

FORMATION OF TITANIUM DIOXIDE NANOTUBES VIA TWO-STEP ANODIZATION

Submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Hons.)

by

FATIN NUR SYAHIRAH BINTI FADHIL

B051510116

960220-08-5690

FACULTY OF MANUFACTURING ENGINEERING 2019

 \bigcirc Universiti Teknikal Malaysia Melaka

UTEM اونيورسيتي تيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: FORMATION OF TITANIUM DIOXIDE NANOTUBES VIA TWO STEP ANODIZATION

Sesi Pengajian: 2018/2019 Semester 2

Saya FATIN NUR SYAHIRAH BINTI FADHIL (960220-08-5690)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap:

Cop Rasmi:

Tarikh: _____

Tarikh: _____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Formation of Titanium Dioxide Nanotubes via Two-Step Anodization" is the result of my own research except as cited in references.

Signature	:
Author's Name	: FATIN NUR SYAHIRAH BINTI FADHIL
Date	: 1 June 2019

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

.....

(DR SYAHRIZA BINTI ISMAIL)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Tiub nano TiO₂ dihasilkan pada foil titanium melalui proses anodisasi. Dalam usaha untuk meningkatkan sifat tiub nano titania yang dihasilkan tersebut, proses anodisasi dua langkah telah dijalankan. Beberapa kayu ukur telah disiasat yang merangkumi kesan masa anodisasi dan voltan anodisasi pada sifat morfologi dan struktur tiub nano titanium dioksida yamg dihasilkan melalui proses anodisasi dua langkah. Kerajang titanium telah terlebih dahulu dibersihkan dan kemudian melalui proses elektrolisis di mana ia telah menjadi anod dan batang karbon akan bertindak sebagai elektrod lawan. Elektrolit yang digunakan untuk kedua-dua proses anodisasi adalah etilena glikol yang mengandungi 0.3g NH₄F. Proses anodisasi dua langkah memberi tumpuan kepada pertumbuhan tiub nano titania dengan bantuan tapak yang ditinggalkan melalui penghapusan tiub nano yang dihasilkan melalui langkah pertama anodisasi. Kaedah rawatan ultrasonik telah digunakan dalam bahagian penyingkiran. Ciri-ciri morfologi dan struktur tiub nano yang dihasilkan telah diperhatikan dan dikaji dengan menggunakan kaedah pencirian pelbagai jenis seperti mikroskop elektron pengimbasan pelepasan bidang (FESEM), pembaluan sinar X (XRD) dan teknik spektroskopi raman. Hasil kajian ini telah diuji untuk menilai sifat aplikasinya khususnya dalam aplikasi fotokatalisis. Pertumbuhan panjang dan diameter tiub nano titanium dioksida yang dihasilkan melalui proses anodisasi dua langkah dijangka berkadar terus dengan masa dan voltan anodisasi.

ABSTRACT

TiO₂ nanotubes are synthesized on titanium foil via anodization process. In order to enhance the properties of the titania nanotubes developed, two-steps anodization is conducted. Several parameters were investigated which inclusive of the effect of anodizing time and anodizing voltage on the morphological and structural properties of titanium dioxide nanotubes manufactured through two-steps anodization. The titanium foil was cleaned thoroughly beforehand and has gone through electrolysis where it was used as the anode and carbon rod acted as the counter electrode. The electrolyte used for both anodization was ethylene glycol containing 0.3g of ammonium fluoride (NH₄F). Two-steps anodization process focuses on the growth of titania nanotubes through the aid of concaves left by the removal of nanotubes produced via the first step anodization. Ultrasonic treatment method was used in the removal part. The morphological and structural properties of the nanotubes produced were observed and studied by using assorted characterization methods such field emission scanning electron microscopy (FESEM), X-Ray Diffraction (XRD) and Raman Spectroscopy technique. The product of this study was tested in order to evaluate its application properties specifically in photocatalysis application. The growth of titanium dioxide produced via two-steps anodization in length and diameter was expected to be directly proportional to the anodizing time and voltage.

TABLE OF CONTENTS

Abst	trak	i
Abst	tract	ii
Tabl	le of Contents	iii
List	of Tables	v
List	of Figures	vi
List of Abbreviation		ix
List	of Symbols	X
СНА	ΦΤΕΡ 1. ΙΝΤΡΟΝΙΟΤΙΟΝ	
CIIA	ATTER I. INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives	3

1.4	Scope	3
1.5	Rational of Research	3
1.6	Research Methodology	4
1.7	Thesis Organization	5

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction to TiO ₂		6
2.2	TiC	D ₂ Nanotubes	9
2.3	Pho	otocatalysis	13
2.4	Anodization Techniques 18		
2.5	Two	o-Steps Anodization	26
	2.5.1	The first-step anodization in EG-based electrolyte	30
	2.5.2	The second-step anodization in EG-based electrolyte	31
	2.5.3	The second-step anodization in HF-based aqueous electrolyte	32
	2.5.4	The second-step anodization in glycerol-based electrolyte and	
		formation of TiO ₂ nano-porous structures	33
	2.5.5	Effect of anodizing time on the morphologies	34

CHAPTER 3: METHODOLOGY

3.1	Introduction		37
3.2	Raw Materials		39
3.3	Methodology		40
	3.3.1	Substrate Preparation and Cleaning	41
	3.3.2	Electrolyte Preparation	41
	3.3.3	Anodic Oxidation	41
3.4	Characterization		42
	3.4.1	Morphology Characterization	44
		3.4.1.1 Scanning Electron Microscopy (SEM)	44
	3.4.2	Structural Characterization	44
		3.4.2.1 X-Ray Diffraction (XRD)	45
		3.4.2.2 Raman Spectroscopy	45
	3.4.3	Application Properties Test	46

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Introduction	47
4.2	Morphological Properties	47
4.3	Structural Properties	49
	4.3.1 Effects of Annealing	49
	4.3.2 XRD Analysis	50
	4.3.3 Raman Spectroscopy Analysis	52
4.4	Photocatalytic Activity	55

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

Conclusion	57
Recommendations	58
Sustainability Element	58
Complexity Element	58
Life-long Learning Elements	59
	Conclusion Recommendations Sustainability Element Complexity Element Life-long Learning Elements

REFERENCES

LIST OF TABLES

2.1	${\rm TiO}_2$ based photocatalytic products that have appeared in the market	17
2.2	Assorted regimes for the growth of anodized titania nanotubes	19
2.3	Assorted morphologies of titania attained via anodization	24
2.4	Evolution of TiO ₂ NTs from 1st to 4th generation	26
3.1	Thickness and purity of metal foils used for anodization	40
3.2	List of chemicals and substrate used	40
3.3	Anodizing parameters for anodization process	41
4.1	Samples and parameters applied	50

LIST OF FIGURES

1.1	Flowchart of framework	4
2.1	SEM microphotographs of minerals collected from pits	7
2.2	Crystal structures of TiO ₂	8
2.3	The properties of TiO ₂ nanotubes related to the outstanding performance	9
2.4	A two-electrode anodization setup	10
2.5	The classification of nanomaterials	11
2.6	Heterogenous nanostructured material with different morphologies	11
2.7	TiO ₂ nanotubes applications	12
2.8	Scheme of photo-induced processes at a TiO_2 semiconductor/electrolyte	
	interface	15
2.9	Photoelectrochemical water splitting on TiO ₂ photoanode	15
2.10	Photocatalytic activity of TiO ₂ nanotubes	16
2.11	The synthesis method of TiO ₂ nanostructure	18
2.12	The electrochemical anodization process and possible anodic	
	morphologies	20
2.13	Schematic of the processes occurring during the anodization of Ti in	
	fluoride-based electrolytes	21
2.14	Schematic diagram of the evolution of a nanotube array at constant	
	anodization voltage.	22
2.15	Formation of nanotubular morphology of titania	23
2.16	Continuous change over from a hexagonal porous to a tubular structure	24
2.17	Evolution of the self-organization (and length) of anodized $TiO_2 NTs$	25
2.18	Schematic of fabrication process of obtaining TiO ₂ nanotubes	29
2.19	FESEM images of TiO_2 nanotubes fabricated in EG containing 0.5 wt%	
	NH ₄ F and 0.2 wt% H ₂ O via first-step anodization	30
2.20	FESEM images of TiO_2 nanotubes fabricated in EG containing 0.5 wt%	
	NH ₄ F and 0.2 wt% H ₂ O via second-step anodization	31

2.21	FESEM images of TiO_2 nanotubes fabricated in 0.5 wt% aqueous-based	
	HF electrolyte via second-step anodization	32
2.22	FESEM images of TiO2 nanotubes fabricated in glycerol containing 0.5	
	wt% NH ₄ F and 0.2 wt% H ₂ O via second-step anodization	35
2.23	FESEM images of TNT fabricated in EG containing 0.5 wt% NH4F and	
	0.2 wt% H ₂ O via single-step anodization for different time	36
3.1	Summarization of research methodology	38
3.2	General procedure of experiment	39
3.3	Schematic illustration of equipment and setup in anodization process	43
3.4	Heating profile of annealing process	43
4.1	Anodized samples at (a)10V and (b)40V for second step anodization	
	annealed at 450°C	48
4.2	Anodized samples at (a) 10 minutes and (b) 30 minutes for second	
	step anodization annealed at 450°C	49
4.3	XRD Analysis on substrate of pre-two step anodization process	51
4.4	XRD analysis on as anodized samples fabricated at 10V for	
	10 minutes and 30 minutes	51
4.5	XRD analysis on as anodized samples fabricated at 40V for	
	10 minutes and 30 minutes	51
4.6	XRD analysis on heat treated samples fabricated at 10V for	
	10 minutes and 30 minutes	52
4.7	XRD analysis on heat treated samples fabricated at 40V for	
	10 minutes and 30 minutes	52
4.8	Raman analysis on substrate of pre-two step anodization process	53
4.9	Raman analysis on as anodized samples fabricated at 10V for	
	10 minutes and 30 minutes	53
4.10	Raman analysis on as anodized samples fabricated at 40V for	
	10 minutes and 30 minutes	54
4.11	Raman analysis on heat treated samples fabricated at 10V for	
	10 minutes and 30 minutes	54
4.12	Raman analysis on heat treated samples fabricated at 40V for	
	10 minutes and 30 minutes	55

4.13 Comparison between initial reading of methyl orange and degradation rate for 5 hours by sample of titania nanotubes fabricated at 40V for 30 minutes

56

LIST OF ABBREVIATIONS

ATNTs	-	Anodic titania nanotubes
CO_2	-	Carbon dioxide
D.C	-	Direct current
EG	-	Ethylene Glycol
Н	-	Hydrogen
H ₂ O	-	Water
H_2S	-	Hydrogen sulphide
H_2SO_4	-	Sulphuric acid
HCl	-	Hydrochloric acid
HF	-	Hydrofluoric acid
HNO ₃	-	Nitric acid
NH ₃	-	Ammonia
NH ₄ F	-	Ammonium fluoride
NTs	-	Nanotubes
O_2	-	Oxygen
OSA	-	One-step anodization
SEM	-	Scanning electron microscopy
SO_2	-	Sulphur dioxide
TiO ₂	-	Titanium dioxide
TNAs	-	Titania nanotubes arrays
TNP	-	Titania nanoporous
TNTs	-	Titania nanotubes
TSA	-	Two-steps anodization
XRD	-	X-ray diffraction

LIST OF SYMBOLS

%	-	Percent
~	-	Approximately
°C	-	Degree Celsius
°C/min	-	Degree celsius per minute
Å	-	Angstrom
cm	-	Centimetre
eV	-	Electron volt
g/cm ³	-	Grams per centimetre cube
m	-	Metre
ml	-	millimetre
mm	-	Millimetre
N_2	-	Nitrogen gas
nm	-	Nanometre
V	-	Voltage
W/mK	-	Watt per metre per Kelvin
wt. %	-	Weight percent
μm	-	Micrometre

CHAPTER 1 INTRODUCTION

This chapter will introduce the background of study as well as problem statement, objectives and scopes. The content of this chapter will further discuss the purpose of this research to be carried out.

1.1 Background of Study

Pertaining to their beneficial high surface area, self- organizing titanium nanostructures have an enormous opportunity as an outstanding photocatalyst (Wang and Chen 2013). The single- dimensional nanostructures have a small fusion of electron- hole pairs induced by light and high photocurrent conversion efficiency (Zhang et al., 2014). Many nanostructured titanium dioxode materials have been patented. These nanostructures were properly created via assorted ways. (Jin et al., 2013). 1D titanium dioxide nanostructures have efficiently enhanced their photocatalytic characteristics in comparison with other titanium forms of their high surface- to- volume ratios, high surface areas and highly ordered structures. (Choi,2011).

The titania nanostructures could be produced by template technique (Qu et al., 2014), solgel technique (Fateh et al., 2013), hydrothermal processes and anodic oxidation method (Zhang et al., 2014). Pertaining to its huge ability to be controlled, anodization has become one of the frequently widely used techniques, exceptionally because of its capabilities in the manufacture of 1D titanium dioxide nanostructures (Zhang et al., 2014). Alternating preparation requirements, like anodization time, applied voltage, temperature, titanium layer roughness, calcination parameters and electrolyte composition, inclusive of fluoride concentration, solvent, water content, pH, viscosity, conductivity, and organic additives can be done to modify the photocatalytic activity of titania nanostructures as well as their morphological structures (Nis et all., 2014).

1.2 Problem Statement

Nano- templates have been given such spotlight to the ongoing regular arrangement of nanowires and nanoparticles to investigate the size- dependent or low- dimensional features of these nanostructures. (Murray et al., 2000). The basic mastery of incredible optical transmission by means of subwave hole arrays (Ebbesen et al., 1998), electrokinetic transition of energy via capillary tube banks or channel arrays (Osterle et al., 1964), Nanochannel fluid transport (Whitby et al., 2007), large Tc superconductivity in nano-entrenched composites (Yang et al., 1996), the lasing event of quantum dots entrenched in nanochannels must cultivate nanotemplates with highly ordered regular nanochannel arrangement (Klimov et al., 2000). There are several methods in which highly- ordered regular nanostructures are manufactured in a managed and repeatable way. (Li et al., 1999).

The preceding manufacturing ways revealed by others for the development of highlyordered TiO₂ nanotubes (Shankar et al., 2007) has been stated that the utilization of NH₄F electrolytes has been massively revamped, and yet the TiO₂ nanotubes seem to have a large pore size allocation and a bumpy top surface whereas they began with a rough Ti substrate omitting an electropolishing step. The bumpy Ti surface allows a distinction in the allocation of the electric field upon the metal surface amid anodization in the absence of the electropolishing step. Concaves are therefore created with a wide diameter distribution and a contoured Ti surface given the difference in the rate of growth of each oxide nanotube. The TiO₂ nanotube arrays are therefore irregular, although monotonous anodization is carried out on the Ti substrate (Zhang et al., 2007). The requirements to manufacture extremely highly ordered sets of metal oxide nanotubes are the electropolishing of the metal valve and a two- steps anodization process.

Moreover, self- ordering was achieved by rearranging the cell configuration at an suitable anodizing time with such an adequate anodization voltage. The periodic concave actually causes the electric field to be focused solely on the textured surface of the Ti. In other words, each concave behaves as a epicenter of pore nucleation for homogeneous pore productivity, shortening the time needed to achieve the steady- state current. In consequence, highly self-organized TiO_2 nanotube arrays have been developed in a short period of time. The highly ordered TiO_2 nanotube arrays seem to be very crucial not only for the fundamental study of nanostructures but also for the manufacture of useful equipment (Park et al., 2006). In addition, such metal oxide valve nanotube panels with a long range have a tremendous ability for a wide variety of applications.

1.3 Objectives

There are two main objectives for this research which are:

- i. To produce TiO₂ nanotubes via two-step anodization.
- To characterize the morphology and structural properties of TiO₂ nanotubes produced by two-steps anodization.

1.4 Scopes

This research covered the study on the formation of self-organized TiO₂ nanotubes by two-steps anodization by removing the nanotubes produced in the one-step anodization and also the photocatalytic properties produced by the end product. The effects of anodic parameters such as applied voltage and anodizing time were studied. The phase formation, morphology, structural and characterization on TiO₂ nanotubes produced by two-steps anodization were determined by scanning electron microscope (SEM), x-ray diffraction (XRD), Raman spectroscopy and UV lamp chamber.

1.5 Rational of Research

The rational of research are as follows:

- i. Titanium dioxide nanotube has been extensively studied to provide benefit for the humankind. This study is conducted to form titanium dioxide nanotube via two-step anodization.
- ii. Develop the ability to fathom the crucial role of parameters in generating optimum titanium dioxide nanotubes through research and experiments.

1.6 Research Methodology

This project consists of five crucial parts which inclusive of sample preparation, anodization process, specimen testing, data analysis and result as well as conclusion illustrated in the Figure 1.1 below. During sample preparation, things will be done from cutting foils into desired measurement, cleaning, and setting up apparatus for anodization process including the electric circuit and the electrolyte preparation. Anodization process will be conducted two times in order to accomplish two-step anodization. The nanotubes from the first-generation process will be removed thoroughly which requires meticulousness to make sure no oxide layers left on the foil for the second step anodization. The formed titania nanotubes will then be tested and analyzed to study the structural properties. The result gained will be studied and conclusion will be made at the end of the project.

Figure 1.1: Flowchart of framework.

1.7 Thesis Organization

This thesis consists of five chapters. Chapter 1 is the introduction which will cover the background study, problem statement, objectives, scope, and rational of research are portrayed in order to give better understanding of the particular aspects of this study addressed in this thesis which followed by Chapter 2, the literature review to provide supportive findings on the same matter. Chapter 3 is the methodology applied to conduct this project followed by Chapter 4 which provides results and analysis of this study. Chapter 5 will provide the conclusion and recommendations executed from this project which will be needed for the betterment of the future studies.

CHAPTER 2 LITERATURE REVIEW

This chapter will first deliberate on the literature review which pertaining to titania or titanium dioxide (TiO_2) and its properties. Next, titanium dioxide in nanotubes form will be discussed alongside with its general properties. In this study, the application of titanium dioxide nanotube will be focusing on photocatalyst which will be reviewed in the photocatalysis discussion. The method of synthesizing titanium dioxide nanotubes consists of two-steps anodization will also be reviewed.

2.1 Introduction to TiO₂

Whether you're painting a wall, applying sunscreen, or eating a sweet, the chances are titanium dioxide is involved. What is titanium dioxide? Why is it widely used? Titanium dioxide is found around the world in several kinds of rock and mineral sands. It most commonly occurs is the mineral ilmenite and sometimes is the mineral rutile (Figure 2.1). Once mined, two different process can be used to extract a usable titanium dioxide. The same minerals are used to create the metal titanium. In its pure extracted form, titanium dioxide is a fine powder that is the whitest and brightest of all known pigments. It reflects visible light, scatters and absorbs ultraviolet light, is non-toxic and it does not react with other chemicals.

As one of the world's most commonly used colorants, titanium dioxide has been safely used for more than 90 years. In fact, this powder forms the basis of almost all man-made pigments. It is used to brighten and strengthen the colors of products from paints, paper and plastic to food, pharmaceuticals and cosmetics. One of the greatest assets of titanium dioxide is the different quality it displays depending on what form it will be used. Pigment grade titanium dioxide is designed to scatter visible light, which can make all colors even and strong. This unique quality also contributes to the sustainability of different objects. Titanium dioxide extends the lifetime of plastics; it also protects wood and metal when used in paints.

Figure 2.1: SEM microphotographs of minerals collected from pits, of Sagarnagar coast,
Visakhapatnam, mostly heavy minerals which are underwent past high energy events. 1. quartz 2. sillimanite 3. ilmenite 4. garnet 5. titaniferous magnetite 6. rutile 7. Zircon 8. monazite 9.
Hornblende 10. magnetite. a, d, g overview of grains with angular to subrounded mixed grains; b
Quartz with triangular, 'V' shaped pits at the edges; c depression filled with precipitation in
Ilmenite; e Quartz with triangular pits with sharp edges; f elongated, smooth surfaced monazite, pits at the edges; h subrounded elongated Zircon; i Rutile with smooth edges (Devi et al. 2013).

Titanium dioxide can also be produced as a much finer powder that is transparent and more effective at protecting against UV light. This makes it a key ingredient in sunscreens, improving their protection and making them kind to the skin. When used in food products, titanium dioxide is known as E171 and is approved for use by the European Food Safety Authority. It appears in many products, from chewing gum to cheese, where it is used as a whitener, or to stop food and drink from sticking together. As well as these uses, the different properties of titanium dioxide mean it is a valuable element in a wide range of different applications for industry and consumers. Its bright white color makes our road safer. It is also used in trucks to reduce the level of air pollution from diesel engines. Titanium dioxide is a key ingredient in making the world a brighter, cleaner and safer place.

Titanium dioxide is polymorphous and known as titanium (IV) oxide or titania. Rutile is the only type of crystal structure which has been commercially used apart from the other two which are anatase and brookite (Figure 2.2). The solubility of titanium dioxide depends on solutes. Unlike in dilute alkali and acid, titania is soluble in hot concentrated H₂SO₄, HCl and HNO₃. It has the biggest surface area, the most pigment volume with a small amount of relative density in commonly used white pigments. Other than that, titania also has incredible electrical properties due to its high electric constant. As a semiconductor, its conductivity is directly proportional to temperature and very reactive towards hyperoxia. The purity of titania plays an important role to its melting point.

Figure 2.2: Crystal structures of TiO₂ rutile (tetragonal, P42/mmm), brookite (orthorhombic, PBCA) and anatase (tetragonal, I41/AMD) polymorphs (Haggerty et al. 2017).

When it comes to hygroscopicity, titania has it on a minimum level. As the hydrophilic is related to surface area, thus moisture absorption is directly proportional to the size of surface area and is also relevant to surface treatment and nature. Despite having a good thermal stability, titania is also known for its stable chemical properties. Apart from being non-toxic, titania also has partial acid sexual oxide which means it has no reaction toward O₂, H₂S, SO₂, CO₂ and NH₃. Except from alkali and hot HNO₃, titania has zero solubility in H₂O, fatty acids, weak organic acids and other organic acid. For the material manufactured under normal temperature, almost no reactivity will occur.

2.2 TiO₂ Nanotubes

Nanostructured titania materials which fixate on protein binding demonstrate high biocompatibility, low toxicity and have a good retention of biological activity. The consequences and wide specific area for these properties of titania nanostructured materials were mostly due to their quantum confinement (Yanhong et al. 2004). Some properties of titania nanotubes have already been explored which inclusive of extremely high sensitivity to hydrogen when benefitted as gas-sensors, has high photo response when annealed, could exceedingly transform their surface wettability, able to project remarkable light conversion efficiencies when dye-sensitized and able to act as a catalyst in order to allow photocatalyst to become active in visible light. Furthermore, titania is a very functional non-toxic, not harmful to the environment, corrosion proof material as it is frequently used in paint, white-pigments and sun blockers (Roy, Berger, and Schmuki 2011) A lot of the essential properties of titania has been captivating such high fascination pertaining to its ability to supply the fundamentals for many exceptionally good useful attributes. Several features related to the outstanding performance of titania nanotubes are shown in Figure 2.3. The schematic image of nanotubes is shown in Figure 2.4 where hollow tubes are aligned and organized.

Figure 2.3: The properties of TiO₂ nanotubes related to the outstanding performance. (Grimes and Mor 2009)

Figure 2.4: A two-electrode anodization setup for fabricating the titanium dioxide nanotube architecture where hollow tubes are aligned and organized (Rao, Torabi, and Varghese 2016).

Generally, the categories of nanosized oxides can be grouped into zero-dimensional (0D), one-dimensional (1D) and two-dimensional (2D) (Tiwari, Tiwari, and Kim 2012). The sample of each category will be shown in Figure 2.5 whereas Figure 2.6 will show the classification of nanomaterial particularly. Some of the outstanding electronic properties of one-dimensional (1D) nanostructure are inclusive of quantum confinement effect or high electron mobility, high mechanical strength and high specific surface area (Wang, Zhang, and Sun 2011).

To put it simply, 0D nanomaterials contains spheres or clusters which are considered as point-like particles. While 1D nanomaterials are inclusive of tubes, porous, wires, rods and fibers. For 2D structures, films, plates, multilayers or networks are identified. In this work, 1D titania nanotubes will be studied as this structure compliments outstanding features in comparison to another structure of metal oxide for such applications. The examples of the implementation of TiO₂ nanotubes are shown in Figure 2.7.