

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TO STUDY THE HEAT INSULATION FROM ENGINE TOWARD BUS INTERIOR

This report submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology (Automotive Technology) (Hons.)

By

MUHAMMAD AFIQ BIN ABDUL RAZAK B071511099 920523-01-5757

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: TO STUDY THE HEAT INSULATION FROM ENGINE TOWARD BUS INTERIOR

SESI PENGAJIAN: 2019/2020 SEMESTER 1

TIDAK TERHAD

Saya MUHAMMAD AFIQ BIN ABDUL RAZAK

mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
 - 4. **Sila tandakan (✓)
 SULIT
 (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam
 AKTA RAHSIA RASMI 1972)
 (Mengandungi maklumat TERHAD yang telah ditentukan oleh

IAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh

Alamat Tetap:

Cop Rasmi:

No 52, Jalan Setia 6/20,

Taman Setia Indah,

81100 Johor Bahru, Johor

** Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this thesis entitled "To Study the Heat Insulation from Engine toward Bus Interior" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:
Name	: Muhammad Afiq bin Abdul Razak
Date	:

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor Degree of Mechanical Engineering Technology (Automotive Technology) (Hons.).

Signature	:
Supervisor Name	: Ir.Mazlan bin Ahmad Mansor
Date	

ABSTRACT

In this study, a heat insulation which is polyurethane foam was constructed using by a 3D modelling software which is Catia software. The overall temperature at the surface of exterior and interior thermal insulation was taken at each segment with ambient temperature was recorded. The properties of air such as coefficient and conductivity used as the medium of fluid for heat transfer. By finding the related literatures regarding heat transfer development, the author catch some useful information regarding the enhancement of the design of the surface polyure than foam as a heat resistance. The previous articles show the thickness give a good heat transfer resistance and effectiveness of the heat exchanger. The author would use this idea which is the thickness surface in order to design polyurethane foam insulation and then analyses the heat transfer profile using an Altair Hyperwork simulation software. The result and finding is then discussed and compared with the normal polyurethane foam insulation. The highest temperature at the final parameter after upgraded the surface with additional 20mm thickness at the middle of the insulation foam is 316.3K which is reduced by the 1.3 K between before and after. The highest temperature at the interior area of segment 4 is 315.7K while for the final parameter after upgraded is 314.2K where after the upgraded there is 1.5K decrease in temperature. The 20mm is the minimum thickness for the maximum reduction of the temperature located at the middle due to the heated area take place.

DEDICATION

Dedication to my father, Abdul Razak bin Abdul Kadir and my mother, Samsiah Bte Othman. To my supervisor, Ir. Mazlan bin Ahmad Mansor, lecture and friends for all of their help and friendship.

ACKNOWLEDGEMENT

First of all, I express my deepest thanks and gratitude's to Allah S.W.T who give me the strength and spirit to finish the duration of my final year project. I have completed this project even though there are many difficulty and hardship along the way.

I would like to express my appreciation and deep respect to my supervisor, Ir. Mazlan bin Ahmad Mansor for the guidance and encouraged during finishing this project. Not to forget, my lecturer Mr. Saiful Naim bin Sulaiman for teach and guidance to perform the simulation process.

Thanks to my family, especially my father and mother who has been the loveliest advisor to give support and inspiration through my life as student. Their support are meant so much to me to complete this project. Last but not least, thanks to everyone who involved direct and indirectly in this project. Without them, this PSM report will not completed.

TABLE OF CONTENT

DECLARATION	i
APPROVAL	ii
ABSTRACT	iii
DEDICATION	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF FIGURE	x
LIST OF TABLE	xiii
LIST OF EQUATION	xiv
CHAPTER 1	1
1.1 Background Of The Project	1
1.2 Problem Statement	2
1.3 Objective	2
1.4 Scope Of Work	3

vi

CHAPTER 2

CHAPTER 2	4
2.1 Thermal Insulation	4
2.1.1 Conduction	4
2.1.2 Convection	5
2.1.3 Radiation	6
2.2 Vehicle Thermal Insulation	7
2.3 Body Panel Thermal Insulation	7
2.3.1 Polyethylene/Polyester Insulator	9
2.3.2 Aluminium Foil	10
2.3.3 Carbon Fibre Based	11
2.3.4 Phase Change Material (PCM) Insulation	12
2.4 Thermal Insulation Of Synthetic Material	14
2.4.1 Polyurethane (PU)	14
2.4.2 Isocyanate	15
2.4.3 Polyols	17
2.4.4 Additives	18
2.4.5 Expanded Polystyrene (EPS)	19
2.4.6 Mineral Wool	20
2.4.7 Glass Wool	20
2.4.8 Rock Wool	22
2.5 Thermal Insulation Of Composite Materials	22
2.5.1 Composite	22
2.5.2 Synthetic Fiber-Reinforced Composite	24
2.5.3 Composite	27

2.5.3.1 Short Fibre Reinforced Composites	27
2.5.3.2 Continuous Fibre Reinforced Composites	27
2.5.4 Properties Of Natural Fibres	28
2.5.5 Coir Fibre	28
2.5.6 Jute Fibre	29
CHAPTER 3	30
3.1 Overall Process	30
3.2 Project Flow Chart	31
3.3 Parameter Description	32
3.4 Measurement Procedure	33
3.4.1 Thermometer Temperature Gun Infrared Gun Laser	33
3.4.2 Thermocouple	34
3.4.3 Measuring Tape	35
3.5 Experimental Procedure	36
3.6 Hyperwork	38
3.6.1 Modelling / Pre – Processing	38
3.6.2 Catia Design Dimension	40
3.6.3 Meshing	42
3.6.4 Material Properties	42
3.6.5 Properties	44
3.6.6 Load Collector	44
3.6.7 Constraint	45
3.6.8 Interfaces	46
3.6.9 Load Step	46

viii

3.7 Optistruct Analysis	47
3.8 Post Processing	48
CHAPTER 4	49
4.1 Thermal Analysis	49
4.2 Experimental Data	50
4.2.1 Exterior Temperature	50
4.3 Contour Plot Grid Temperature	57
4.3.1 Grid Temperature Stage 1	57
4.3.2 Grid Temperature Stage 2	60
4.3.3 Grid Temperature Stage 3	62
4.3.4 Grid Temperature Stage 4	64
4.4 Final Parameter	66
4.4.1 Cad Design	66
4.4.2 Temperature Analysis	68
CHAPTER 5	70
REFFERENCE	72

LIST OF FIGURE

FIGURE TITLE		PAGE
Figure 2.1 :Temperature	Distributed Under Sun Exposure	8
Figure 2.2 : Polyurethane	Foam	9
Figure 2.3 : Thermal and	Noise Insulation	9
Figure 2.4 : Nissan Leaf	Thermal Insulation Innovation	11
Figure 2.5 : Carbon Fibre	Based	11
Figure 2.6 : Temperature	Variation vs Time	13
Figure 2.7 : The Schemat	ic of Urethane Group	14
Figure 2.8: The Schemati	c of Polyurethane Group	14
Figure 2.9 : Classification	n Forms of Polyurethane	15
Figure 2.10: Resonance i	n Isocyanate	16
Figure 2.11: Resonance i	n Aromatic Isocyanate	16
Figure 2.12: Glass Wool	Manufacturing Process	21
Figure 2.13: Composite N	Material Classification	24
Figure 2.14: Representati	on of Reinforcement from Polymer Composite	26
Figure 2.15: Short Fibre	Reinforced Composite	27
Figure 2.16: Continuous	Fibre Reinforced Composites.	28
Figure 3.1: Flow Chart of	f Methodology	31
Figure 3.2: PU Foam Loc	cation	32

Figure 3.2: PU Foam Location

Figure 3.3: Thermometer Temperature Infrared Gun Laser Device	33
Figure 3.4 : Multi Meter Attached With Thermocouple	34
Figure 3.5: Measuring Tape	35
Figure 3.6: Exterior below Seat	36
Figure 3.7: Interior below Seat	36
Figure 3.8 : Exterior behind Seat	36
Figure 3.9 : Interior behind Seat	37
Figure 3.10: Front View of PU Foam	38
Figure 3.11: Rear View of PU Foam	39
Figure 3.12: Side View of PU Foam	39
Figure 3.13: Polyurethane Foam	40
Figure 3.14: Material Applied At Optistruct	43
Figure 3.15: Properties of The Product	44
Figure 3.16: Load Collector Applied To Each Nodes	45
Figure 3.17: Constrain Applied To Surface	45
Figure 3.18: Interface Applied To Inner Surface	46
Figure 3.19 : Load Step Set Up	47
Figure 3.20: Example Post Processing Result	48
Figure 4.1 : Contour Plot Stage 1 Exterior Surface	57
Figure 4.2: Contour Plot Stage 1 Interior Surface	59
Figure 4.3: Contour Plot Stage 2 Exterior Surface	60
Figure 4.4: Contour Plot Stage 2 Interior Surface	61
Figure 4.5: Contour Plot Stage 3 Exterior Surface	62
Figure 4.6: Contour Plot Stage 3 Interior Surface	63
Figure 4.7: Contour Plot Stage 4 Exterior Surface	64

Figure 4.8: Contour Plot Stage 4 Interior Surface	65
Figure 4.9: Front View of Polyurethane Foam	67
Figure 4.10: Rear View of Polyurethane Foam	67
Figure 4.11: Side View of Polyurethane Foam	67
Figure 4.12: Contour Plot Final Parameter Exterior Surface	68
Figure 4.13: Contour Plot Final Parameter Interior Surface	69

LIST OF TABLE

TABLE TITLE

PAGE

Table 2.1: Heat Transfer Coefficient	6
Table 3.1: Table For Exterior And Interior Below Seat Location	36
Table 3.2: Table For External And Internal Behind Seat Location	37
Table 3.3: Dimension Of Insulation Foam	40
Table 3.4: Material Properties Of Material	43
Table 4.1: Table Of Data On Exterior Surface Below Seat	51
Table 4.2: Table Of Data On Exterior Surface Behind Seat	51
Table 4.3: Table Of Data On Exterior Surface Below Seat	52
Table 4.4: Table Of Data On Exterior Surface Behind Seat	52
Table 4.5: Table Of Data On Exterior Surface Below Seat	53
Table 4.6: Table Of Data On Exterior Surface Behind Seat	54
Table 4.7: Table Of Data On Exterior Surface Below Seat	54
Table 4.8: Table Of Data On Exterior Surface Behind Seat	55

xiii

LIST OF EQUATION

EQUATION TITLE	PAGE
Equation 1.1 : Rate Of Heat Conduction	1
Equation 2.1 : Heat Flux Of Condution	5
Equation 2.2 : Heat Flux Of Convection	5
Equation 2.3 : Heat Flux Of Radiation	6

xiv

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF THE PROJECT

Public transport nowadays are playing a very important role toward a person, especially busses or coach where someone can go to their destination no matter the journey is near or far. Busses and coaches is one of the inexpensive public transportation in this country Malaysia especially where the living cost are getting higher nowadays and people are tend to use this transportation services in order to survive. When using the public transport, the main thing that need to be concern as a user is a passenger comfort that will increase the customer satisfaction while using the service. One of the way to increasing the customer satisfaction is controlling the heat, noise, vibration, and harshness that contribute to unpleasant comfort while travelling.

Thermal insulation is a method to slow down the rate of the heat transfer by prevent it from undesirable heat transfer to the surrounding through three method such as heat conduction, heat convection and heat radiation process. The rate of thermal conduction through a layer is proportional to the temperature difference of the layer time's heat transfer area, but it is inversely proportional to the thickness of the layer.

Rate of heat conduction =
$$\frac{(area)(temperature difference)}{Thickness}$$
 Equation 1.1

Thermal insulation work to maintain the temperature in space by delaying the heat transfer.

Commercial thermal insulation structure that are used in bus or coach are commonly made from synthetic material such as polyurethane (PU) foams, fiberglass, mineral wool and expanded polystyrene (EPS). This is because the physical properties of these material is good such as low thermal conductivity, good moisture protection and fire resistance.

1.2 PROBLEM STATEMENT

Pioneer coachbuilders Sdn Bhd is a company that design a bus for their client. Its design from interior to exterior of the bus including the engine bay area. Polyurethane (PU) foams are commonly used as a thermal insulation at the rear seat / firewall insulation. Senior engineer of the company state that these material are not very effective as an insulation and want research to prove that these material can be used optimum.

The main purpose of this project is to analyse the heat area inside the engine bay that affected to the interior of the bus and design the thermal insulation dimension at optimum level.

1.3 OBJECTIVE

The aim of this study are

- To build a simulation of the heat from engine bay at the external surface area of the polyurethane foam to measure the heat at the interior surface area of the polyurethane foam.
- To design optimum thermal insulation dimension to reduce heat from engine toward bus interior based on simulation.

1.4 SCOPE OF WORK

The scope of this study are

- i. To study of heat behavior of thermal insulation of polyurethane foam toward interior by using Altair Hyperwork and experimental data.
- ii. Optimize the design of insulation dimension.

CHAPTER 2

LITERATURE REVIEW

2.1 THERMAL INSULATION

Thermal insulation is a phase which helps to slow down the rate of heat transfer by controlling the 3 process of heat transfer which is heat conduction, heat convection, and heat radiation. By using thermal insulation it help maintain the temperature at the certain area by delaying the process of the heat transfer. Thermal insulation play a very important role that contribute to reducing energy consumption of air conditioning usage in order to maintain the temperature inside the cabin.

2.1.1 CONDUCTION

Conduction is a molecules which moving in a group where the molecules is vibrating with more energy causing increasing of temperature and interact with the nearby molecules with slow moving and the kinetic energy is transferred. The direct transfer is continues in a shape until the kinetic vibrational energy is consistently distributed. Where

- q = heat flux (W/m^2)
- k = thermal conductivity (W/(m.K))

L = length(m)

$$T = temperature (K)$$

The heat flux depends on the thermal conductivity and the temperature difference. As shown in the equation 2.1 it is define that heat flux with the respect to the thermal conductivity and the temperature difference.

2.1.2 CONVECTION

Convection is a molecules of thermal energy transferred to the different location (e.g., the flow of the gas fluid). The convection is when the energy flow is taken place. As an example of the gas flowing from a warmer body and transferred via convection to the colder body somewhere else.

$$q = h. \Delta T$$
 Equation 2.2

Where

- q = heat flux (W/m^2)
- h = heat transfer coefficient
- T = temperature (K)

Heat flux is the rate of heat energy that passes through a surface. As shown in the equation 2.2 the equation defines heat flux with respect to the temperature difference and the thermal transfer coefficient.

Medium	Convection	Heat transfer coefficient <i>W</i> /(<i>m</i> ² <i>K</i>)
Air	Natural convection	1 - 10
Air	Forced	25 - 100
Water	Forced, laminar	500 - 1000
Water	Forced, turbulent	2000 - 10000

 Table 2.1: Heat Transfer Coefficient

The heat transfer coefficient is depends on the situation based on the table 2.1 above depends on the convection applied to medium.

2.1.3 RADIATION

Radiation is a process where the transmission of an energy in form of the particles or waves by space or medium such as material. An example of radiation is a microwaves, infrared and gamma radiation.

$$q = A \sigma T^4$$
 Equation 2.3

Where

q

= radiation heat flux (W/m^2)

6

A = area

- σ = Stefan Boltzmann constant 5.67x10⁻⁸ (W/m².K⁴)
- T^4 = strong scaling with temperature 4th power

The Stefan-Boltzmann law of thermal radiation state that the rate of radiation energy from the surface per unit area is proportional to the fourth power of the temperature body. (D. Davood, 2018)

2.2 VEHICLE THERMAL INSULATION

Based on the principle of the heat transfer between an object in heat contact, the exposed part of the upper side such as window, roof, and body panel will absorb many of the energy from the sun which is sun load. This situation directly increase the internal temperature of the interior vehicle since there is no barrier between the body part and the interior air.

If there is thermal insulation are putted between the interior and exterior of the vehicle, it will help in order to reduce the heat transfer with decrease in thermal conduction between interior and exterior of vehicle.

2.3 BODY PANEL THERMAL INSULATION

Upper side of the vehicle which is roof is horizontal positioned part of almost every vehicle, it absorbs the most load from the direct sun load. Normally vehicle roof is actually made of sheet of sheet metal which is heated from the sun with sun radiation over 1000W/m²

when the vehicle is park at outside summer days. Based on the experiment of Purusothaman et al. (2017), the amount of heat energy absorbed from the roof varies between 20 and 95%.

Figure 2.1 : Temperature Distributed Under Sun Exposure

As shown as the figure 2.1 above basically the highest air temperature are often present near the roof (ceiling) this is because the hot air will go upside of the area and cold air will stay at low side because of hot air are lighter than cold air.

There is efficient thermal insulation product such as polyurethane (PU), polystyrene and polystyrol are widely used at warehouse, building, ship and etc. These product are basically low cost and high efficiency that make them relatively to the market and competitive. As the thickness of the product thicker it will give better insulation.