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ABSTRAK 

 

Diskretisasi model reka bentuk bantuan komputer (CAD) ke dalam elemen yang 

lebih kecil biasanya dirujuk sebagai proses jejaring. Proses jejaring adalah strategi kritikal 

untuk pemodelan dan simulasi unsur terhingga (FE). Teknik jejaring yang baik adalah 

dengan membahagikan model asas kepada beberapa elemen ideal bagi membolehkan 

pengiraan berkomputer dilaksanakan dari mana-mana aplikasi FE. Salah satu cara untuk 

menilai kualiti mesh ialah dengan menggunakan penentu nilai Jacobian. Elemen jejaring 

dengan Jacobian bernilai negatif merujuk pada elemen yang sangat herot, sementara angka 

Jacobian yang bernilai positif menunjukkan elemen jejaring yang sempurna dan dapat 

digunakan untuk melaksanakan simulasi berkomputer. Unsur berbentuk hexahedron dan 

tetrahedron adalah antara bentuk yang selalunya dipilih untuk pembahagian objek. Tidak 

seperti komponen hexahedron, komponen tetrahedron memerlukan lebih banyak elemen 

untuk membentuk model geometri dengan lengkap. Jumlah elemen jejaring yang lebih tinggi 

menghasilkan lebih banyak masa pengiraan dan kos simulasi yang lebih tinggi. Walau 

bagaimanapun, penggunaan elemen hexahedron bagi geometri dengan profil yang kompleks 

sangat mencabar kerana lokasi kelengkungan yang tinggi biasanya akan mengakibatkan 

kehilangan ketetapan jaringan, komponen yang tidak berfungsi dan kualiti mesh yang 

rendah. Untuk permukaan struktur yang lebih kompleks, lebih banyak masa diperlukan 

untuk menghasilkan model dengan elemen hexahedron sepenuhnya. Oleh kerana profil 

permukaan yang semakin kompleks, teknik meshing yang sedia ada adalah tidak sesuai. 

Oleh itu, matlamat penyelidikan ini adalah untuk mewujudkan satu algoritma yang 

membantu proses penjaringan model CAD kepada element hexahedron terutamanya untuk 

geometri dengan profil permukaan yang kompleks dengan menggunakan pendekatan blok 

binaan. Jejaring dengan elemen hexahedron akan dibina dengan merujuk kepada bentuk blok 

binaan dan kualiti elemen akan dinilai berdasarkan penentu nilai Jacobian. Hasil daripada 

kajian yang telah dijalankan dapatan menunjukan bilangan elemen terdistorsi yang 

dihasilkan telah  dapat direndahkan mengunakan teknik yang telah dicadangkan. Kaedah 

yang telah digunakan berkait rapat dengan penggunaan mapping blok teknik yang telah 

banyak digunakan didalam kajian- kajian yang lepas. Hasil yang diperoleh dinilai 

berdasarkan nilai Jacobian yang diperolehi selepas proses diskretisasi. Nilai Jacobian akan 

menentukan sama ada kualiti permukaan mesh memenuhi keperluan untuk proses simulasi. 
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ABSTRACT 

 

 

 

Discretization of the computer aided design (CAD) model into smaller elements are 

commonly referred as the meshing process. The meshing process is a critical strategy for 

finite element (FE) modelling and simulation. An appropriate meshing technique includes 

apportioning the basic model into perfect element that enable estimation from any FE 

application. One of the method to evaluate the mesh quality is using the determinant of 

Jacobian value. Mesh element with negative Jacobian number alludes to a very distorted 

element, while positive Jacobian number demonstrates perfect mesh element and can be 

executed for finite element simulation. The hexahedral and tetrahedral element is among the 

component that are usually chosen for object meshing. Unlike hexahedral component, 

tetrahedral component requires more number of element to completely characterize the 

model’s geometry. Higher element numbers resulted to more computational time and higher 

simulation cost. However, appointment of hexahedral elements to geometry with irregular 

profile is very challenging since the high curvature locale will usually lead to loss of mesh 

constancy, misshaped component and poor mesh quality. For higher structural complexity, 

more time is required to create a fully-hexahedral mesh model. As the structural complexity 

of the profile increases, the current meshing technique may be insufficient. Therefore, the 

aim of this research is to create an algorithm that can assist the fully-hexahedral meshing 

process for geometry with irregular surface profile by utilizing the building block approach. 

A fully-hexahedral mesh will be built up with reference to the building block which is built 

in reference to the CAD model with irregular profile, and the mesh quality will be assessed 

based on the determinant of the Jacobian value. The results of the study have shown that the 

number of distorted element produced has been lowered using the proposed technique. The 

results obtained were evaluated based on the Jacobian value obtained after discretization 

process. Jacobian value will determine whether the quality of a mesh surface meets the 

requirements for the simulation process. The methods used are closely related to the use of 

the mapping block technique that has been widely used in previous studies.  
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INTRODUCTION 

 

 

 

1.1 Research Background 

 

Before any mechanical simulation can be performed on a structural geometry, a 

computer aided design (CAD) model have to be established, followed by discretization of 

the CAD model into smaller elements to allow the structure to be computationally analysed 

under specific loading and boundary conditions (Figure 1.1). Discretization of the CAD 

model into smaller elements are commonly referred as the meshing process. A good meshing 

technique involves partitioning the structural model into ideal elements that enable 

calculation from any finite element (FE) application. One of the method to measure the 

quality of the meshing element is based on the element’s volume ratio. The meshing phase 

become significantly important in ensuring an ideal volume ratio for 3D element can be 

achieved. The volume ratio can be computed using the determinant of the Jacobian value 

which compares the volume of the meshed element to the natural coordinate of an ideal 

element. Mesh element with negative Jacobian value refers to highly distorted elements, 

while positive Jacobian value indicates ideal mesh elements. In order to ensure simulation 

can be performed from any FE tools, the meshed elements must have a positive Jacobian 

value. Meshing elements with negative Jacobian value should be avoided at all cost as it 

could prevent the FE application from running the simulation process (Grosland, Bafna, et 

al., 2009).  
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Figure 1.1 The process of computational simulation 

 

There are many types of mesh element. The hexahedral and tetrahedral element are 

among the element that are commonly selected for object meshing (Figure 1.2). The 

hexahedral element has a cubical shape while the tetrahedral element have a triangular shape. 

Compared to hexahedral element, tetrahedral element requires more number of elements to 

fully define the object’s geometry. Higher element numbers would usually result to longer 

computational time, and hence, higher simulation cost. 

 

(a) (b) 

 
 

Figure 1.2 (a) Example of mesh with a hexahedral element mesh and (b) tetrahedral element 

 

Generating an ideal hexahedral mesh element for structural features particularly with 

irregular surface profile have been a challenge in FE studies. The differences between 

geometry with regular and irregular profiles are illustrated in Figure 1.3. Biological parts in 

particular (example human bones) usually have highly irregular shape. Discretizing irregular 

surface profiles into fully-hexahedral elements have been a challenge among computational 

researchers as there are higher risk for the discretized elements to show a lower mesh quality 

with highly distorted element (Yang, 2018a). Hence, simulation engineers dealing with 

irregular surface profile usually choose tetrahedral elements to execute their simulation.  

Structural 
Geometry

CAD Model
Discretization of 

CAD Model
Mechanical 
Simulation 
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(a) (b) 

 

 

Figure 1.3 Different types of geometrical features. (a) Regular surface profile, and (b) Irregular 

surface profile. 

 

IA-FEMesh is an open-source software, which was initially developed to assist 

meshing of anatomical parts into hexahedral elements. The software employs generation of 

building block which surround the CAD model (Figure 1.5). Seeds of hexahedral elements 

are then translated from the edges of the building block towards the nearest point on the 

surface of the CAD model to generate a fully-hexahedral meshing (Figure 1.4). Currently, 

the building block can only be altered in the IA-FEMesh environment using their graphic 

user interface (GUI). However, as the geometrical complexity increases, alteration of the 

building block in the IA-FEMesh environment becomes increasingly difficult, especially 

when orienting and altering the nodal points of the building block in 3D space. As a result, 

the mesh quality will vary and highly depends on the user’s skill to establish an ideal building 

block. Therefore, it is the interest of this study to develop an algorithm than can be executed 

to develop the building block for different irregular profiles to ensure consistent meshing 

results. Furthermore, this study intends to explore the possibility to establish fully-

hexahedral mesh elements especially for geometry with irregular profiles as it is expected to 

reduce computational time, increases FE computational stability and reduce simulation cost. 
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Figure 1.4 Meshing Process of a hexahedral element based from seed value. 

 

 

Figure 1.5 Building Block In IA-FEMesh Environment 

 

 

1.2 Problem Statement 

 

(a) Producing the mesh element for a regular shape geometry is easier compared 

to the geometry with irregular shape as the geometry can be discretized 

accurately. When meshing irregular profile into fully-hexahedral elements, 

there is an increased tendency for the meshing quality to become poor based 

on the high number of elements with negative Jacobian value. Elements with 

negative Jacobian value are extensively distorted from the ideal hexahedral 

shape. Most FE application (eg. ANSYS, Simulia, and Providance) will 

generate error and terminate any simulation when elements with negative 

Jacobian value is detected (Yang, 2018b).  

 

(b) Currently, the effort needed to generate fully hexahedral mesh  with  positive 

Jacobian value especially for geometry with irregular profiles  is very time-

consuming (Yang, 2018a). As the structural complexity increases, the present 

meshing technique become insufficient  (Shivanna et al., 2010). The irregular 
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profile becomes the main focus in this study because of the high curvature 

region that may lead to loss of mesh fidelity, distorted element and poor mesh 

quality (Shivanna et al., 2010).  

 

(c) Certain profile features like corner and ridges require extra attention during 

meshing so that the geometry can be reproduced accurately. In medical-

engineering field, the meshing process which accurately reflect subject or 

patient-specific specimens are much more challenging compared to 

mechanical models (Mao et al., 2013). Sometimes, the effort in developing a 

fully-hexahedral mesh element of an irregular profile become even more 

complicated compared to the simulation process itself.  

 

 

1.3 Objective 

 

The aim of this research is to develop a systematic algorithm that can expedite the 

fully-hexahedral meshing process for geometry with irregular surface profile using the 

building block approach. It is expected that the algorithm can reduce the number of distorted 

hexahedral mesh element and can be applied to various geometries with irregular profiles.  

 

The specific objectives are as follows: 

 

a) To determine the hexahedral mesh element quality of geometry with irregular 

profile by using manually constructed building block for single and multiple 

building block approach. 

 

b) To develop multiple building block algorithm that can reduce the number of 

distorted hexahedral mesh elements. 
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1.4 Scope 

 

(a) Geometry of irregular profile that will be considered in this study is 

(Figure 1.6): 

i. Sphere. 

ii. Index proximal bone. 

iii. Distal Phalanges 

iv. Middle Phalanges 

v. Proximal Phalanges 

vi. Metacarpals 

 

(a) 

 

(b) 

 

Figure 1.6 Position and illustration of the model used in the mesh process (a) Model used in PSM1 

(b) Model Used in PSM 2 

 

(b) Maximum number of building block that will be considered in this study is 

only up to 8-blocks. 

 

(c) Mesh element quality is determined based on the determinant of Jacobian 

value. 
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(d) Meshing discretization will be performed using the IA-FEMesh software. 

 

(e) Development of multiple building block algorithm will be performed using 

Python programming language. 

 

 

1.5 Rational of Research  

 

The rational of this research as follows: 

 

(a) The mesh generation is an important procedure in any FE modelling and 

simulation. However, higher structural complexity require  more time to generate 

the mesh (Shivanna et al., 2010). Therefore, we intend to gain knowledge 

regarding the meshing technique that can improve the meshing quality of the 

selected profile. 

 

(b) As the structural complexity of the profile increase, the present multiblock 

meshing may be inadequate for the meshing process (Shivanna et al., 2010). 

Without proper meshing technique and poor meshing quality, the FE simulation 

cannot be performed at all. FE simulation is important to evaluate structural 

behaviour including measurement of stresses and strains of complex geometry 

given the loading condition and material properties. Good FE model will ensure 

more accurate estimation of the mechanics of the CAD model. 

 

(c) Application of the FE method in biomedical engineering is a growing research 

interest. However, due to high geometric complexity of biological component, 

the FE computation analysis become challenging as it could cause a high amount 

of time and manual effort to create an adequate and valid FE model (Grosland et 

al., 2009). 
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1.6 Research Methodology 

 

 The research consists of two main phases (Figure 1.7). Initially, the geometric profile 

of an irregular profile is selected and the STL data is established. In the first phase, which is 

accomplished during PSM 1, the preliminary building block is generated based on the STL 

data using the IA-FEMesh GUI. In the IA-FEMesh environment, the building block is 

developed without node alteration and with manual node alteration. The manual node 

alteration of the building block depends on the user definition in the IA-FEMesh GUI. Next, 

fully-hexahedral mesh is generated in reference to the building block, and the mesh quality 

is evaluated based on the determinant of the Jacobian value. In the second phase, which is 

accomplished during PSM 2, the development of the algorithm of multiple building block 

will be established. Accordingly, fully-hexahedral mesh will be established, and the mesh 

quality will be determined based on the determinant of the Jacobian value. Variation to the 

mesh quality value will be evaluated and research will be concluded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Flow Chart for the Final Year Project 
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