

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

A PROJECT ON BALL AND CONCAVE JIG ATTACHMENT FOR LATHE

MUHAMMAD TAUFIQ BIN ABD AZIS

Bachelors of Manufacturing Engineering Technology (Process and Technology) with Honours.

2019

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: A PROJECT BALL AND CONCAVE ATTACHMENT FOR LATHE

Sesi Pengajian: 2019/2020

Saya **Muhammad Taufiq Bin Abd Azis** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.

2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4. **Sila tandakan (X)

	SULIT* TERHAD*	Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.	
\boxtimes	TIDAK TERHAD		
Yang be	enar,	Disahkan oleh penyelia:	
MUHAM Alamat T LOT 2554	MAD TAUFIQ BIN etap: I BATU 5 ¾ JALAI ANG, SELANGOF	I ABD AZIS TS. ABD KHAHAR BIN NORDIN	

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "A Project on Ball and Concave Jig Attachment for

Lathe" is the results of my own research except as cited in references.

Signature	:	
Author's Name	:	MUHAMMAD TAUFIQ BIN ABD AZIS
Date	:	

APPROVAL

This report is submitted to the Faculty of Engineering Technology of UTeM as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering Technology (Process and Technology) with Honours. The member of the supervisory is as follow:

.....

(TS. ABD. KHAHAR BIN NORDIN)

ABSTRAK

Projek ini bertujuaan untuk mereka bentuk bahan kerja yang berbentuk bulat dan separa bulat akan direka dan difabrikasikan. Alat memotong ini digunakan untuk memotong bentuk bulat dan separa bulat. Walau bagaimanapun, ianya sukar dan mengambil masa yang agak lama untuk memotong bahan berbentuk bulat dan separa bulat. Kebiasaannya, proses untuk memotong bentuk bulat dan separa bulat adalah dengan menggunakan mata alat yang istimewa dimana ia memerlukan orang yang mahir. Tujuan projek ini adalah untuk mencadangkan alat pemotong khas untuk memotong bahan kerja berbentuk bulat dan separa bulat. Objektif projek ini adalah untuk mereka bentuk dan menghasilkan alat memotong yang baru yang boleh digunakan untuk mesin pelarik supaya ia akan dapat mengurangkan masa. Untuk mencapai objektif projek ini, dimulakan dengan mengkaji alat memotong yang berbeza dan menghasilkan beberapa konsep untuk menyelesaikan pernyataan masalah. Reka bentuk alat pemotong telah dilakarkan dengan menggunakan perisian "Solidwork". Beberapa proses yang terlibat dalam fabrikasi adalah proses pelarik, kimpalan, penggerudian, pengisaran dan pemesinan pelepasan elektrik dawai. Projek ini akan menghasilkan alat pemotong untuk bahan kerja berbentuk bulat dan separa bulat, ianya dapat mengurangkan masa sewaktu pemasangan dan proses pemesinan dijalankan.

ABSTRACT

In this project, the new turning cutting tool for ball and concave of workpiece will be designed and fabricate. The cutting tool for turning is used to cut the ball and concave workpiece. However, it is difficult and take time to cut the ball and concave. A usually process for cutting ball and concave is by using a special cutting tool which it need skillful person. The purpose of this project is to propose the specific turning cutting tool which is to cut the ball and concave workpiece. The objective of this project is to design and produce new turning cutting tool that can be used for lathe machine so that it will be able to reduce time. To achieve the objective of this project, starting with concept generations where different patterns of the cutting tool was study and develop several concepts to solve the problem statement. Design of the turning cutting tool was sketched by using Solidwork software. The processes involve in fabrication are milling, turning, welding, drilling, grinding and EDM wire cutting. The project will have outcome of turning cutting tool for ball and concave of workpiece that will reduce time when setup the cutting tool also during machining process.

DEDICATIONS

I dedicate this essay to my beloved mothers, my fathers, my brothers and my friends. People who have always been there to support me and always show me the best path to follow. To my parents, I will never finish thank you for everything you do.

ACKNOWLEDGEMENT

First of all, I would like to express my grateful for the blessing given to ALLAH S.W.T so that I can complete my project. It's a challenge for me to complete this project report for the final year. I was connected to many people around me in the planning of this project which helped me to complete this task. With the help of generous people, however, I can successfully complete this report.

I would like to thank my Project Supervisor, Ts. Abd Khahar bin Nordin for his encouragement, advice and ongoing support throughout the final year of the project. I really appreciate her guidance from the initial to the final, which has helped me to gain a thorough understanding of this report project. It would be much harder to complete this report without her advice and assistance. I would also like to express my sincere thanks for the time spent correcting my errors.

Besides my advisor, I would like to say thank you to assistant engineers, Mr. Norhisham bin Abdul Malik, Mr. Janatul Hafiz bin Basir and Mr. Zulkifli Bin Jantan for their encouragement, guidance, advice and effort in assisting me using machines and facilities in laboratory. Many thanks to BMMP member group for their excellent cooperation and supports during this study. And not forget strictly thankful to my backbone which is my family, especially my mother and my father that always encourage and support me to success and never give up.

TABLE OF CONTENTS

	PAGE
DECLARATION	II
APPROVAL	III
ABSTRAK	IV
ABSTRACT	V
DEDICATIONS	VI
ACKNOWLEDGEMENT	VII
TABLE OF CONTENTS	VIII
LIST OF FIGURES	XI
LIST OF TABLES	XIII
LIST OF APPENDICES	XIV
LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE	XV

CHAPTER

1.IN	TRODUCTION	1
1.0	Introduction	1
1.1	Project Background	1
1.3	Problem Statement	2
1.4	Objective	3
1.5	Project Scope	3
2.LI	TERATURE REVIEW	4

2.0	Introduction	4
2.1	1 Turning Process	
2.2	Lathe Machine	5
2.3	Types Of Lathe Machine	6
2.3	.1 Bench Lathe	7
2.3	.2 Engine Lathe	7
2.3	.3 Turret Lathe	8

VIII

2.3.4	Special Purpose Lathe	9
2.4 7	Furning Cutting Tool	10
2.4.1	Standard Insert	11
2.4	.1.1 ANSI Insert Designations	11
2.4.2	Insert Shape	12
2.4.3	Corner of Insert	14
2.4.4	Type of Cutting Tool Insert	15
2.4.5	Angle of Cutting Tool Insert	17
2.4	.5.1 Rake Angle	17
2.5 7	Fool Holder and Tool Post	19
2.5.1	Holding Cutting Tools	20
2.5.2	Rocker-Type Toolholding	20
2.5	.2.1 Rocker-Type Tool Post	21
2.5.3	Quick-Change Tool Post	22
2.5	.3.1 Quick-Change Toolholder	23
2.5.4	Indexable Tool Posts	24
2.5.5	Type of Tool Holder	24
2.6 S	Standard Operation of Lathe	26
2.7 0	Grinding Machine	28
2.7.1	Bench Grinder	29
2.7.2	Jig Grinder	30
2.7.3	Cylindrical Grinder	30
2.7	.3.1 Outside Diameter (OD)	31
2.7	.3.2 Inside Diameter (ID)	32
2.7	.3.3 Centerless Grinding	32
2.8 F	Fabrication	33
2.8.1	Milling Machine	33
2.8.2	Drilling Machine	34
2.8.3	Material	35
2.8	.3.1 Mild Steel	35
2.8	.3.2 High Speed Steel	36
3.MET	HODOLOGY	37
3.0 I	ntroduction	37
3.1 F	Planning Process	37

IX

3.1.	1	Process Flow Diagram	38
3.2	Gan	tt Chart	39
3.3	Pha	se Project	40
3.3.	1	Phase 1 : Design a Concave and Radius Cutting Tool Jig Attachment	40
3.3.	.2	Phase 2 : Material Cutting Process	42
3.3.	.3	Phase 3 : Machining of Fabrication Projec	43
3	.3.3.1	1 Process Flow Manufactured	48
3.4 Pr	oces	s Methodology	49

4.RESULT AND DISCUSSION

4.0 Introduction	56
4.1 Fabrication Process Results	56
4.1.1 Part 1 Base Jig Attachment	57
4.1.2 Part 2 Cutting Tool Jig Body	59
4.1.3 Part 3 Cutting Tool Holder	61
4.1.3 Part 4 Additional or supporting part	62
4.1.4 Semi Assembly	64
4.2 Fully Assembly Part	65
4.3 Type of Screw	66
4.4 Result of Testing Perfomance	67

56

5.CONCLUSION	71
5.0 Introduction	71
5.1 Conclusion of the Result	71
5.2 The Achievement of Project	72
5.3 Problem Faced During Testing	72
5.4 Suggestion for Future Work	72

REFERENCES	73
APPENDICES	75

Х

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2. 1: Scher	natic depiction of turning operation	5
Figure 2. 2: Lathe	Machine	6
Figure 2. 3: Type	Lathe Machine	6
Figure 2. 4 :Turni	ng Cutting Tool	11
Figure 2. 5 : Tool	Bits Angle	17
Figure 2. 6 : Rake	Angle tool	18
Figure 2. 7 : Nega	tive and Positive Rake Cutting tool	19
Figure 2. 8 : Tool	holder and Tool Post	20
Figure 2. 9: Rocke	er-Type Toolholder	21
Figure 2. 10 : A R	cocker-Type Tool Post	22
Figure 2. 11 : Qui	ck Change Tool Post	23
Figure 2. 12 : Typ	e of Quick-Change Toolholder	23
Figure 2. 13 : Inde	exable Tool Post	24
Figure 2. 14 : Hor	izontal Spindle Surface Grinding	29
Figure 2. 15 : Ben	ich Grinder	29
Figure 2. 16 : Jig	Grinder	30
Figure 2. 17 : Cyl	indrical Grinding Machine	31
Figure 2. 18 : Out	side Diameter (OD)	31

Figure 2. 19: Inside Diameter (ID)	32
Figure 2. 20 : Centerless Grinding	33
Figure 2. 21 : Milling Operation	34
Figure 2. 22 : Drilling Operation	35

Figure 4. 1 : Part 1 Base Drawing	57
Figure 4. 2 : Part 1 Base	57
Figure 4. 3 : Part 2 Cutting Tool Jig Body Drawing	59
Figure 4. 4 : Part 2 Cutting Tool Jig Body	59
Figure 4. 5 : Part 3 Cutting Tool Holder	61
Figure 4. 6 : Part 3 Cutting Tool Holder	61
Figure 4.7: Additional and Supporting Part Drawing	62
Figure 4.8: Additional and Supporting Part	63
Figure 4. 9 : Semi Assembly	64
Figure 4. 10 : Fully Assembly	65
Figure 4. 11 : M6 Allen Key Screw	66
Figure 4. 12 : M10 Allen Key Screw	66
Figure 4. 13 : Aluminium Testing	67
Figure 4. 14 : Concave Shape Testing	67
Figure 4. 15 : Aluminium testing	68
Figure 4. 16 : Ball Shape Testing	68
Figure 4. 17 : Standard or Normal Jig Cutting Tool Setup	69
Figure 4. 18 : Ball and Concave Jig Cutting Tool	70

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2. 1 : ANSI		12
Table 2. 2:Type o	f Insert Shape	13
Table 2. 3 : The c	omparison between large and small nose angle	14
Table 2. 4: Corner	r insert radius	14
Table 2. 5: Tolere	nce of Insert	15
Table 2. 6: Type of	of insert hole shape and breaker	16
Table 2. 7 : Type	of Tool Holder	25
Table 2. 8 : Type	of Turning Operations	27
Table 2. 9 : Raw M	Material Required of Part Project	41
Table 2. 10 : Proje	ect Material Required	43
Table 2. 11 : Type	e of machined to be used	45
Table 2. 12 : Proc	ess Methodology	49
Table 2. 13 : Tabl	e Comparison Normal Jig Cutting Tool	69
Table 2. 14 : Tabl	e Comparison of Ball and Concave Jig Cutting Tool	70

XIII

LIST OF APPENDICES

APPE	ZNDIX	TITLE	PAGE
A	Gantt Chart		75
В	Part by Part Drawing		77
C	Testing		84
D	Fully assembly		87

XIV

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

HSS	High-Speed Steel
ANSI	American National Standards
OD	Outside Diameter
ID	Inside Diameter
EDM	Electrical Discharge Machining
RPM	Revolution Per Minute
PFD	Process Flow Diagram

CHAPTER 1

INTRODUCTION

1.0 Introduction

This chapter is about explanation of the introduction and the objective of the project. This chapter is important to know the background project before start the project fabrication. This chapter will cover the introduction, project background, problem statement, objective and project scope.

1.1 Project Background

This cutting tool jig is specializing to cut the ball and concave shape material of workpiece. Usually, it used the tool post of cutting tool to cutting face of the work piece and need skillful person to handle the tool post of cutting tool at the machine. In addition, this ball and concave jig attachment for lathe machine can reduce time to setting the angle of tool post. Virtually this cutting tool come up with the correct angle to perfectly cut the radius shape of work piece and to run the cutting tool with half automated jig.

This project is about to fabricate and produce the cutting tools to cut the workpiece into the radius shape. However, there are no specific cutting tool to cut the radius shape workpiece which before this usually the machinist using the tool post that is hard to setting the angle and cannot be moved to any way while in process. In order to make the specific turning cutting tools about to this project, it is also to design the cutting tool jig or holder. This is because the existing product, there is tool holder that clamp at tool post during machining. This new design has been made to get the accurate scale so that the workpiece cannot move or vibrate and easy to handle when machining process. The probability of making mistakes in the machining process is higher when used the tool post that manually to setting the angle of radius shape of workpiece and this project created to prevent mistake during machining process.

The other thing of software that will be used to design the tool is by using SOLID WORKS which is to design this product. This software can be used for designing and dimensioning of product. This software is very useful to create the design of this product and to help to manufactured the product.

1.3 Problem Statement

We know that cutting tool is used to cut or feed the raw material. Doing the setting angle of tool post t to make the concave or ball shape is easy. It will give the problem of time taken because the tool post jig might be problem to make movement on post jig. However, this operation still need to be perform to some application. That's why this cutting tool is design.

2

1.4 Objective

From the background and the problem statement that have been stated, the objectives of this project are:

1. To design the jig attachment of cutting tools for turning machine.

2. To fabricate jig attachment cutting tool easy to performed the cutting operation for radius shape on the turning workpiece

3. To be able to cut workpiece for half automated working by individually with this tools.

1.5 Project Scope

To achieve this project objective, a few design will be design and types of material will be used for doing this project. Some of machining are used as the process to made this project. Also the cutting tool of carbide are used as the cutting tool attach to the special jig tool. Other than that, the project of rate of feed, cutting tool, cutting speed and surface finishing will give guidelines for machinist.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter is about the literature review that an important thing which is to review the fundamental ideas from the research to focused the project. It is unavoidable to study on journal that relate to the project. To complete this project the knowledge is needed with the fact to sustain the project. This chapter consist about turning process, lathe machine, type of lathe, turning cutting tool, tool holder and tool post, standard operation of lathe, grinding machine and lastly is fabrication.

2.1 Turning Process

The process is removal the material to become a shape is produce from the turning process. The turning process is related with lathe machine that makes the material workpiece to become a shape applied with the cutting tool. The material of feed is depends on the rotating speed of workpiece (Krishna Madhavi, Sreeramulu and Venkatesh, 2017).

The turning process know as the process is using a single cutting tool related to the rotating workpiece and generated the chip. The result in a chip caused by cutting tool and the original surface of each other and can cause damage to the tool (Mia *et al.*, 2018).

The important thing in this turning process is the feed motion of cutting tool and the rotation of workpiece there is in the main movement of process. Cutting tool is process of

single cutting edge to material from work piece to become a cylindrical shape (Bar-Hen and Etsion, 2017).

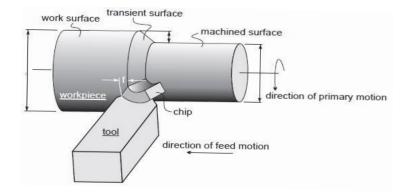


Figure 2. 1: Schematic depiction of turning operation

[Source:< http://nptel.ac.in/courses/112101005/downloads/Module_3_Lecture_5_final.pdf

>]

2.2 Lathe Machine

Lathe machines are often used to produce a result of a raw material on a cylindrical surface. The task is carried on the chuck attached to the head of machine or between the centers of tailstock and headstock of the lathe machine. The cutting tool is held up on the tool holder that place at compound rest. Compound rest are provides adjustable mounting fit for cutting tools. The workpiece is moved according to the speed on the dependent headstock on the speed panel (RPM). The cutting tool moved along with a straightforward direction to the workpiece with assistance carriage with cross slide and compound rest. The chip form removed from the workpiece is produced from the desired quantity of metal (Machine, n.d.).

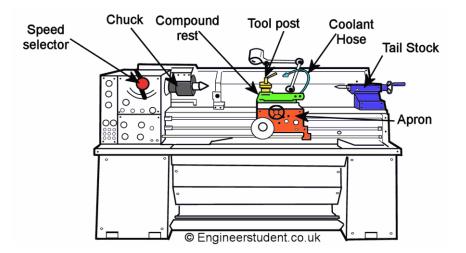


Figure 2. 2: Lathe Machine

[Source:< <u>http://www.engineerstudent.co.uk/Images/lathe_diagram_L.png</u>>]

2.3 Types Of Lathe Machine

There are various types of lathe machine that has been used in this technology world. The machine is classified based on the types of operation that have done on the workpiece. Besides that, material that used for shaped cylindrical also can influence the types of machine that want to be operation (Lathes, Lathes, Lathe, & Lathe, 2016).

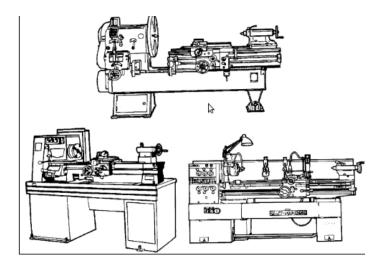


Figure 2. 3: Type Lathe Machine

[Source:< https://smithy.com/machining-handbook/chapter-3/page/18>]

6

2.3.1 Bench Lathe

The bench lathe is simple machine that built into a bench to reduce the material become a shape. This bench lathe is used for small and precision work. The bench lathe machine create to held the block at two point at the chuck and allow the user to produce the material to a new shape (Andrew Gellman, 2015).

Figure 2.3. 1: Bench Lathe Machine

[Source:< <u>https://www.garagejournal.com/forum/showthread.php?t=369002&showall=1</u>>]

2.3.2 Engine Lathe

The most typical types of lathe machine is engine lathe. This engine lathe available in various length. It is created for low power and high power operation. This engine lathe is normally seen in everywhere engineering shop. The length of this machine can be up to 60 feet and can operates at wide range of speed ratios. The types of material that can be machines is all various type (Andrew Gellman, 2015).

Figure 2.3. 2: Engine Lathe Machine

[Source:< <u>https://basicmechanicalengineering.com/types-of-lathe-machines/</u> >]

2.3.3 Turret Lathe

Turret machine is a best of quick operation machine. On the single structure the tool post mounted have a various type tool post. On this machine has been provided several tools, so the task can be completed faster and assisted by a single setup. The position of next tool is used based on capstan wheel. Without moving the workpiece by using turret lathe in sequential machining process and this will eliminates the error.