

DESIGN AND DEVELOPMENT OF RECYCLE PLASTIC WALL PANEL MACHINE

Submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering

by

NUR FARAH ADLIA BINTI MOHD ISA B051510193 960802025460

FACULTY OF MANUFACTURING ENGINEERING 2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND DEVELOPMENT OF RECYCLE PLASTIC WALL PANEL MACHINE

Sesi Pengajian: 2018/2019 Semester 2

Saya NUR FARAH ADLIA BINTI MOHD ISA (960802025460)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT		mat yang berdarjah keselamatan atau kepentingan 1 yang termaktub dalam AKTA RAHSIA RASMI 1972
TERHAD	(Mengandungi maklu badan di mana penyel	mat TERHAD yang telah ditentukan oleh organisasi/ lidikan dijalankan)
TIDAK TI	ERHAD	Disahkan oleh:
Alamat Tetap: No 22 D Kampun 09700 Karangan Kedah Darul Ama	Kulim	Cop Rasmi:
Tarikh:		Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Development of Recycle Plastic Wall Panel Machine" is the results of my own research to complete this project except as cited in references.

Signature

Author's Name : NUR FARAH ADLIA BINTI MOHD ISA

: 20 JUNE 2019 Date

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti

Teknikal Malaysia Melaka as a partial fulfilment to the requirements for the degree of

Bachelor of Manufacturing Engineering.

The members of the supervisory committee are as follow:

(PM DR RAJA IZAMSHAH BIN RAJA ABDULLAH)

ABSTRACT

At present, there are many products that have been produced using materials such as plastics. All societies need to be aware of such a thing as it will have a significant impact on the environment. Plastics can also be categorized according to the type of plastic itself, for example HDPE, LDPE, PVC and PET. The samples of plastic products are bottles, shelves, bottle caps, bowls and more. In fact there is a saying that a total of 2.5 million plastic containers have been discharged just in the environment. This will lead to increased environmental pollution in terms of plastic itself. To ensure the environment and daily life cycle in good condition, we need to take action that plastic waste can be used as a new item such as wall panel. By recycling, it can be maintained for future use besides maintaining the environment. The reason why plastic is easy to recycle is that the plastic properties are light, inexpensive and easily available. The products that can use plastic waste are wall panels. The current wall panels are using Thermal Pressure Machine but there is a problem that is less efficient in terms of time, quality and cost. One of the factors in the plastic material is less material to recycle is the existing machine is now experiencing technological problems it's itself. The ideal process used to produce plastic products is injection molding, extrusion, rolling and hot pressing machines. By using the Deployment Quality Function (QFD) method, we are able to know the demand from customers and thus satisfy the customers' desire for ease of use in the industrial sector. Pugh selection method is also used to choose the best design to produce this wall panel machine. CAD is used to produce design in terms of geometry to see the design of the machine itself.

ABSTRAK

Pada masa ini, terdapat banyak produk yang telah dihasilkan dengan menggunakan bahan seperti plastik. Segenap masyarakat perlu peka tentang hal sebegini kerana ia akan memberi kesan yang uruk dalam persekitaran alam sekitar. Plastik juga boleh dikategorikan mengikut jenis plastik itu sendiri contohnya HDPE, LDPE, PVC and PET.Antara contoh barang yang telah dihasilkan menggunakan plastik adalah botol, rak, penutup botol, mangkuk dan banyak lagi. Dalam fakta ada mengatakan bahawa sebanyak 2.5 million bekas botol plastik telah dibunag begitu sahaja di persekitaran. Hal sebegini akan menyebabkan peningkatan pencemaran alam sekitar dari segi plastik itu sendiri. Untuk memastikan persekitaran dan kitaran hidup seharian dalam keadaan yang elok, kita perlu mengambil tindakan bahawa bahan buangan plastik boleh dijadikan barang yang baru seperti panel dinding. Dengan cara kitar semula, ia dapat dikekalkan untuk penggunaan pada masa akan datang selain menjaga alam sekitar. Antara sebab plastik mudah untuk dikitar semula adalah kerana ciri-ciri plastik itu sendiri iaitu ringan, murah dan mudah didapati.Produk yang boleh menggunakan bahan buangan plastik ialah panel dinding. Pembuatan wall panel pada masa sekarang adalah dengan menggunakan cara Mesin Tekanan Panas tetapi ia terdapat masalah iaitu kurang efisyen dari segi masa, kualiti dan kos. Salah satu faktor bahan plastik kurang menjadi bahan untuk dikitar semula adalah mesin yang sedia ada sekarang mengalami masalah dari segi teknologi itu sendiri. Proses yang sesuai digunakan untuk menghasilkan produk plastik ialah pengacuan suntikan, penyemperitan, rolling dan mesin tekan panas. Dengan menggunakan cara Fungsi Kualiti Deployment (QFD), kita dapat mengetahui permintaan dari pelanggan dan seterusnya dapat memenuhi kemahuan pelanggan untuk memudahkan penggunaannya di sektor industri.Kaedah pemilihan Pugh juga digunakan untuk memilih rekabentuk yang terbaik

untuk menghasilkan mesin wall panel ini. CAD digunakan untuk menghasil rekabentuk dari segi geometri untuk melihat reka bentuk mesin itu sendiri.

DEDICATION

To prepare for this bachelor project, the assisted parties are in terms of moral and financial support. First of all, thanks to ALLAH S.W.T who has facilitated my business during the completion of this project. Also do not forget to my mother, dad, family and friends who are the backbone to me with positive words. Thank you very much to a supervisor who has been teaching a lot by giving me the knowledge about this project.

ACKNOWLEDGEMENT

I would like to say thank you to people that involved in giving help, guiding me in order to learn new things and finish this final year project.

TABLE OF CONTENT

Abstract	I
Abstrak	II
Dedication	III
Acknowledgement	IV
Table of Contents	V- VII
List if Tables	VIII
List of Figures	IX
List of Abbreviations	X
List of Symbol	XI
CHAPTER 1: INTRODUCTION	
1.1. Background of study	1-2
1.2. Problem statement	
1.3. Objective	
1.4. Scope	5
1.5. Organization of the report	5
CHAPTER 2 : LITERATURE REVIEW	
2.1. Introduction of recycle plastic	6
2.1.1. Plastic	6
2.1.2. Effect of recycle plastic	6
2.2. Category of plastic	7

	2.2.1.	PET	7-8
	2.2.2.	HDPE	8-9
	2.2.3.	Energy and prices of virgin plastic	10
2.3	. Plastic	c recycling process	11
	2.3.1.	Collection	11
	2.3.2.	Sorting	11
	2.3.3.	Crash	11
	2.3.4.	Cleaning	11
2.4	. Types	of process involve in plastic	12
	2.4.1.	Extrusion process	12
	2.4	1.1.1. Type of Extrusion	13
		2.4.1.1.1. Sheet/film extrusion	13
		2.4.1.1.2. Blow film extrusion	14
		2.4.1.1.3. Tubing extrusion	14
	2.4	1.2. Advantage of extrusion	15
	2.4	1.3. Challenge in extrusion	16
	2.4.2.	Rolling process	16
	2.4	2.1. Advantage of rolling	16
	2.4	2.2.2. Defect in rolling	17
	2.4.3.	Injection molding	17
	2.4	.3.1. Advantage of Injection molding	17
	2.4	.3.2. Disadvantage if Injection molding	18
	2.4.4.	Compression molding	19
	2.4	.4.1. Benefits of Compression Molding	19
	2.4.5.	Summarization of process	20
2.5	. Qualit	ty Function Diagram	20-22
2.6	. Conce	ept Development and Concept selection	23
	2.6.1.	Concept Screening	23
	2.6.2.	Concept Scoring	24
	2.6.3.	Pugh Method	25

CHAPTER 3: METHODOLOGY

3.1.	Projec	t Plar	nning	26
3	3.1.1.	Proje	ect Flowchart	27
3	3.1.2.	Gant	t Chart	28
3.2.	Produc	ct spe	ecification	29
3	3.2.1.	Qual	ity function diagram	29-30
3.3.	Select	ion cr	riteria identification	30
3	3.3.1.	Prep	are Reference	31
3	3.3.2.	Conc	duct survey	31
3	3.3.3.	Gath	er data and analyse into graphical form	31
3	3.3.4.	Dete	rmine list of criteria for concept selection	31
3.4.	Design	n con	cepts generation	32
3.5.	Conce	pt sel	ection using Pugh method	32
3	3.5.1.	Conc	cept screening	32
	3.5	.1.1.	Prepare selection matrix	33
	3.5	.1.2.	Rate the concepts	34
	3.5	.1.3.	Rank the concepts	34
	3.5	.1.4.	Combine and improve the concepts	34-35
	3.5	.1.5.	Select one or more concepts	35
	3.5	.1.6.	Reflect on the results process	35
3	3.5.2.	Conc	cept scoring	35
	3.5	.2.1.	Preparation the Selection matrix	36
	3.5	.2.2.	Rate the concepts	37
	3.5	.2.3.	Rank the concepts	37
	3.5	.2.4.	Combine and improve the concepts	37
	3.5	.2.5.	Select one or more concepts	38
	3.5	.2.6.	Reflect on the results process	38
3.6.	Protot	yping	building of the product	39
3	3.6.1.	Tech	nical drawing	39
3	3.6.2.	Bill	of materials	39
3	3.6.3.	Fabr	ication planning	39
3 7	Pocess	invo	alve	39

CHAPTER 4: RESULT AND DISCUSSION

4.1. Design	Specification	41
4.1.1	. Easy To Handle	41
4.1.2	. Have Part Of Melting The Plastic	42
4.1.3	. Included Part That Easy To Make Product Into Sheet	42
4.1.4	. Have Cooling Process	42
4.1.5	. Element of Continuous Machine	42
4.1.6	. Easy To Place	42
4.1.7	. Determine List of Criteria For Concept Selection	42
4.1.8	. Design Concept Generation	43-44
4.2. Prod	luct Mission Statement	44-45
4.3. Qua	lity Function Diagram	45-46
4.3.1	. Determine Demand Quality (Whats)	46
4.3.2	. Determine The Rating of The Design Specification	
	or Requirement	46-47
4.3.3	. Determine Quality Characteristics (Hows) or	
	Engineering Requirement	47
4.3.4	. Determine Direction of Improvement	47
4.3.5	. Construct Relationship Matrix	48
4.3.6	. Construct Correlation Matrix	48
4.3.7	. Determine Absolute Importance	48
4.4. Con	cept Selection Method	49
4.4.1	. Concept Screening Phase	49-50
4.4.2	. Concept Scoring Phase	50-51
4.4.3	. Discussion of Concept Selection Method	51
4.5. Prot	otype Building of Wall Panel Machine	51
4.5.1	. Isometric Drawing	52
4.5.2	. Exploded View Drawing	53
4.5.3	. Cost of Manufacturing Wall Panel Machine	54
4.5.4	. Bill of Material	54-56
4.5.5	. Project Procedure	56-57
4.5.6	. Machining Process In Fabricate The Wall Panel Machine	57-58
4.6. Hea	ting Element In Wall Panel Machine	59-60

4.7. Discussion of The Final Wall Panel Machine	61
CHAPTER 5: CONCLUSION	
5.1. Conclusion	62
5.2. Future Work and Recommendation	63
REFERENCE	XII
APPENDICES	XIV

Х

LIST OF TABLES

2.1.	Properties of PET	/
2.2.	Properties of HDPE	9
2.3.	Energy and Prices of virgin plastic	10
2.4.	Summarization of the Process	20
2.5	Four phase of QFD	22
3.1.	Gantt chart of project planning semester 1	28
3.2.	Gantt chart of project planning semester 2	28
3.3.	Screening concept	33
3.4.	Rate of concept	34
3.5.	Scoring concept	36
3.6	Finer scale for concept rating	37
4.1.	Design Concept Generation	43
4.2.	Product Mission Statement	44
4.3.	Scale Of The Importance Of The Requirement	47
4.4.	Direction Of Improvement Symbols	47
4.5.	Value Of Numeric In Relationship	48
4.6.	Symbols Of Correlation Matrix	48
4.7.	Concept Screening Concept	49
4.8.	Concept Scoring Phase In Wall Panel Machine	50
4.9.	Budget To Fabricate The Wall Panel Machine	54
4.10.	Bill Of Material In Wall Panel Machine	55
4.11.	Machining Process That Involve In Fabricate	57
4.12.	Heating Element In Wall Panel Machine	59

LIST OF FIGURES

1.1	Product of Wall Panel	2
1.2	Landfills of Plastic	4
2.1.	Extrusion Process	12
2.2.	Sheet Extrusion	13
2.3.	Blow Extrusion	14
2.4.	Tubing Extrusion	15
2.5.	Four Phase of QFD	23
2.6.	Table of screening concept	24
2.7.	Table of Scoring Concept	24
2.8.	Pugh Method	25
3.1	Project Flowchart	27
3.2	Quality Function Diagram	30
4.1.	Quality Function Diagram	46
4.2.	Isometric View	52
4.3.	Exploded View	53
4.4.	Bill Of Materials	55
4.5.	Process Flow Chart In Fabricating	57
4.6.	Development Of The Wall Panel Machine	61

xii

LIST OF ABBREVIATIONS

HDPE - High Density Polyethylene

PP - Polypropylene

LDPE - Low Density Polyethylene

PS - Polystyrene

PVC - Plasticised Polyvinyl Chloride

PET - Polyethylene Terephthalate

QFD - Quality Function Diagram

3D - 3 Dimension

CAD - Computer-aided design

LIST OF SYMBOL

Mpa - Mega Pascal

Gpa - Giga Pascal

°C - Degree Celsius

% - Percentage

Kg - kilogram

F - Fahrenheit

CHAPTER 1

INTRODUCTION

Recycle plastic can easily to get and we must take opportunity to develop a product from that. This project that to develop recycle plastic of wall panel machines due to problem from the pervious process of wall panel. This project discuss the process that matching for produce wall panel from recycle plastic by using new process which is continuous process. Previous process mostly use hot pressing machine to develop wall panel

1.1 Background of study

In this era, there have much improvement that we need to consider to increase the quality life. There have some situation that we have to focus to development of mankind from the different average. From this statement, nowadays there are so many products that we reuse, recycle and reduce (3R). People must know about the important to care about the wastage material that can give benefits from 3R. The material wastage that we focus is product from plastic.

Recycle plastic the most things that we can find easily. It is so many products from plastic such as bottle, rack, bowl, spoon and etc. Regarding this situation, we can collect the wastage plastic to form the usable product for other. The benefits recycle wastage plastic because of the characteristic of the plastic respectively. The characteristic of the plastic are durable, lightweight and inexpensive material. In addition, plastic also can easily be moulded into various shapes. From the fact, every hour American use 2.5 million plastic bottle and most of the bottle are throw away. This goal of recycling the plastic can reduce

high rate plastic pollution. There have category of plastic which are Polystyrene (PS), Polypropylene (PP), Low- Density Polyethylene (LDPE), Plasticised Polyvinyl Chloride (PVC), High-Density Polyethylene (HDPE) and Polyethylene Terephthalate (PET).

The process that uses to manufacture this wall panel is hot pressing process. In other way the process like sandwich wall panel. The 3D panel is a formless wall framework utilized in the development of inside and outside, bearing and non-bearing wall, rooftops, floors, stairs and significantly more. The boards comprise of an inflexible core of extended polystyrene protection sandwiched between two layers of 2x2-inch eleven gauge steel work which are interconnected by nine-gauge steel brackets puncturing through the polystyrene core at balance points, and spot-welded the steel work layers. The support wires hold the wire work about ¾-inch far from the polystyrene core. At the point when the boards are set up, both sides are covered with a 1½" to 2" layer of Shotcrete that covers the wire work.

Figure 1.1: Product of Wall Panel (Five Star Bungalow, 2015)

1.2 Problem statement

Nowadays, there are many products that create to become a plastic product including toys, bowl, bottle, cap of bottle and etc. User usually use the product for the certain period time, after the product have limit to use then it will throw away. As we know, there are many recycle materials are still standing in landfills. The person that in charge to collect this recycle material is under controlled to handle that because of many people just throw in landfills.

According to Buasri et al. (2018), in industry and municipal the waste is increase around the world. It represent that, people have responsible to take action by safe this situation. It is not just to produce new product from recycle plastic but at the same time to minimize pollution in the world. According to the fact of plastic, it is estimated that 100 million tonnes of plastics are produced each year.

Realising this situation, recycling is a way to prevent this problem that must take action to improve this. It is also can improve pollution of environment. When use the waste material it can reduce the cost to produce new product.

Current technique to recycle plastic by collection bundle of recycle plastic, sorting the waste with follow the type of plastic, crash into pallet and cleaning process by using detergent. There have some process that suitable for plastic to manufacture new product such as hot press, extrude process, rolling, and injection moulding.

Thus, there is need to develop a new recycle plastic machine and process that are effectives which are less operating cost, easy to operate, high productivity and quality.

The product that we focus is wall panel that produce from recycle plastic. As we know, the process that uses to produce wall panel is hot pressing. The process current use is hot pressing has some problem during manufacture the problem. The process is take long time because it produces one by one set of wall panel.

The process not effective regarding the standard of procedure takes long time. In this project that needs to propose is about the process to manufacture the wall panel. The things that consider design a new machine of recycle plastic by following the needs. The requirement must consider about the quality, cost, time and type of plastic.

Figure 1.2 shows the waste of plastic in landfills. There are many waste that throw away in landfills.

Figure 1.2: Landfills of plastic (Magazine of The Society for Science and The Public,2018)

1.3 Objective

The objectives of this study are:

- i. To improve the current manufacturing technique on plastic recycling process
- ii. To design and develop a new effective recycle plastic machine based on QFD design approach.
- iii. To evaluate on the effectiveness of the propose recycle plastic machine in term of cost, time and product quality.

1.4 Scope

This project studies for final project to design and fabricate of recycle plastic wall panel machine. It focuses on the industrial that use or produce product from recycle plastic. The material that focuses on plastic but it is only for waste material. The materials that suitable are recycling plastic. Product to produce by using the recycle plastic is wall panel. In addition, wall panel from recycle plastic can reach target because of the material easy to find. The effective to focus among of product quality, cost and time. This project chooses method of QFD and Pugh method. The focus is to identify the data to design the machine. Type of plastic that use in this project focus on HDPE and PET.

1.5 Organization of the report

There are three chapters for PSM 1 covered of introduction, literature review and methodology. The chapter 1 contains background of study, problem statement that we found from the situation on industry, objective, scope and important of study. Chapter 2 focuses on literature review that we found from journal to support our research dividing into some element on this project. Otherwise in Chapter 3 discuss about methodology that use to produce the product. In PSM 2, it covers of result and conclusion. Chapter 4 focuses on result that we find from the experiment, from the result we will analyse and discuss. For the last chapter is conclusion, that conclude overall of the project.

CHAPTER 2

LITERATURE REVIEW

In literature review, there are some search that conducts to compile the information about the plastic itself, process that suitable for plastic and others. From the search, the comparison between the processes can conduct and choose the good process regarding to the time, cost, and quality.

2.1. Introduction of recycle plastic

2.1.1. Plastic

Plastic is a material that can be form in several of shape because of the characteristic. According the Practical Action (Recycling plastics n.d.), giant organic is a molecule that have in organic polymeric material. In addition, plastic is a form of polymeric structure. In polymer structure that have monomer which is a units that repeating in series. The monomer represent the characteristic of that plastic.

The plastic bottle can give warm protection that can diminish the utilization of power for cooling (Safinia and Alkalbani 2016). It is represent the characteristic of plastic respectively. The plastic have the power to cooling that product during in hot season ,it is easily to use even though in hot weather. Furthermore, the recycle plastic is easy to mould in various shape according the requirement.

2.1.2. Effect of recycle plastic