set up and toggle axial movements in a work that is taking time.


CHAPTER 2

LITERATURE REVIEW

2.1 Introduction of clamping

Low rigidity thin-wall components are commonly used in aeronautics, automobiles, plastic molding and electronics applications. (Ganesh, Selladurai and Shanmugam, 2008) The thin sections elastically deform during machining of thin-walled parts under the action of thrust forces. The limited surface cannot put the workpiece to cut or drill in one side single clamping. This requires the operator to load and adjust the clamping vice repeatedly to each process refer on axis direction. (Wahab, Haris, et al., 2018) Therefore, to maintain the dimensional accuracy and to impart desired surface finish it is quite difficult. The current techniques of conventional clamping are not a suitable method to apply on the thin-wall parts machining for the future because the requirement of components on the clamping systems are rising when the complexity thickness is not constant. (Klotz, Zanger and Schulze, 2014). This is a common problem in the machining of thin-wall components (Bolar and Joshi, 2017).

A good clamping system is basic to use on the correct machining of parts. In particular, for the vacuum clamping systems, it is fundamental to ensure that the clamping forces generated are sufficient to support the parts while being machined. The identification of clamping surfaces and the clamping design has focused on clamping force on a given workpiece. (Cecil, 2001). Literature research work on various aspects of vacuum clamping experimental, consist of the design and optimization of vacuum clamper, vacuum suction, thin-wall milling process, various surface quality, and depth of cut on experimental work piece during machining process. This chapter will explain all the findings obtained from many literature studies, which may be from articles, internet, journals and books on topics related to this study. This section covers the discovery of history of clamping in machining processes, method of clamping, material selection of holding mechanism and machining parameters effects.

