

MULTI OBJECTIVES PERFORMANCE OPTIMISATION OF ULTRASONIC ASSISTED DRILLING PARAMETER FOR GORILLA GLASS: PARAMETERS INVESTIGATION

Submitted in accordance with the requirement of the University Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Hons.)

by

HENG WEI ZUAN B051510074 951012-07-5805

FACULTY OF MANUFACTURING ENGINEERING 2019

🔘 Universiti Teknikal Malaysia Melaka

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: MULTI OBJECTIVES PERFORMANCE OPTIMISATION OF ULTRASONIC ASSISTED DRILLING PARAMETER FOR GORILLA GLASS: PARAMETERS INVESTIGATION

Sesi Pengajian: 2018/2019 Semester 2

Saya HENG WEI ZUAN (951012-07-5805)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT (Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

Пте

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

Alamat Tetap: 22A, LORONG MERAK JAYA 3, TAMAN MERAK JAYA, 14100, SIMPANG AMPAT, PULAU PENANG Cop Rasmi:

Tarikh: ___

Tarikh: ____

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Multi Objectives Performance Optimisation of Ultrasonic Assisted Drilling Parameter for Gorilla Glass: Parameters Investigation" is the results of my own research except as cited in references.

Signature:Author's Name: HENG WEI ZUANDate: 20 June 2019

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirement for the degree of Bachelor of Manufacturing Engineering (Hons.). The members of the supervisory committee are as follow:

.....

(Principal Supervisor) - Signature & Stamp

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Pada masa kini, kaca yang diperkuatkan secara kimia mempunyai permintaan yang tinggi dalam pelbagai industri kerana kaca ini mempunyai sifat-sifat yang sangat baik. Permintaan untuk mikromachining kaca berkembang pada masa sekarang untuk pembuatan alat-alat mikro. Walau bagaimanapun, micromachining kaca adalah satu cabaran besar kerana sifat kekerasannya yang tinggi dan sifat kelemahlembutannya. Ciri-ciri ini membawa kepada beberapa masalah semasa pemesinan seperti menghasilkan banyak burr, mengurangkan hayat alat, kekasaran permukaan dan ketepatan pemesinan. Untuk menangani cabaran ini, satu teknik penggerudian yang baru diperkenalkan, teknik ini melibatkan getaran ultrasonik bergabung dengan alat penggerudian putar untuk meningkatkan prestasi penggerudian. Teknik ini menggunakan mekanisme gerakan terputus-putus untuk memotong bahan. Mekanisme ini boleh menghasilkan proses pemotongan yang lancar dan meningkatkan proses penghapusan cip. Matlamat utama penyelidikan ini adalah untuk mencari parameter-parameter input yang optimum untuk penggerudian kaca yang diperkuatkan secara kimia. Untuk mengoptimumkan proses penggerudian ini, hubungan antara parameter-parameter seperti frekuensi, amplitud, kelajuan pemotongan dan kadar suapan pada prestasi penggerudian telah disiasat dalam kajian ini. Tindak balas proses utama yang diambil kira adalah kekuatan permotongan, keluasan penyingkiran di permukaan kemasukan dan pengeluran mata gerudi. Hasil kajian yang dijangkakan adalah menghasilkan keluasan penyingkiran di permukaan kemasukan dan pengeluran mata gerudi yang kecil, kekuatan pemotongan yang rendah dan juga permukaan yang baik tanpa pembentukan burr mengelilingi lubang dengan menggunakan teknik penggerudian ini.

ABSTRACT

Nowadays, chemically strengthened glasses are highly demanded in various industries due to their superior properties. The demands for micromachining of glass are growing for the manufacture of micro devices. Nevertheless, micromachining of glass is a big challenge due to the properties of high hardness and brittleness of the glass. These properties lead to some problems during machining such as generate large amount of burr, reduce tool life, surface roughness and accuracy of machining. To tackle this challenge, a new drilling technique ultrasonic assisted vibration combine with rotary drilling tool was introduced aim to increase the drilling performance. This technique uses intermittent motion mechanism for removing material which produces a smooth cutting process and improves the chip evacuation process. The main objective of this research is to investigate the optimal input parameters for drilling of chemically strengthened glass. In order to optimize the drilling process, the correlation between the combined parameters namely the frequency, amplitude, cutting speed and feed rate on drilling performances were investigated in this research. The main process responses that have be taken into account are cutting force, delamination area at entry and exit. The expected results of this study is to produce small delamination area at entry and exit, low value of cutting force and also a good surface finish without formation of burr surround the machined hole by using ultrasonic assisted drilling.

DEDICATION

Only

my beloved father, Heng Peng Pong my appreciated mother, Lim Phaik Kiang my adored brother, Heng Wei Han for giving me moral support, money, cooperation, encouragement and also understandings Thank You So Much & Love You All Forever

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest gratitude and appreciates to my supervisor, Dr. Raja Izamshah bin Raja Abdullah, for his exceptional guidance me throughout the development of my research project. His commitment in ensuring that I understood the whole concept of research methods and his patience in guiding me through complex statistical analyses act as motivating factors for me to strive and persevere despite challenges and adversities.

Besides that, I would like to use this chance to thank the technician of FKP CNC Laboratory, Mr. Mohd Hanafiah bin Mohd Isa, who have spent his precious time, expertise and experience to support me during conducting experiment. Other than that, the knowledge and guidance from Mrs. Siti Aisah bin Khadisah who is the technician of FKP Methodology Laboratory are engraved on my mind.

Special thanks to my best friends, Lau Ka Dick and Wong Meng Meng, who always gave me encouragement, motivation and support, truly help the progression of my research project.

Last but not least, I would like to thanks again to everyone who helped me, in terms of guidance or advice during this period. Other than that, not forgetting my family especially my parents, thanks for having my back all the time.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	v
List of Tables	ix
List of Figures	Х
List of Abbreviations	xiii
List of Symbols	xiv

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope	4
1.5	Significant of Study	5
1.6	Organization of the Thesis	5
1.7	Summary	6

CHAPTER 2: LITERATURE REVIEW

2.1	Glass		7
	2.1.1	Glass structure	8
	2.1.2	Properties of glass	9
2.2	Types	s of Glass	9
	2.2.1	Float glass	10
	2.2.2	Toughened glass (tempered glass)	10
	2.2.3	Heat strengthened glass	11
	2.2.4	Laminated glass	11
	2.2.5	Insulating glass	12

v

	2.2.6	Coated glass	12
	2.2.7	Sapphire glass	13
	2.2.8	Chemically strengthened glass	13
		2.2.8.1 Gorilla Glass	14
2.3	Comp	arison between Sapphire Glass and Chemically Strengthened Glass	15
2.4	Manu	facturing Process of Glass	16
	2.4.1	Float glass process	17
	2.4.2	Rolling process	17
	2.4.3	Production of Gorilla Glass	18
		2.4.3.1 Comparison between chemical tempering and conventional	
		thermal tempering	19
2.5	Types	of Glass Machining	20
	2.5.1	Mechanical drilling	20
	2.5.2	Abrasive jet machining (AJM)	21
		2.5.2.1 Abrasive water jet machining (AWJM)	21
		2.5.2.2 Abrasive slurry jet micro machining (ASJM)	22
	2.5.3	Electro chemical discharge machining (ECDM)	22
	2.5.4	Laser machining	24
	2.5.5	Chemo-thermal micromachining	24
	2.5.6	Ultrasonic assisted drilling	25
	2.5.7	Summary	26
2.6	Comp	arison between ultrasonic assisted drilling and conventional drilling	27
2.7	Machi	ning Parameters of Ultrasonic Assisted Drilling	29
	2.7.1	Effects of machining parameters of UAD	30
		2.7.1.1 Effect on cutting force	30
		2.7.1.2 Effect on surface roughness	34
		2.7.1.3 Effect on chip morphology	35
		2.7.1.4 Correlation between cutting force and volume of chipping	37

CHAPTER 3: METHODOLOGY

Overview of the Study	38
Material	40
Equipment	41
3.3.1 CNC milling machine	41
	Material Equipment

	3.3.2	Dynamometer	42
	3.3.3	Optical microscope	43
	3.3.4	Ultrasonic amplitude measuring meter	44
	3.3.5	Ultrasonic tool holder	45
	3.3.6	Cutting tool	45
	3.3.7	Jig	46
3.4	Ultras	onic Assisted Drilling Parameter Selection	46
3.5	Design	n of Experiment (DOE)	47
	3.5.1	Response surface methodology (RSM)	47
	3.5.2	Analysis of variance (ANOVA)	48
3.6	Exper	imental Methods	48
	3.6.1	Preparation of Gorilla Glass	48
	3.6.2	Drilling process	49
3.7	Run T	able	50
3.8	Measu	irement	51

CHAPTER 4: RESULT & DISCUSSION

4.1	Overv	view	52
4.2	Result	ts for Cutting Force	54
	4.2.1	Analysis of cutting force	55
	4.2.2	Final equation in terms of actual factors	61
	4.2.3	3D interaction effects for cutting force	61
4.3	Result	ts for Delamination Area at Entry	62
	4.3.1	Analysis of delamination area at entry	64
	4.3.2	Final equation in terms of actual factors	68
	4.3.3	3D interaction effects for delamination area at entry	68
4.4	Result	ts for Delamination Area at Exit	69
	4.4.1	Analysis of delamination area at exit	71
	4.4.2	Final equation in terms of actual factors	75
	4.4.3	3D interaction effects for delamination area at exit	75
4.5	Optim	nization	76
4.6	Valida	ation	77

CHAPTER 5: CONCLUSION & RECOMMENDATIONS

5.1	Conclusion	80
5.2	Recommendations	80
5.3	Sustainability Element	81
REFERENCES		82
APPE	NDICES	

А	Gantt Chart of FYP I	88
В	Gantt Chart of FYP II	89

LIST OF TABLES

2.1	The properties of Gorilla Glass	14
2.2	Comparison of properties of Sapphire Glass and strengthened glass	15
2.3	Input parameters of ultrasonic assisted drilling	29
3.1	Properties of Gorilla Glass	41
3.2	Recommended input parameters	49
3.3	Run table of this study	50
4.1	Results table for cutting force	54
4.2	Sequential Model Sum of Squares	56
4.3	Lack of Fit Tests	57
4.4	Model Summary Statistics	57
4.5	Analysis of Variance table	57
4.6	R-Square analysis for cutting force	58
4.7	Results table for delamination area at entry	62
4.8	Sequential Model Sum of Squares	64
4.9	Lack of Fit Tests	65
4.10	Model Summary Statistics	65
4.11	Analysis of Variance table	65
4.12	R-Square analysis for delamination area at entry	66
4.13	Results table for delamination area at exit	69
4.14	Sequential Model Sum of Squares	71
4.15	Lack of Fit Tests	72
4.16	Model Summary Statistics	72
4.17	Analysis of Variance table	72
4.18	R-Square analysis for delamination area at exit	73
4.19	Criteria for the input factors and output responses	76
4.20	The 5 solutions found by RSM	77
4.21	Validation results for output responses	77

LIST OF FIGURES

1.1	The company logo of Corning Incorporated	1
1.2	Corning's Gorilla Glass is used on the Nokia smartphone's screen	2
1.3	Chemically strengthened glass cracks when undergo conventional drilling proce	ess 3
2.1	The random atomic nature of a soda-lime silicate glass	8
2.2	The float glass	10
2.3	The toughened glass	11
2.4	The laminated glass	12
2.5	Gorilla Glass's applications	14
2.6	The stages of manufacturing process of glass	16
2.7	Float glass process that used to manufacture flat glass	17
2.8	Rolling process of glass	18
2.9	Ion exchange process to produce Gorilla Glass	19
2.10	Schematic of abrasive jet machining on glass	21
2.11	The setup of electro chemical discharge machining	23
2.12	Setup of chemo-thermal micromachining	25
2.13	The schematic of ultrasonic assisted drilling	26
2.14	The diamond abrasive particles	26
2.15	Comparison of the average value of thrust forces in CD and UAD with	
	spindle speed of 830 rpm	27
2.16	Build-up edge that seizes to the cutting edges of drill bit	28
2.17	Temperature of cutting tool and formation of BUE at different value of	
	spindle speed and feed rates	28
2.18	The chip morphology in CD and UAD	29
2.19	The relationship between cutting force and spindle speed at different feed rate	31
2.20	The relationship between cutting force and feed rate at different spindle speed	31
2.21	The relationship between cutting force and vibration amplitude at different	
	feed rate	32
2.22	The relationship between cutting force and abrasive size at different feed rate	32

2.23	The relationship between cutting force and abrasive concentration at different	
	feed rate	33
2.24	The relationship between cutting force and semi-angle of abrasive	
	particle at different feed rate	33
2.25	The relationship between the surface roughness and ultrasonic power	34
2.26	The relationship between surface roughness and tool rotation speed	35
2.27	The relationship between surface roughness and feed rate	35
2.28	The relationship between chipping size and ultrasonic power	36
2.29	The relationship between chipping size and tool rotation speed	36
2.30	The relationship between chipping size and feed rate	37
2.31	The relationship between cutting force and volume of chipping	37
3.1	Flow chart of the project	39
3.2	Gorilla Glass	40
3.3	CNC milling machine HAAS VOP-C	42
3.4	The internal structure of the CNC milling machine	42
3.5	Setup of dynamometer (yellow circle) during machining	43
3.6	The optical microscope used to investigate the burr formation	43
3.7	The ultrasonic amplitude measuring meter	44
3.8	The ultrasonic tool holder	45
3.9	The electroplated diamond tools	45
3.10	The jig that used in this research	46
3.11	The experimental setup of this study	49
4.1	The procedures of the experiment	53
4.2	The result of cutting force (N) in Run 17	55
4.3	The diagnostic plots in this research	59
4.4	The one factor plots and interaction graph in this research.	60
4.5	3D response surface of cutting force, frequency and amplitude	61
4.6	3D response surface of cutting force, frequency and feed rate	62
4.7	The hole' structure at entry of Run 28	63
4.8	The diagnostic plots in this research	67
4.9	The one factor plot of delamination area at entry versus amplitude	68

4.10	3D response surface of delamination area at entry, frequency and amplitude	69
4.11	The hole' structure at exit of Run 28	70
4.12	The diagnostic plots in this research	74
4.13	The one factor plot of delamination area at exit versus amplitude	75
4.14	3D response surface of delamination area at exit, frequency and amplitude	75

LIST OF ABBREVIATIONS

PC	-	Personal Computer
EDM	-	Electrical Discharge Machining
GTAT	-	GT Advanced Technologies
KNO ₃	-	Alkaline Potassium
Na+	-	Sodium Ions
AJM	-	Abrasive Jet Machining
Al_2O_3	-	Alumina
AWJM	-	Abrasive Water Jet Machining
ASJM	-	Abrasive Slurry Jet Micro Machining
ECDM	-	Electro Chemical Discharge Machining
MEMS	-	Micro-Electromechanical Systems
UAD	-	Ultrasonic Assisted Drilling
MRR	-	Material Removal Rate
MOEMS	-	Micro-Optical-Electro-Mechanical-Systems
μTAS	-	Miniaturized Total Analysis Systems
CD	-	Conventional Drilling
BUE	-	Build-Up Edge
CNC	-	Computer Numerical Control
DOE	-	Design of Experiment
RSM	-	Response Surface Methodology
ANOVA	-	Analysis of Variance

xiii

LIST OF SYMBOLS

MPa	-	Mega Pascal
GPa	-	Giga Pascal
°C	-	Degree Celsius
mm	-	Millimeter
K _{IC}	-	Fracture Toughness
k	-	Dielectric Constant
n	-	Refractive Index
f	-	Feed Rate
Fz	-	Average Value of Thrust Forces
Ν	-	Spindle Speed
rpm	-	Revolutions Per Minute
E	-	Young's Modulus
ν	-	Poisson's Ratio
HV	-	Vickers Hardness
D_i	-	Inner Diameter
Do	-	Outer Diameter
Ca	-	Abrasive Concentration
Sa	-	Abrasive Size
Na	-	Number of Abrasive Particles
А	-	Amplitude
f	-	Frequency
hp	-	Horsepower
L	-	Liter
ipm	-	Inches Per Minute
Rz	-	Roughness Depth
Ra	-	Mean Roughness Value
μm	-	Micrometer

CHAPTER 1 INTRODUCTION

This chapter explains about the background of study, problem statement, objectives, scope of project, significant of study, organization of the thesis and summary of this project.

1.1 Background of Study

Corning Incorporated is one of the world's driving trend-setters in materials science. The company had invented a new glass technology named Gorilla Glass which has brought them instant acknowledgement in the world. Gorilla Glass is a chemically strengthened glass designed to be thin, light and damage-resistant. This chemically strengthened glass is widely used in portable mobile devices because of its superior properties such as good scratch-resistant and high surface strength. With the expanded use of portable mobile devices, Corning saw that the hard and durable protection glass is highly needed in consumer electronics industry.

Figure 1.1: The company logo of Corning Incorporated.

In fewer than ten years, Corning Gorilla Glass is presently an industry standard with remarkable brand awareness. Gorilla Glass is the favored material for portable electronic panel display devices application such as smartphone, laptop and tablet PCs screen, camera lenses and optical component because it is around five times stronger and scratches resistance compared to the normal tempering glass that already existed in the market. There are a lot of major brands in electronic industry such as Samsung, Nokia, Sony, Motorola, LG and Asus have employed the chemically strengthened glass developed by Corning Incorporated on their products. In the current market, the smartphones with Gorilla Glass is more attractive than the smartphones without Gorilla Glass during customers make a purchase decision.

Figure 1.2: Corning's Gorilla Glass is used on the Nokia smartphone's screen.

Besides that, the application of Corning's Gorilla Glass is also existed in automotive industry. When the chemically strengthened glass is used as car window, it will reduce the weight of car window due to its properties of lightweight. The reduction of weight of a car can improve the car's acceleration and improve its braking performance. In addition, the lightweight vehicles can also enhance the fuel efficiency and reduce the emissions of carbon dioxide.

In such aforesaid applications, precise and effective micro holes drilling are requisite as to aid for the certain purposes, for example, camera lenses, speakers and proximity sensors. Nevertheless, employ conventional drilling methods to drill into chemically strengthened glass is a big challenge due to the properties of chemically strengthened glass. Conventional drilling process tends to produce high tensile stress due to the thrust forces that results in poor holes quality and cracks propagation.

In industry practices today, drilling of micro holes for chemically strengthened glass can be accomplished using numerous methods such as mechanical methods (mechanical drilling, powder blasting and ultrasonic drilling), thermal methods (laser drilling, ultra-short pulse laser, and focused electrical discharge), chemical methods (wet etching and deep reactive ion etching) and hybrid methods (vibration-assisted micromachining, laser-assisted micro-cutting/milling, chemical-assisted micromachining, electrical discharge machining (EDM)).

Among all of the glass drilling approaches, ultrasonic assisted drilling has shown high potential in drilling chemically strengthened glass due to the intermittent motion mechanism of UAD. Hence, this project will study the characteristics of ultrasonic assisted drilling process and investigate the most suitable drilling parameters to drill chemically strengthened glass for this drilling process.

1.2 Problem Statement

There are a lot of problems occur during employing conventional drilling method to drill chemically strengthened glass. One of the problem is large amount of cutting force will be generated in conventional drilling. Optimization of the cutting force is very important for the drilling process due to it can influence other cutting output parameters. Another problem is the chemically strengthened glass will crack when undergo conventional drilling process due to the inherent properties of chemically strengthened glass in which stronger under compressive stress and weak under tension. Besides, machining of chemically strengthened glass is very challenging due to their hard and brittle properties which induced defects and severe tool wear.

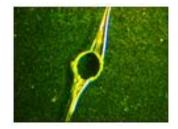


Figure 1.3: Chemically strengthened glass cracks when undergo conventional drilling process.

Other than that, by not controlling the drilling parameters may cause the issue of holes precision of the glass, which implies that the penetration of drill bit to the glass is not accurate. Other problem that tends to occur during conventional drilling process is a lot of burr is produced during the process. The problems stated above are highly potential caused by utilizing inappropriate drilling parameters such as speed and feed rate of drill bit when undergo the conventional drilling process.

According to the research study on glass drilling, ultrasonic assisted drilling has shown high potential in drilling chemically strengthened glass. There are two additional parameters exist in ultrasonic assisted drilling which are amplitude and frequency of ultrasonic vibration. Based on the research, the thrust force will be lowered by employing the ultrasonic vibration frequency on the rotating diamond tool. Besides that, the ultrasonic vibration frequency can also improve the diamond wear and reduce the chip generation.

1.3 Objectives

There are three objectives that had been achieved in this project:

- To propose ultrasonic assisted drilling for drilling on chemically strengthened glass.
- To investigate the optimal ultrasonic drilling parameters such as amplitude, frequency of ultrasonic vibration, speed and feed rate for drilling of chemically strengthened glass.
- To validate the effectiveness of the optimal ultrasonic drilling parameters.

1.4 Scope

Scope of project is the work had been accomplished to deliver a project. The scope of this project is to optimize the drilling parameters for the drilling process on chemically strengthened glass. Those parameters are amplitude, frequency of ultrasonic vibration, feed rate and speed. In this project, the study or research was focused on one drilling process only which is ultrasonic assisted drilling. Besides that, the type of chemically strengthened glass was used in this project is Gorilla Glass. Other than that, the output responses were focused on this project are cutting force, delamination area at entry and exit.

1.5 Significant of Study

The findings of this project will provide the basis for advancing the technology related to micro machining of chemically strengthened glass. This study is very important for the industry today, as the current conventional drilling process lead to the problems like poor holes quality and cracks propagation on the surface of the chemically strengthened glass.

Besides that, this study will provide deeper information about the ultrasonic assisted drilling process and chemically strengthened glass to the industry. This information is very useful to investigate the optimal drilling parameters for the drilling process.

1.6 Organization of the Thesis

The organization of the thesis is as follows:

The first chapter of this report is the introduction about this study. This chapter includes the background of the research, problem statement, objectives of the study, limitation of the study and the significant of this study.

Chapter two covers the basic theories related to the research topic and review the literatures from books, journals, articles and internet resources that used in this study. The introduction of glass, glass structure, properties of glass and types of glass are illustrated. Besides that, the comparison between Sapphire Glass and chemically strengthened glass is shown. Other than that, the manufacturing process of glass and the comparison between chemical tempering process and conventional thermal tempering process are stated. The machining of glass such as mechanical drilling and ultrasonic assisted drilling, and the comparison between ultrasonic assisted drilling and conventional drilling is also be discussed in this chapter. Moreover, this chapter also describes the machining parameters of ultrasonic assisted drilling and their effect on the output variables.

Chapter three states the methodology of this project and the overview of the project. The overview of this research is plotted in a flow chart to visualize it. In this chapter, the materials and equipment were used in this project also have be stated. Besides that, it is also provides the information about the data collection and the way to analyze the data.

1.7 Summary

This study is mainly focus on provide the basis for advancing the technology related to micro holes machining on chemically strengthened glass. A lot of problems will arise when employing conventional drilling process on chemically strengthened glass such as poor holes quality and cracks propagation. According to the research study on glass drilling, ultrasonic assisted drilling has shown high potential in drilling chemically strengthened glass due to the present of two other parameters: amplitude and frequency of ultrasonic vibration. These two parameters can enhance the grinding process and chip evacuation during micro machining. Therefore, this project focused on study the characteristics of ultrasonic assisted drilling process and the properties of chemically strengthened glass. Lastly, the optimal ultrasonic drilling parameters for the micro holes machining on chemically strengthened glass were investigated.