

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EXPERIMENTAL STUDY ON THERMAL EFFECT USING SUNSHADES IN VEHICLE PASSENGER COMPARTMENT

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive) with Honours.

by

ADAM DANIEL BIN EDDY BARKLEY FATANI B071610538 970321-14-5487

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING

TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: EXPERIMENTAL STUDY ON THERMAL EFFECT USING SUNSHADES IN VEHICLE PASSENGER COMPARTMENT

Sesi Pengajian: 2019

Saya **ADAM DANIEL BIN EDDY BARKLEY FATANI** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

 Mengandungi maklumat yang berdarjah keselamatan atau
SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD

Yang benar,

Disahkan oleh penyelia:

............ADAM DANIEL BIN EDDY BARKLEYTs. Dr. MOHD ZAKARIA BINFATANIMOHAMMAD NASIRAlamat Tetap:Cop Rasmi PenyeliaLot 3477, Kg Sg Bunga,T1750 Lenggeng,Negeri SembilanSembilan

Tarikh:

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled EXPERIMENTAL STUDY ON THERMAL EFFECT USING SUNSHADES IN VEHICLE PASSENGER COMPARTMENT is the results of my own research except as cited in references.

Signature:	
Author:	ADAM DANIEL BIN EDDY BARKLEY
	FATANI

Date:

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology with Honours. The member of the supervisory is as follow:

Signature:

Supervisor : Ts. Dr. MOHD ZAKARIA BIN MOHAMMAD NASIR

ABSTRACT

In vehicles that are parked, no ventilation or air conditioning, if a vehicle is exposed to direct solar radiation, an immediate temperature rise occurs. The high cabin air temperature can threaten children and animals that are left unattended in vehicles. In Malaysia, 22 cases of heatstroke (hot red or flushed dry skin, nausea or vomiting, coma) include two deaths reported as a result of heatstroke. In addition, temperaturesensitive goods (e.g. drugs in ambulances and veterinary vehicles) can be adversely affected by high temperatures.

From this project, the objective of this paper is to determine the method in reducing the car interior temperature. The method was experimentally studied by using sunshades. There are two tests on sunshades application; outside and inside windshield. A 1.6 national sedan car was used in this study where it was exposed to direct sunlight for a period of 8 hours for two different orientations; south and east. The temperatures measured by thermocouple type K strategically located within the car were obtained and analyzed. From the analysis and observation, the usage of sunshades outside the windshields is the best in reducing both windshields, dashboard, steering wheel and rear deck temperature. The sunshade has blocked most of the solar radiation from hitting the windshields, causing the windshields, dashboard, steering wheel and rear deck absorbed less heat and give better comfort to the driver when entering the vehicle.

ABSTRAK

Di dalam kenderaan yang diletakkan, tiada pengudaraan atau penyaman udara, jika kenderaan terdedah kepada sinaran suria secara langsung tanpa berteduh, kenaikan suhu segera akan berlaku. Suhu udara kabin kenderaan yang tinggi boleh mengancam anak-anak dan haiwan peliharaan jika ditinggalkan tanpa pengawasan. Di Malaysia, 22 kes strok haba (kulit panas merah atau kering kering, mual atau muntah, koma) termasuk dua kematian yang dilaporkan akibat stroke haba. Di samping itu, barangan sensitif suhu (misalnya ubat dalam ambulans dan kenderaan veterinar) boleh terjejas oleh suhu tinggi.

Dari projek ini, objektif kertas ini adalah untuk menentukan kaedah mengurangkan suhu dalaman kereta. Kaedah ini dikaji secara eksperimen dengan menggunakan pelindung matahari. Terdapat dua ujian pada aplikasi pelindung matahari; di luar dan dalam cermin depan serta belakang. Kereta 1.6 sedan nasional digunakan dalam kajian ini di mana ia terdedah kepada cahaya matahari langsung tanpa berteduh selama 8 jam untuk dua orientasi yang berbeza; selatan dan timur. Suhu yang diukur dengan jenis thermocouple K yang terletak di dalam kereta strategik yang diperolehi akan dianalisis. Dari analisis dan pemerhatian, penggunaan pelindung matahari di luar cermin depan dan belakang adalah yang terbaik dalam mengurangkan kedua-dua cermin depan dan belakang, papan pemuka, stereng dan suhu dek belakang. Pelindung matahari telah menyekat kebanyakan sinaran matahari daripada memasuki kaca depan dan belakang menyerap kurang haba dan memberi keselesaan lebih baik kepada pemandu semasa memasuki kenderaan.

DEDICATION

To my beloved father and mother,

Eddy Barkley Fatani Bin Zakaria and Siti Hawa Binti Haji Minhat

The reasons for what I become today,

Thank you for all your great supports, sacrifices, patience for me.

To my honored supervisor,

Ts. Dr. Mohd Zakaria Bin Mohammad Nasir

and all UTem's lecturers and staff,

Thank you for always giving me guidance and persistence help to complete

this project thesis.

C Universiti Teknikal Malaysia Melaka

ACKNOWLEDGEMENT

All praise belongs to ALLAH (SWT). Without the health, strength, and perseverance He gave, I would not be able to complete this project thesis. I have taken efforts in this project and spend time wisely to complete this thesis. However, it would have not been possible without the kind support and help of many individuals. In particular, I want to thank anyone that contributed to my project thesis. They have encouraged me and giving full thought during this project process. First, I would like to express the deepest appreciation to my supervisor, Ts. Dr. Mohd Zakaria Bin Mohammad Nasir for his patience and endless supports that continually teaching me throughout my project. He gave me a proper suggestion and constant supervision as well as providing information regarding the project thesis. Without his guidance and persistence help, this project would not complete successfully. Besides that, he introduced me to this project, and he gave me a brilliant idea and thought about the project. He also provides me an opportunity to cooperate with him on studying and researching a project. By spending his valuable time, he shared his knowledge with his full attention in carrying out this project thesis. I also want to express my gratitude towards my beloved parents and families for their kind motivation to go through all the hard works and they gave me their support and positiveness while carrying out this project. In addition, I am very grateful for those who are giving me basic information and ideas for the thesis. My big appreciation also goes to the people who are directly and indirectly helped me in developing this project thesis. Once again, thank you so much for all my supporters.

TABLE OF CONTENTS

	PAGE
DECLARATION	i
APPROVAL	ii
ABSTRACT	iii
ABSTRAK	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF GRAPHS	xvi
LIST OF APPENDICES	xviii
CHAPTER 1	1
1.0 Purpose	1
1.1 Background	1
1.2 Problem statement	2
1.3 Objective	4
1.4 Scope	4
CHAPTER 2	5

2.0 Int	roduction	5
2.1 He	at Transfer	6
2.1.1	Conduction	6
2.1.2	Convection	7
2.1.3	Radiation	10
2.2 Cl	imate Temperature in Malacca	12
2.2.1	Malacca Average Temperature by Month	12
2.3 Th	ermal Comfort	13
2.3.1	Overview	13
2.3.2	Factors that affect the thermal comfort indoors in the vehicle	14
2.3.2	.1 Air Temperature	14
2.3.2	.2 Radiant Temperature	15
2.3.2	.3 Air Velocity	16
2.3.2	.4 Humidity	17
2.3.2	.5 Human Metabolic Heat	18
2.3.2	.6 Clothing Insulation	19
2.4 Th	ermocouple	20
2.4.1	Туре К	20
2.5 Th	ermocouple Data Logger TC-08	21
2.5.1	Overview	21
2.5.2	Specification	23

viii

2.5.3 Picolog 6 Software	23
CHAPTER 3	24
3.0 Background	24
3.1 Flow Chart	25
3.2 Feasibility Study	26
3.3 Literature Review	26
3.4 Theory comparison for thermal effect	26
3.5 Benchmark Data	28
3.6 Sunshades Selection	28
3.7 Testing with conditions	30
3.8 Data Collection	30
3.9 Analysis of the Data	32
3.10 Experiment Discussion	32
CHAPTER 4	33
4.0 Introduction	33
4.1 Experiment Process	33
4.1.1 Thermocouple Calibration and Setup	33
4.1.2 Software Setup	39
4.1.3 Experimental Setup	43
4.1.3.1 Vehicle selection	43
4.1.3.2 Experiment Area and Vehicle Orientation	43

4.1.3.3	Experiment Period and Time	44
4.1.3.4	Equipment and Measurement	45
4.2 Temp	erature Data at different location	48
4.2.1 S	teering Wheel	48
4.2.2 F	Front Windshield	51
4.2.3 F	Front Dashboard	54
4.2.4 D	Driver Seat	57
4.2.5 C	Co-Driver Seat	60
4.2.6 R	ear Middle Seat	63
4.2.7 R	lear Left Seat	66
4.2.8 R	Rear Right Seat	69
4.2.9 F	Front Bottom Seat	72
4.2.10 R	Rear Bottom Seat	75
4.2.11 Ir	nside Roof	78
4.2.12 R	Rear Deck	81
4.2.13 R	Rear Windshield	84
4.3 Maxir	num Temperature	87
4.4 Reduc	ction in Temperature Using Sunshades	89
4.5 Result	t Summary	91
CHAPTER 5		92
5.0 Introd	luction	92

APPEN	DICES	97
REFERENCES		94
5.2	Recommendation	93
5.1	Conclusion	92

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2. 1:	Average temperature data by months for every year on Malacca	12
Table 2. 2:	The values for inside temperature and air humidity in correlation w	vith the
outside ten	nperature	17
Table 2. 3:	The estimated metabolic rate for the primary activity	18
Table 2. 4:	Clothing levels and insulation range	19
Table 2. 5:	Thermocouple Data Logger TC-08 Specification	23
Table 3. 1:	The sample table for benchmark data	31
Table 3. 2:	The sample table for experiment data	32
Table 4. 1:	Table for comparison between benchmark and sunshade temperature	re data
on steering	g wheel	48
Table 4. 2:	Table for comparison between benchmark and sunshade temperature	re data
on the from	it windshield	51
Table 4. 3:	Table for comparison between benchmark and sunshade temperature	re data
on the from	it dashboard	54
Table 4. 4:	Table for comparison between benchmark and sunshade temperature	re data
on the driv	er seat	57
Table 4. 5:	Table for comparison between benchmark and sunshade temperature	re data
on the co-c	lriver seat	60

xii

Table 4. 6: Table for comparison between benchmark and sunshade temperature d	lata
on the rear middle seat	63
Table 4. 7: Table for comparison between benchmark and sunshade temperature d	lata
on the rear left seat	66
Table 4. 8: Table for comparison between benchmark and sunshade temperature d	lata
on the rear right seat	69
Table 4. 9: Table for comparison between benchmark and sunshade temperature d	lata
on the front bottom seat	72
Table 4. 10: Table for comparison between benchmark and sunshade temperature	
data on the rear bottom seat	75
Table 4. 11: Table for comparison between benchmark and sunshade temperature	
data on the inside roof	78
Table 4. 12: Table for comparison between benchmark and sunshade temperature	
data on the rear deck	81
Table 4. 13: Table for comparison between benchmark and sunshade temperature	
data on the rear windshield	84

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 1. 1: Global warming on Earth	2
Figure 2. 1: Heat conduction process between two regions	6
Figure 2. 2: Heat convection in a house	8
Figure 2. 3: Natural convection in the fluid	9
Figure 2. 4: Radiation process between the Sun and the Earth	10
Figure 2. 5: Spectrum of solar radiation to the Earth	11
Figure 2. 6: Thermocouple Type K	21
Figure 2. 7: Thermocouple Data Logger TC-08	22
Figure 3. 1: Aluminium look-alike sunshade	29
Figure 3. 2: Black and dark sunshade	30
Figure 3. 3: Thermocouple placement	31
Figure 4. 1: Thermocouple type K soaked in a bowl of ice	33
Figure 4. 2: Thermocouple place at front seats	34
Figure 4. 3: Thermocouple place at rear seat	34
Figure 4. 4: Thermocouple place at the front bottom seat	35
Figure 4. 5: Thermocouple place at the rear bottom seat	35
Figure 4. 6: Thermocouple place at front dashboard and windshield	36
Figure 4. 7: Thermocouple place at rear deck and rear windshield	36

Figure 4. 8: Thermocouple place at the top of the vehicle compartment roof	37
Figure 4. 9: Thermocouple place at the center of the steering wheel	37
Figure 4. 10: Thermocouple place at the outside of the car (Ambient temperature)	38
Figure 4. 11: Thermocouple connected to the data logger socket	39
Figure 4. 12: Data loggers connect to the laptop via USB connection	39
Figure 4. 13: Channel Setting	40
Figure 4. 14: Data table configuration	41
Figure 4. 15: Capture Setting	41
Figure 4. 16: Data Export	42
Figure 4. 17: Proton Persona	43
Figure 4. 18: East position	44
Figure 4. 19: South position	44
Figure 4. 20: Thermocouple Type K used	45
Figure 4. 21: Thermocouple Data Logger TC-08	46
Figure 4. 22: Side window sunshades	46
Figure 4. 23: Windshield sunshade inside the vehicle for east orientation	47
Figure 4. 24: Windshield sunshade outside the vehicle for south orientation	47

XV

LIST OF GRAPHS

GRAPH TITLE PA	AGE
Graph 4. 1: Comparison between benchmark and sunshade temperature data on	the
steering wheel	49
Graph 4. 2: Comparison between benchmark and sunshade temperature data on	the
front windshield	52
Graph 4. 3: Comparison between benchmark and sunshade temperature data on	the
front dashboard	55
Graph 4. 4: Comparison between benchmark and sunshade temperature data on	the
driver seat	58
Graph 4. 5: Comparison between benchmark and sunshade temperature data on	the
co-driver seat	61
Graph 4. 6: Comparison between benchmark and sunshade temperature data on	the
rear middle seat	64
Graph 4. 7: Comparison between benchmark and sunshade temperature data on	the
rear left seat	67
Graph 4. 8: Comparison between benchmark and sunshade temperature data on	the
rear right seat	70
Graph 4. 9: Comparison between benchmark and sunshade temperature data on	the
front bottom seat	73
Graph 4. 10 Comparison between benchmark and sunshade temperature data on	the
rear bottom seat	76
Graph 4. 11: Comparison between benchmark and sunshade temperature data or	1 the
inside roof	79

xvi

Graph 4. 12: Comparison between benchmark and sunshade temperature data or	n the
rear deck	82
Graph 4. 13: Comparison between benchmark and sunshade temperature data or	n the
rear windshield	85
Graph 4. 14: Maximum Temperature at East position	87
Graph 4. 15: Maximum Temperature at South position	88
Graph 4. 16: Reduction in Temperature using sunshades at East position	89
Graph 4. 17: Reduction in Temperature using sunshades at South position	90

xvii

LIST OF APPENDICES

APPENDIX TITLE	PAGE
Appendix 1: Benchmark East Data Table	97
Appendix 2: Benchmark East Graph	98
Appendix 3: Sunshade East Data Table	99
Appendix 4: Sunshade East Graph	100
Appendix 5: Benchmark South Data Table	101
Appendix 6: Benchmark South Graph	102
Appendix 7: Sunshade South Data Table	103
Appendix 8: Sunshade South Graph	104

xviii

CHAPTER 1

INTRODUCTION

1.0 Purpose

This chapter will discuss background information, problem statement, objective, scope, and the significance of the study on the topic of this report. The purpose of this report is to experiment and study on thermal effect using sunshades in the vehicle passenger compartment.

1.1 Background

Climate change has already been named the most pressing environmental difficulties that the world will face within the 21st century. The increases in the global average ocean and air temperature, widespread melting of snow and ice, and rising global average sea level during the 20th century have been shown and observed in collected data. (dan Keragaman et al., 2012). For our country, Malaysia is in the equatorial region and has a tropical rainforest climate. The average temperature of 27°C with high humidity and temperature can be risen to and above 30°C during the day every year. Every vehicle user is uncomfortable with this hot burning weather because it boils up their vehicle when parked outside.

1.2 Problem statement

In the millennium world, pollution on the environment caused by humans' actions has gotten worst day by day. Their vigorous action may lead to the destruction of the surrounding ecosystem. For the effect of pollution, global warming increases gradually by year, and it is affecting the human environment and ecology.

Figure 1. 1: Global warming on Earth

Most people prefer cheap and low-cost parking area, or they are unable to find any indoor parking, they will be looking for outdoor parking space. It will cause the heat rising on the vehicle when parked on the open parking lot especially when the sun strikes directly on the vehicle. The central part of the vehicle can quickly rise to 80°C, and these heat accumulations will cause distressing sensation to the driver and passenger while entering the car. (M. A. Jasni and F. M. Nasir, 2012). Various modes of heat transfer, such as conduction, convection, and radiation, are the main factors of the stooping temperature rise of the vehicle. (G. K. Jaiswal, M. Gandhu, S. Phalgaaonkar, H. Upadhyay, A. Agrawal, V. Rajamohan and K. Ganesan, 2012). All the car equipment and parts will absorb all the solar radiation and will heat the car. Thus, it will make it impossible to cool down within a short period. For the first 10 minutes, the boiling temperature will cause most of the car passenger sweaty and feel very uncomfortable until the car cabin starts to cool down.

As a result, they must run the air-conditioning before starting their journey. Until now, every vehicle owner, especially in Malaysia, is facing this issue where the temperature is too hot for their car under the scorching sun. Many have come up with solutions such as air-conditioning, sunshades, solar-powered ventilator, and installation of window tint or solar reflective film to reduce the risk of heat accumulated in the car cabin. (M. A. Jasni and F. M. Nasir, 2012).