REMOTE CONTROL DOORLOCK SYSTEM

MOHD FAIZAL BIN MUHAMMAD ZAINI

This report is submitted in partial fulfillment of the requirements for the award of Bachelor of Electronic Engineering (Industrial Electronics) With Honours

Faculty of Electronic and Computer Engineering
Universiti Teknikal Malaysia Melaka

March 2010

UNIVERSTI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Faink	Projek		NTROL DOORLOCK SYSTEM
Sesi Pengaj	·	2009/10	
Save			AL BIN MUHAMMAD ZAINI
men	gaku mem		(HURUF BESAR) ek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-
1.	Laporan ad	dalah hakmilik Univers	siti Teknikal Malaysia Melaka.
2.	Perpustaka	aan dibenarkan membu	at salinan untuk tujuan pengajian sahaja.
3.	Perpustaka	aan dibenarkan membu	at salinan laporan ini sebagai bahan pertukaran antara institusi
	pengajian	tinggi.	
4.	Sila tandal	$can(\lor)$:	
		SULIT* TERHAD*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	$\sqrt{}$	TIDAK TERHAD	
			Disahkan oleh:
	(T	ANDATANGAN PENULIS	(COP DAN TANDATANGAN PENYELIA)
Al	lamat Tetap:	BATU 18 ½ KAMPUNG SIALANG 84900, TANGKAK, JOHOR.	
Та	arikh:	30/4/2010	Tarikh:

hereby	declare that this	report is the result of my own work except for quotes as cited in the references."
hereby		
nereby	declare that this Signature Author	in the references."

"I hereby declare that I have read this report and in my opinion this report is sufficient
in terms of the scope and quality for the award of Bachelor of Electronic Engineering
(Industrial Electronics) With Honours."

Signature	:
Supervisor's Name	: PN. AZDIANA MD. YUSOP
Date	:

To my beloved mom, dad and family

ACKNOWLEDGEMENT

Alhamdulillah, thanks to Allah for His divinity and blessing, I have completed my final year project for courses Bachelor of Electronic Engineering (Industrial Electronics) successfully. I would like to thanks to my lovely family for their encouragement and support. I also would like to thank my supervisors, Pn Azdiana Binti Md Yusop, whose patience, support and help guided me in my work. Thanks also to the people that has helped me along the course of finishing this project. Thank you all.

ABSTRACT

Remote control system is widely used now in the equipment such as television, radio and are one more example used in trasports system as a keylock system. Remote control system is divided to two categories; device based and activity based. Door is a portable obstacle that can be opened up and closed. The combination between tool of system remote control and door will produce one security system. This project will focused the design of the safety system for house especially house door. This sytem is constitute from the extension of remote control device to main system as a signal receipient from it and activate or deactivate the keylock system at the door. The objective of this design is to invent the keylock system that easy to used and easy to maintain. This system also designed to give facilitate for disabled people to use the door. Besides that this inventation also focusing for commercialization. So the inventation of this project will be considering budget expenditure of the component and raw material that will be used to produce one product that can be commercialized.

ABSTRAK

Sistem alat kawalan jauh merupakan sistem yang meluas digunakan pada kebanyakan alat kawalan jauh digunakan pada alat elektrik seperti televisyen, radio, dan pada sistem kenderaan sebagai sistem pengunci keselamatan. Alat kawalan jauh terbahagi kepada 2 iaitu berasaskan peranti dan juga berasaskan aktiviti. Pintu pula merupakan halangan mudah alih yang boleh dibuka atau ditutup. Gabungan antara sistem alat kawalan jauh dan pintu akan menghasilkan satu sistem keselamatan. Projek yang dihasilkan ini sebenarnya menumpukan kepada rekaan satu sistem keselamatan pada pintu rumah. Sistem ini terdiri daripada sambungan alat kawalan jauh kepada sistem utama sebagai penerima isyarat daripada alat kawalan jauh dan mengaktifkan atau mematikan sistem pengunci pada pintu. Matlamat rekaan sistem keselamatan ini adalah untuk mereka cipta sistem pengunci rumah yang mudah digunakan dan diselenggarakan. Sistem ini juga direka untuk memudahkan golongan kurang upaya menggunakan pintu. Selain itu, rekaan ini juga mensasarkan satu matlamat untuk dikomersialkan. Jadi, projek ini direka dengan sebaik mungkin dengan mengambil kira bajet perbelanjaan komponen dan bahan mentah yang digunakan untuk menghasilkan satu produk yang boleh dikomersialkan.

TABLE OF CONTENTS

CHAPTER	TITI	LE	PAGE
	PRO	JECT TITLE	i
	REP	ORT STATUS VERIFICATION FORM	ii
	STU	DENT'S DECLARATION	iii
	SUP	ERVISOR'S DECLARATION	iv
	DED	DICATION	V
	ACK	NOWLEDGEMENT	vi
	ABS	TRACT	vii
	ABS	TRAK	viii
	TAB	LE OF CONTENTS	ix
	LIST	T OF TABLE	xiv
	LIST	T OF FIGURES	XV
I	INTI	RODUCTION	
	1.1	Overview	1
	1.2	Project Objective	2
	1.3	Problem Statement	2
	1.4	Project Scope	4
	1.5	Methodology	5
	1.6	Thesis Outline	6

II LITERATURE REVIEW

2.1	Remo	te Keyless Entry System	7
	2.1.1	Requirement of Remote Keyless	8
		Entry (RKE) System	
	2.1.2	Detailed RKE Description and	8
		Design Objectives	
	2.1.3	Carrier Generation	10
	2.1.4	Power Conservation	11
	2.1.5	Infrared Remote Control Process	13
2.2	Type	of Remote Control	15
	2.2.1	Browser-Based Remote Sessions	16
	2.2.2	Software-Based Remote Control	17
2.3	Centra	al Lock	19
2.4	Pneun	natic Actuator	20
	2.4.1	Comparison of Pneumatic Actuator	27
		and Hydraulic Actuator	
	2.4.2	Advantages of pneumatics	27
	2.4.3	Advantages of hydraulics	27
2.5	Transı	mitter	28
2.6	Receiv	ver	28
2.7	Power	Supply	29
	2.7.1	Power supply types	29
	2.7.2	Direct Current (DC) Power Supply	30
	2.7.3	Alternating Current (AC) Power Supply	32

Ш	RES	EARCH METHODOLOGY	
	3.1	The Factors which Influence the Design	35
	3.2	Flow Chart of Idea	36
	3.3	Method and Approach of Remote Control	38
		Doorlock System	
IV	SIM	ULATION RESULT AND DISCUSSION	
	4.1	Simulation Result	41
		4.1.1 Diagram for the Whole System	41
		4.1.2 Simulation of the System	43
	4.2	Discussion	52
V	HAR	RDWARE INTERFACING	
	5.1	Introduction of Hardware Interfacing	54
	5.2	Hardware Installation	57
		5.2.1 Material Selection	57
	5.3	Development Step of the Hardware	59
		5.3.1 Measurement and Marking	60
		5.3.2 Cutting	60
		5.3.3 Welding	61
		5.3.4 Installation	61
		5.3.5 Testing	63
		5.3.6 Finishing	64
	5.4	Remote Control Doorlock System	65

	5.5	The Co	omponent Used in this System	67
		5.5.1	Door Knob	67
		5.5.2	Central Lock	68
		5.5.3	Remote Sensor	70
		5.5.4	Solenoid Valve (Actuator)	70
		5.5.5	Remote Control	71
		5.5.6	Micro Switch	71
		5.5.7	Power Supply	72
		5.5.8	Wires and Connector	72
		5.5.9	Pilot Lamp	73
		5.5.10	Buzzer	73
VI	PRO	JECT A	NALYSIS	
	6.1	Proiec	t Outcome	74
	6.2		t Analysis	75
		6.2.1	Electronic Part Problem	75
		6.2.2	Electrical Part Problem	75
	6.3	Testing	g Process	76
	6.4	Cost A	nalysis	76
		6.4.1	Raw Material Cost	77
		6.4.2	Tool and component cost	78
		6.4.3	Overall Cost	80
		6.4.4	Profit	80
		6.4.5	Selling Price	80

VII CONCLUSION AND RECOMMENDATION

7.1	Conclusion	81
7.2	Recommendation	83
REFI	ERENCES	84
APPI	ENDIX A	86
APPI	ENDIX B	87

LIST OF TABLE

NO	TITLE	PAGE
6.1	Raw material cost	77
6.2	Basic component and tool cost	78
6.3	Central lock cost	79

LIST OF FIGURES

NO	TITLE	PAGE
2.1	An RKE system consists of a keyfob circuit (lower diagram)	9
	Transmitting to a receiver (upper diagram).	
2.2	To monitor key fob transmissions, an RKE receiver must	12
	allocate time to wake	
2.3	Diagram of infrared receiver and the flow of the signal data	14
	through each process block.	
2.4	Transmit signal (carrier frequency = f_0)	14
2.5	Data transmission rate	15
2.6	The variation of remote control	16
2.7	Operation diagram of a single acting cylinder	22
2.8	Operation diagram of a double acting cylinder	22
2.9	Pneumatic Cylinder	23
2.10	Schematic symbol for pneumatic cylinder with spring return.	23
2.11	The solenoid valve (actuator) used in the project	24
2.12	A direct pneumatic actuator for converting pressure signal into	25
	mechanical shaft motion	
2.13	A reverse acting pneumatic actuator	26
2.14	Steady DC from a battery or regulated power supply,	30
	this is ideal for electronic circuits	
2.15	Smooth DC from a smoothed power supply, this is suitable	31
	for some electronics.	
2.16	Varying DC from a power supply without smoothing,	31
	this is not suitable for electronics	

2.17	Alternating Current (AC) signal from a power supply this shape is called a sine wave.	33
2.18	This triangular signal is AC because it changes between	33
	positive (+) and negative (-).	
3.1	Flowchart of idea	36
3.2	Flow of project	37
3.3	The part of a car alarm	39
4.1	Wiring diagram for the whole system	42
4.2	Planning idea for the system connection	42
4.3	System connection	43
4.4	Schematic diagram of transmitter circuit	44
4.5	The waveform at oscilloscope 1	45
4.6	The waveform at oscilloscope 2	46
4.7	The final waveform at oscilloscope 3	47
4.8	Schematic diagram for the combination of the transmitter and	48
	receiver circuit.	
4.9	the input waveform from the transmitter.	49
4.10	The expected square wave waveform produced in receiver circuit.	50
4.11	The central lock circuit	51
5.1	Experimental setup of doorlock system	54
5.2	Model of the door	55
5.3	The dimensional model of the door	56
5.4	Flowchart of project (model) impementation	59
5.5	Site and frame produced	61
5.6	the Installation of component	62
5.7	Testing to the model	63
5.8	The iron frame after painted	64
5.9	The door after the wood layer is painted	64
5.10	The inside view	65
5.11	The outside view	65
5.12	The full system implemented at the door	66

		xvii
5.13	The door knob	67
5.14	The interior door knob that has been modified	67
5.15	Central lock	68
5.16	Remote sensor	70
5.17	The modified solenoid valve with door knob	70
5.18	Remote control device	71
5.19	Micro Switch	71
5.20	Car battery	72
5.21	Wire and connector	72
5.22	Pilot lamp	73
5.23	Buzzer	73

CHAPTER I

INTRODUCTION

1.1 Overview

A remote control deadbolt lock was designed for quadriplegics. The system consists of a modified standard household deadbolt lock, a central lock and a remote control. People who have limited use and control of their hands would use this system to simplify the complicated procedure of using a key to lock and unlock their homes at the touch of a button. The purpose of this project was to simplify the tasks of locking and unlocking a conventional door for people who use wheelchairs and have limited use of their hands and arms. By incorporating the use of a remote control, the inconvenience of using a key was eliminated. With just a push of a button, the locking mechanism in the door can be activated or deactivated. There are several door-locking systems that do not use a conventional key. There is a "credit card" type used in many hotels and the push-button combination lock used in many businesses. Both of these and similar systems did not address the inability of our client to grasp the card key or push the tiny buttons. There are also variations of remote controlled doors and gates, but these tend to be large and expensive systems more suitable for industrial use.

1.2 Project Objective

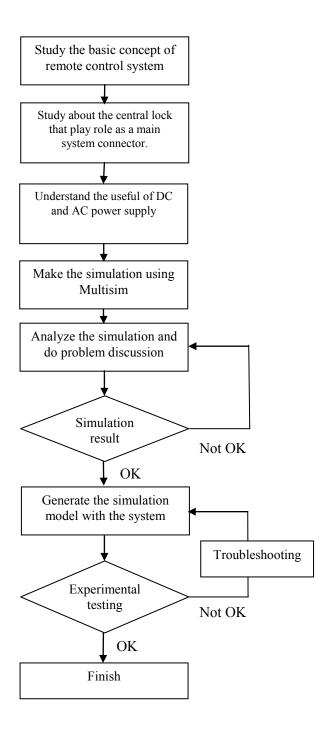
The objectives of this project are:

- To design a remote control doorlock system for user to lock and unlock a conventional door.
- To commercialize this product to people.

1.3 Problem Statement

The problem statement of this project is divided into several aspects. In remote control doorlock system, the construction of circuit for remote control is one of the important aspects. In remote control system, it is divided into two part; transmitter circuit and receiver circuit. If either one or both circuit is not function, the full system would not work well. The central lock system is the main connector which connecting the remote sensor to solenoid valve (actuator) and alarm indicator. If the central lock is not developed, the system is not fully complete. So, the circuit must be constructed first in electronic software. For my final project, the circuits are developed and simulated by using Multisim, Proteus 7 Professional. From this software, the specification of the circuits can be determined easily. For the design of the door and wiring diagram, the Autocad software will be used to develop its.

In the remote control, there has a transmitter which send the data to the main system which placed at the door. That main system consist a central lock which has a receiver that will receive the sent data from the transmitter. The main system can not directly switch on the system (opened up the door) because the main system needs to connected and work together with the actuator to pull and push the lock door. In this project, the two pneumatic actuators are used to work together with the main system. The actuator consist a valve inside which require little pressure to operate and usually double or triple the input force. The actuator is an electric motor drive. The electric motor drive can have a speed-reducing transmission as may be desirable or required. When the actuator is applying in between the system, it can create the great force to pull and push the dead bolt easily.


Beside that, the arrangement of the complete wiring is important aspect need to be focused in order to create the complete and safety locking system for the door. For this aspect, the system needs something to keep the complete wiring. So, a piece of Perspex is used to keep the all wiring set and the main system from anything that can make a short circuit and disturbance in this system. The safety value which has in this system can make it user friendly system whereas people can use it easily.

1.4 Project Scope

The scopes of this project are:

- Study about the locking mechanism.
- Study and research about the usage of remote control system.
- Study on the system that will be linked between remote control and the mechanical locking system of the door.
- Simulate and investigate the additional circuit in order to apply remote control doorlock system.
- Apply the electrical wiring technique to doorlock system, testing and troubleshooting.
- Project report write-up.

1.5 Methodology

1.6 Thesis Outline

This thesis describes the remote control doorlock system and how to develop this system. This thesis has seven chapters. The first chapter will be describe about a brief introduction about the project consist the overview, objective, problem statement and scope of the project. A literature review of recent work on theory for the device and concept involved and application is presented in chapter 2. Chapter 3 describe about explanation about equipment, component, procedure, rule and technique applies in developing this project. The simulation result, design and discussion about the system will be showed and discussed in chapter 4. Chapter 5 introduce detailed about hardware interfacing between hardware and simulation. And finally, chapter 6 summarizes the contributions of this work along with suggesting avenue for future explorations.

CHAPTER II

LITERATURE REVIEW

This chapter consists of some information about remote control system which included the central lock statement and also an overview of the literature that has been published in relation to build the system.

2.1 Remote Keyless Entry System

A remote keyless system is a system designed to remotely permit or deny access to premises or automobiles. This system was invented by mechanical engineer A.B. Makkar. There are several remote keyless entry (RKE) systems on the market, including but not limited to KeeLoq by Microchip, HITAG by Philips, and AVR411 by Atmel. In the case of automobiles a remote keyless system performs the functions of a standard car key without physical contact; power door locks can be locked or unlocked from several feet away or even from inside a building. A remote keyless system can include both a remote keyless entry system (RKE) and a remote keyless ignition system (RKI).