

EFFECT OF NANO CELLULOSE INDUSTRIAL TEA LEAF FIBER ON THE PHYSICAL AND MECHANICAL PROPERTIES OF POLYLACTIC ACID (PLA) COMPOSITE

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons.)

by

LIN WEI QI B051510042 950216-05-5342

FACULTY OF MANUFACTURING ENGINEERING 2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: EFFECT OF NANO CELLULOSE INDUSTRIAL TEA LEAF FIBER ON THE PHYSICAL AND MECHANICAL PROPERTIES OF POLYLACTIC ACID (PLA) COMPOSITE

Sesi Pengajian: 2018/2019 Semester 2

Saya LIN WEI QI (950216-05-5342)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD

D (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

Disahkan oleh:

Alamat Tetap: 14, Jalan Besar, Pengkalan Kempas, 71150 Linggi, Negeri Sembilan Tarikh: 26 June 2019 Cop Rasmi:

Tarikh: _____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Effect of Nano Cellulose Industrial Tea Leaf Fiber on the Physical and Mechanical Properties of Polylactic Acid (PLA) Composite" is the result of my own research except as cited in references.

Signature:Author's Name: LIN WEI QI

Date : 26 June 2019

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

(PROFESOR DR. QUMRUL AHSAN)

ABSTRAK

Kajian ini bertujuan untuk mengkaji hasil selulosa nanofibrillated (NFC) selepas proses kimia dan proses fibrilasi serat ITL oleh kaedah pengemparan, untuk menganalisis morfologi pengedaran dan penyebaran NFC dalam NFC-PLA komposit menggunakan OM dan SEM, serta mengkaji kesan pengukuhan NFC terhadap sifat mekanik komposit NFC-PLA dengan menggunakan ujian mekanikal. Pertama, serat ITL telah dihaluskan kepada skala nano menerusi proses rawatan dan fibrillasi kimia. Dalam proses fibrillasi, pelbagai parameter suhu pengadunan digunakan untuk mendapatkan hasil selulosa nanofibrilasi yang tinggi dengan kaedah sentrifugal. Kemudian, pelet PLA dengan jumlah serat nanoselulosa yang berbeza dikenakan tekanan panas untuk membentuk komposit NFC-PLA. Teknik pencirian OM dan SEM dijalankan bagi mengkaji morfologi penyebaran dan penyebaran NFC dalam komposit NFC-PLA. Ujian lenturan dilakukan untuk komposit NFC-PLA untuk memeriksa kekuatan lenturan dan modulus lenturan. Dari kajian ini, hasil pencirian dan analisis menunjukkan bahawa serat ITL dicampur pada 20 °C dengan kelajuan 23000rpm dan masa 10 minit memberikan hasil fibril yang lebih baik (24.19%) daripada serat ITL yang dicampur pada 0° C (16.26%) dan 80° C (19.01%) dengan kaedah pengemparan. Peningkatan maksimum kekuatan lenturan sebanyak 7.43% dan modulus lentur sebanyak 55.30% diperolehi untuk komposit NFC-PLA dengan serat ITL fibril yang diperoleh daripada kelajuan campuran, masa dan suhu 23000rpm, 10minutes dan 20°C berbanding komposit PLA tulen. Ciri lentur menunjukkan bahawa kekuatan dan modulus telah bertambah baik dengan kandungan nanofiber yang meningkat.

ABSTRACT

This research is to investigate the yield of nanofibrillated cellulose (NFC) after chemical treatment and fibrillation process of industrial tea leaves (ITL) fibers by centrifugal method, to analyze the distribution and dispersion morphology of NFC in nanofibrillated cellulose reinforced polylactic acid (NFC-PLA) composite by optical microscopy (OM) and scanning electron microscopy (SEM), and to investigate the reinforcing effect of NFC on mechanical properties of NFC-PLA composite by using mechanical testing. Firstly, ITL fibers were fibrillated to nanoscale by chemical treatment and fibrillation process. In fibrillation process, various parameter of blending temperatures were used to get the high yield of nanofibrillated cellulose by centrifugal method. Then, PLA pellet with different volume of nanocellulose fibers underwent hot pressing to form the NFC-PLA composite. Characterization technique of OM and SEM was implemented to study the distribution and dispersion morphology of NFC in NFC-PLA composite. The flexural test was conducted for the NFC-PLA composite to examine its flexural strength and flexural modulus. From this research, the results indicated that the ITL fibers blended at 20°C with blending speed and time of 23000rpm and 10minutes provides better fibrillated yield (24.19%) than ITL fibers which blended at 0° C (16.26%) and 80° C (19.01%) by centrifugation method. The maximum increase in flexural strength of 7.43% and flexural modulus of 55.30% was observed for NFC-PLA composites with fibrillated ITL fiber obtained using blending speed, time and temperature of 23000rpm, 10minutes and 20°C compared to pure PLA composite. The flexural properties indicated that the strength and modulus were improved with increased nanofiber contents.

DEDICATION

Only

my beloved father, Lin Kee Yong my appreciated mother, See Nyet Yuen my adored sister and brother, Lin Wei Lin & Lin Wei Chien for giving me moral support, money, cooperation, encouragement and also understandings Thank You So Much & Love You All Forever

ACKNOWLEDGEMENT

First and foremost, I would like to express my highest gratitude to my respected supervisor, Prof. Dr. Qumrul Ahsan for the great mentoring that was given to me throughout the project. His supervision has helped a lot in the progression of this final year project. I am indeed very grateful to be under his supervision.

Special thanks to my best friends, Wong Meng Meng and Chew Ke Chin, who gave me a lot of motivation and cooperation in completing this report. They had given their critical suggestion and comments throughout my research. Thanks for the great friendship.

Finally, I would like to thank everybody who was important to this FYP report, as well as expressing my apology that I could not mention personally each one of you.

TABLE OF CONTENTS

ABSTRAK	i
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF EQUATIONS	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	XV
LIST OF NOMENCLATURES	xvii

CHAPTER 1: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objectives	5
1.4	Scopes of the Research	5

CHAPTER 2: LITERATURE REVIEW

2.1	Natural Fib	er	6
2.2	Tea Leaves	(ITL)	7
2.3	Lignocellul	osic Biomass	7
	2.3.1	Cellulose	9

v

2.4	Biopolymer		10
	2.4.1	Polylactic Acid (PLA)	10
2.5	Nanotechno	ology	11
	2.5.1	Nanocellulose	11
	2.5.2	Classification of Nanocellulose Structure	12
	2.5	5.2.1 Nanofibrillated Cellulose (NFC)	13
	2.5.3	Architecture of Cellulose and Nanocellulose	14
2.6	Extraction of	of Micro and Nanocellulose	16
	2.6.1	Role of Pretreatment	16
	2.0	5.1.1 Chemical Pretreatment	17
	2.6.2	Nanofibrillation	19
	2.0	5.2.1 Extraction of Nanocellulose with the Assistance of Ball Milli	ng19
	2.	6.2.2 Mechanical Blending	21
2.7	Properties of	f Nanocellulose	23
	2.7.1	Physical Properties	23
	2.7.2	Chemical Properties	26
2.8	Natural Fib	er Reinforced Composites	26
2.9	Manufactur	ing Method of Nanocomposite	27
	2.9.1	Hot Compressing/Pressing	28
2.10	Cellulose N	anofiber (CNF) Reinforced PLA Composites	29
2.11	Effect of Di	spersion of NFC in the Composite	31
2.12	Application	of Nano Fibrillated Cellulose (NFC)	32

CHAPTER 3: METHODDOLOGY

3.1	Introduction	34
3.2	Flow Chart	34
3.3	Raw Materials	36

	3.3.1	Matrix	36
	3.3.2	Filler	36
3.4	Pretreatm	ent of ITL Fiber	37
	3.4.1	Chemical Pretreatment	37
	3.4.2	Pulverization	38
	3.4.3	Fibrillation	39
	3.4.4	Sample Preparation of Fibrillated Nanocellulose ITL Fiber	40
		3.4.4.1 Vacuum Filtering	40
		3.4.4.2 Oven Drying	41
3.5	Character	ization of Fibrillated Nanocellulose ITL Fiber	41
	3.5.1	Scanning Electron Microscopy (SEM)	42
	3.5.2	Optical Microscopy (OM)	43
	3.5.3	Fourier Transform Infrared Spectroscopy (FTIR)	43
	3.5.4	Yield in Fibrillated Nanocellulose ITL Fiber	44
3.6	Sample P	reparation of NFC-PLA Composite	45
	3.6.1	Internal Mixer	45
	3.6.2	Hot Pressing Moulding	45
3.7	Character	rization of NFC-PLA Composite	46
	3.7.1	Mechanical Testing	47
		3.7.1.1 Flexural Test	47
	3.7.2 So	canning Electron Microscopy (SEM)	48
СНА	PTER 4: R	RESULTS AND DICUSSION	
4.1	Material (Characterization	49
	4.1.1	Scanning Electron Microscopy (SEM)	49
	4.1.2	Optical Microscopy (OM)	49
	4.1.3	Yield of Fibrillated ITL Fiber	59
	4.1.4	Fourier Transform Infrared Spectroscopy (FTIR)	61
		vii	

4.2	Nano Fibril	lated Cellulose Rein	forced Polylactic	Acid	(NFC-PLA)	Composite
	Material Cha	racterization				66
	4.2.1	Flexural Testing				66
	4.2.2	Scanning Electron M	licroscope (SEM)			71

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	73
5.2	Recommendations	75
5.3	Sustainable Design and Development	76
5.4	Complexity	77
5.5	Life Long Learning	77

REFERENCES

APPENDICES

Gantt Chart for FYP I	85
Gantt Chart for FYP II	86

LIST OF TABLES

2.1	Progress of nanocellulose extracted by ball milling	20
2.2	Comparison of Mechanical properties PLA Composites Reinforced with	
	Different Class of Fibers	29
2.3	Application potential of Nano Fibrillated Cellulose	33
3.1	Different blending temperatures for fibrillation process	39
3.2	Composition of PLA matrix Composite	46
4.1	Average Diameter of NFC	53
4.2	Average Diameter of ITL Fiber after Pulverization by Ball Milling at Dry State	
	and Wet State	56
4.3	Average Diameter of ITL Fiber after Fibrillation Process at Various	
	Blending Temperature	57
4.4	Average yield percentage of ITL fiber at blending speed of 23000rpm and	
	blending time of 10minutes at different blending temperatures	59
4.5	FTIR adsorption bands of typical cellulosic materials	63
4.6	Mechanical Properties of the NFC Reinforced PLA composite	66

LIST OF FIGURES

2.1	Classification of natural fiber	6
2.2	Tea leaves and tea buds of a tea plant	7
2.3	Structure of lignocellulosic biomass	8
2.4	Repeat unit of the cellulose	9
2.5	Hydrogen bonds between cellulose chains	9
2.6	Tensile modulus of poly (vinyl alcohol) nanocomposite as the function of	
	the nanocellulose content	12
2.7	The tensile strength of PLA composites as a function of NFC content	14
2.8	The Young's modulus of PLA composite as a function of NFC content	14
2.9	Arrangement of fibril, microfibril and cellulose microfibril	15
2.10	Simplified model of plant cell wall structure	15
2.11	Schematic of pretreatment of lignocellulosic biomass	16
2.12	SEM images of the effects of the chemical treatment on the kenaf fiber groups	18
2.13	Schematic diagram of a planetary ball mill	20
2.14	SEM images of cotton-derived cellulose after (a) dry state and (b) wet state	20
2.15	Structural constituent of natural fiber cell	22
2.16	SEM image of (a) the original pulp; the pulp agitated by blender for (b)1 minute	e,
	(c) 3 minutes, (d) 5 minutes, (e) 10 minutes, (f) 20 minutes, (g) 30 minutes, and	
	(h) the pulp fibrillated by one pass through the grinder	22
2.17	Optical microscope image of the blender-treated pulp agitated for 1 minute	23
2.18	SEM images of (a) alkaline treated of kenaf fiber (b) untreated kenaf fiber	24
2.19	SEM micrographs of kenaf fiber reinforced PP composite with 40% NaOH	
	solution (a) untreated and (b) treated composites	25
2.20	FE-SEM images of pulp treated by a blender for 1 minute at different	
	magnification. In (b-d) are magnified images of the squares marked in (a), (b)	
	and (c), respectively	25

2.21	FTIR spectra of treated fiber and untreated kenaf fiber	26
2.22	Natural fiber composite life cycle	27
2.23	Schematic diagram of composite consolidation	29
2.24	SEM image of (a) CNF, (b) PLA, and (c) CNF-PLA composites	30
2.25	Tensile stress-strain curves for cellulose nanofiber reinforced PLA composite	31
2.26	Effect of filler morphology change on stress-strain curve	32
3.1	Flowchart of methodology	35
3.2	ITL of BHE-SW (fine fiber)	36
3.3	Set up of chemical treatment for ITL fiber	37
3.4	High-speed planetary ball mill	38
3.5	Ball milling of ITL fibers (a) after 10minutes in dry condition (b) after 3 hours	
	in wet condition	38
3.6	Vita-Mix 5200 blender	39
3.7	Vacuum Filtering	40
3.8	Top view of ITL fibers blended with blending speed of 23000rpm for 10	
	minutes and blending temperature of (a) 0°C, (b) 20°C, and (c) 80°C.	41
3.9	Memmert drying oven	41
3.10	Zeiss SEM type Evo 50 Series	42
3.11	Sputter coaster machine	42
3.12	Optical Microscope	43
3.13	JASCO FT/IR-6100 FTIR	44
3.14	Centrifuge machine	44
3.15	Hot pressing machine model Carver	46
3.16	Universal testing machine (DSES-1000)	48
3.17	Flexural test specimen according to ASTM D790 standards	48
4.1	The SEM micrograph of as-received ITL fiber	50
4.2	The SEM micrograph of chemical treated ITL fiber	50
4.3	Average diameter of fiber based on different treatment	51
4.4	The surface morphology of ITL fibers with blending speed of 23000rpm,	
	blending time of 10minutes and blending temperature of (a) 0° C, (b) 20° C and	
	(c) 80° C obtained from SEM with magnification of 1000X	52

4.5	The surface morphology of ITL fibers with blending speed of 23000rpm,	
	blending time of 10minutes and blending temperature of (a) 0° C, (b) 20° C and	
	(c) 80° C obtained from SEM with magnification of 17000X	53
4.6	Average diameter of fibrillated ITL fiber based on different blending	
	temperature of 0° C, 20° C and 80° C	54
4.7	The OM image of ITL fiber milled at (a) dry state for 10 minutes (b) wet state	
	for 3 hours	55
4.8	The OM image of ITL fibers blended at constant blending speed of 23000rpm	
	and blending time of 10 minutes with blending temperature of (a)	
	0° C, (b) 20° C and (c) 80° C	56
4.9	Average dameter of ITL fiber based on different blending temperature	58
4.10	Average yield percentage of ITL fiber at difference blending temperatures	59
4.11	FTIR spectrum comparison of as-received and chemically treatment ITL fiber	61
4.12	FTIR spectrum comparison of chemical treated itl fiber and fibrillated ITL fiber	•
	at difference blending temperature of 0° C, 20° C and 80° C	62
4.13	FTIR spectrum comparison of chemical treated ITL fiber and fibrillated ITL fib	er
	at blending temperature of 20° C	62
4.14	FTIR spectrum comparison of as-received, chemically treated ITL fiber	
	and fibrillated ITL fiber at blending temperature of $20^\circ C$	63
4.15	Effect of fiber loading on flexural strength with blending temperature of 0° C	67
4.16	Effect of fiber loading on flexural strength with blending temperature of 20° C	67
4.17	Effect of fiber loading on flexural strength with blending temperature of 80° C	68
4.18	Effect of blending temperature on flexural strength with 1% fiber loading	68
4.19	Effect of blending temperature on flexural strength with 3% fiber loading	69
4.20	Effect of blending temperature on flexural strength with 5% fiber loading	69
4.21	The flexural fracture surface of (a) pure PLA and reinforced PLA composites	
	with NFC blending at 23000rpm and blending temperature at (b) $0{}^\circ\!\mathrm{C}$, (c) $20{}^\circ\!\mathrm{C}$	
	and (d) 80° C for 10minutes with magnification of 200X	71
4.22	The flexural fracture surface of (a) pure PLA and reinforced PLA composites	
	with NFC at blending speed of 23000rpm and blending temperature at (b) $0{}^\circ\!\mathrm{C},$	
	(c) 20 $^\circ\!\mathrm{C}$ and (d) 80 $^\circ\!\mathrm{C}$ for 10minutes with magnification of 1000X	71

LIST OF EQUATIONS

3.1	The yield percentage of NFC	45
3.2	Flexural Strength	47
3.3	Flexural Modulus	47

xiii

LIST OF ABBREVIATIONS

ASTM	-	American society for testing and materials
BHE-SW	-	Fine fiber
CNF	-	Cellulose nano fiber
CO_2	-	Carbon dioxide
FESEM	-	Field emission scanning electron microscope
FTIR	-	Fourier transform infrared spectroscope
H_2O	-	Water
HCI	-	Hydrochloric acid
ITL	-	Industrial tea leaves
NaOH	-	Sodium hydroxide
NFC	-	Nano fibrillated cellulose
NFC-PLA	-	Nano fibrillated cellulose reinforced polylactic acid
OM	-	Optical microscope
PLA	-	Polylactic acid
PTFE	-	Polytetrafluoroethylene
SEM	-	Scanning electron microscope

LIST OF SYMBOLS

%	-	Percentage					
b	-	Width	of	specimen	tested	in	millimeter
d	-	Thickness of specimen tested in millimeter					
$^{\circ}\!\mathrm{C}$	-	Degree Celsius					
cm ⁻¹	-	Reciprocal centimeter					
g	-	Gram					
GPa	-	Gigapascal					
kN	-	Kilo Newton					
L	-	Support span in millimeter					
m	-	Slope of tar	ngent to t	he initial straigh	nt line portion	n of load	deflection
		curve (N/m	m)				
min	-	Minute					
ml	-	Milliliter					
mm	-	Millimeter					
μm	-	Micrometer	•				
mol/L	-	Moles per l	itre				
MPa	-	Megapascal	l				
Ν	-	Newton					
nm	-	Nanometer					
Р	-	Maximum l	load appl	ied on test speci	imen (N)		
Pa	-	Pascal					
rpm	-	Revolution per minute					
wt%	-	Weight percent					
λ	-	Wavelength					

LIST OF NOMENCLATURES

ITL-AR	-	as-received ITL fiber
ITL-CT	-	chemically-treated ITL fiber
ITL-T0	-	fibrillated ITL fiber at blending temperature of 0° C
ITL-T20	-	fibrillated ITL fiber at blending temperature of $20^\circ C$
ITL-T80	-	fibrilated ITL fiber at blending temperature of $80^\circ C$
NFC-PLA-T0-1	-	NFC-PLA composite with fibrillated ITL fiber at $0^\circ\!\mathrm{C}$ and
		1% fiber loading
NFC-PLA-T0-3	-	NFC-PLA composite with fibrillated ITL fiber at $0^\circ\!\mathbb{C}$ and
		3% fiber loading
NFC-PLA-T0-5	-	NFC-PLA composite with fibrillated ITL fiber at $0^\circ\!\mathbb{C}$ and
		5% fiber loading
NFC-PLA-T20-1	-	NFC-PLA composite with fibrillated ITL fiber at 20 $^\circ\!\mathrm{C}$ and
		1% fiber loading
NFC-PLA-T20-3	-	NFC-PLA composite with fibrillated ITL fiber at 20 $^\circ\!\mathrm{C}$ and
		3% fiber loading
NFC-PLA-T20-5	-	NFC-PLA composite with fibrillated ITL fiber at 20 $^\circ\!\mathrm{C}$ and
		5% fiber loading
NFC-PLA-T80-1	-	NFC-PLA composite with fibrillated ITL fiber at $80^\circ\!\mathrm{C}$ and
		1% fiber loading
NFC-PLA-T80-3	-	NFC-PLA composite with fibrillated ITL fiber at $80^\circ\!\mathrm{C}$ and
		3% fiber loading
NFC-PLA-T80-5	-	NFC-PLA composite with fibrillated ITL fiber at $80^\circ\!\mathrm{C}$ and
		5% fiber loading

xvii

CHAPTER 1

INTRODUCTION

This chapter discusses the research background, problem statements, objectives and research scope of this project.

1.1 Research Background

The disposal of waste polymer material has become a major worldwide environmental problem after the end of its useful life. Environmental problems and reduced petroleum resources around the world have prompted many researchers to developed composites with natural fiber and biodegradable polymer to reduce the use of petroleum derived product. Nowadays, biodegradable polymers have become the target of replacing petroleum-based polymers in many applications because of environmental problems and reduced fossil resources.

Polylactic acid (PLA) is thermoplastic aliphatic polyester with biodegradable and bioactive properties derived from renewable resources such as cassava and corn. PLA has the excellent commercial potential because of its biocompatibility, mechanical strength and easy to process (Huda et al., 2008). The great advantage of PLA as a biodegradable plastic is its versatility. When exposed to the environment, it naturally degrades into H_2O and CO_2 without causing any harm to the environment. PLA is used in a variety of applications such as degradable plastic bags, bottles, food packaging and automotive applications.

However, the high brittleness, less flexible and poor thermal stability of PLA lead to processing difficulties and lower product performance, which limits the wide application of PLA. Moreover, PLA can be reinforced by addition of natural fiber in PLA composites as an effective method to improve the physical and mechanical properties of PLA. Natural fibers are generally considered as ideal candidate reinforcement in green composites because of their low cost, low density, renewability and biodegradability. A simple definition of natural fibers is a non-synthetic or artificial fiber. Natural fiber can come from plants or animals. In this research study, industrial tea leaf (ITL) fibers have been selected as reinforcing materials in PLA composites due to its long sustainability and availability in low cost. ITL is known as one of the renewable lignocelluloses wastes that is biodegradable and has no negative impact to the environment. Recently, waste tea leaves from tea producing factories are considered a new resource for biological research due to its low density, high specific stiffness, renewability and biodegradability. Hence, tea leaf fibers are widely used in biodegradable polymers to prepare biodegradable composite materials. Adding ITL fibers to a PLA composite will not only improve the mechanical properties of the composite, but also reduce the cost of the final product because it is inexpensive and readily available.

Tea leaf is a lignocelluloses biomaterial and it consists of mainly cellulose, hemicelluloses and lignin. Scientifically, cellulose is an insoluble long chain of linked sugar molecules which helps to increase the stiffness of the composite material. Besides that, cellulose can utilize in more effective way by fibrillated the cellulose fiber into nanocellulose. Recently, nanocellulose has received great attention and it is combined with a biodegradable polymer matrix such as PLA by hot pressing to produce "green" environmentally friendly bionanocomposite material (Berglund *et al.*, 2012). This is because nanocellulose is a natural material with excellent strength properties, biodegradable, biocompatible and possesses extraordinary enhancement potential.

It is evidenced from research work carried out by Kowalczyk *et al.* (2011) that the addition of cellulose nanofibers extracted from kenaf pulp to a PLA matrix increased tensile modulus and tensile strength by 24% and 21%, respectively. Nanocellulose is a cellulosic material having at least one dimension of nanometers, usually produced by decomposition of cellulose fibers, producing two different cellulose nanoparticles having different properties, which are nanocellulose whiskers and nanofibrillation cellulose (NFC).

However, in this project, nanofibrillated cellulose (NFC) will be the focus on this study due to their high mechanical properties, low density, economic value, biodegradability and renewability. NFC produced from natural cellulose can uses as a reinforcing agent in polymer composites because of its unique characteristics of high strength and stiffness, low weight and biodegradability. NFC consisted of longer and more flexible microfibers having a width of about 15-20 nm and a length of a few micrometers (Berglund *et al.*, 2012). NFC is usually a hydrogel with a viscosity and it able to form a transparent film after drying. Both of these key properties are related to their high specific surface area (at least 10 times greater than cellulose fibers) and their extensive hydrogen bonding capabilities.

Because NFC is more flexible, longer and has a larger surface area than any other fiber, it has been developed for many scales, ranging from addition in food, biodegradable food packaging and so on. Therefore, in this study, the industrial tea leaves were fabricated into nanofabricated cellulose by chemical-mechanical treatment and then filled into the PLA composite material, which not only can increase the value of ITL, but also can improve the mechanical properties of the PLA composite material.

1.2 Problem Statement

Biodegradable polymers have become the target of replacing petroleum-based polymers in many applications because of environmental concerns. However, the main challenges in using biodegradable polymers in industrial applications are mechanical performance limitations and production costs. Most biodegradable polymers are very expensive and have weak structure strength compared to synthetic polymer. There are several methods have been made to enhance the strength of the biodegradable composite, such as addition of natural fibers to the biodegradable polymer. This is due to the excellent properties of natural fibers such as low density, high specific strength and specific stiffness. The reinforcement of kenaf fibers increases the flexural strength of composite by 36% compared to the pure biopolymer (Sood *et al.*, 2017). But it is still new, and researchers are still concerned about the compatibility of composites. Moreover, natural fibers are hygroscopic, which causes the poor interactions between natural fibers and polymer matrix and lower durability because of their hydrophilic nature. Since there are differences in

3