

SIMULTANEOUS ASSESSMENT SYSTEM OF WORK POSTURE AND MUSCLE ACTIVITY FOR MANUAL MATERIALS HANDLING TASKS

Submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons)

by

FAIRIL BIN ABULLAIS B051520033 951102-04-5159

FACULTY OF MANUFACTURING ENGINEERING 2019

🔘 Universiti Teknikal Malaysia Melaka

DECLARATION

I hereby, declared this report entitled "Simultaneous Assessment System of Work Posture and Muscle Activity for Manual Materials Handling Tasks" is the results of my own research except as cited in reference.

Signature:Author's Name: FAIRIL BIN ABULLAISDate: 9 JANUARY 2019

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as partial fulfilment of the requirements for the degree of Bachelor of Manufacturing Engineering (Hons.). The member of the supervisory committee is as follow:

.....

(DR. ISA BIN HALIM)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Pengendalian bahan secara manual adalah salah satu aktiviti yang biasanya terdapat dalam sektor industri perkilangan. Teknik-teknik yang salah ketika melaksanakan tugas ini boleh membawa kepada kecederaan dan ketegangan otot di kalangan pekerja industri. Pengamal ergonomik dan jurutera memerlukan satu sistem penilaian ergonomik yang membolehkan mereka mengkaji interaksi antara postur kerja dan aktiviti otot seseorang pekerja ketika melaksanakan tugas tersebut. Oleh itu, sistem penilaian ergonomik sepatutnya boleh mengukur sudut postur kerja dan data "electromyography" (EMG) secara serentak. Sistem penilaian yang sedia ada tidak memenuhi syarat-syarat ini kerana pengamal ergonomik perlu menjalankan penilaian dengan menggunakan sistem yang berasingan. Tujuan kajian ini adalah untuk menghasilkan dan mengesahkan satu prototaip sistem penilaian ergonomik yang beroperasi secara serentak untuk mengukur sudut postur kerja dan data EMG sesesorang pekerja yang melakukan tugas pengendalian bahan secara manual. Satu soal selidik telah dijalankan di kalangan 30 responden untuk mengenal pasti faktor-faktor yang boleh mempengaruhi postur kerja dan aktiviti otot. Perisian Microsoft Visual Studio, kamera 3D, sensor otot dan pengawal mikro telah digunakan untuk menghasilkan sistem penilaian ergonomik. Selain itu, satu antara muka pengguna grafik telah dibangunkan dalam sistem tersebut untuk membolehkan pengamal ergonomik melaksanakan penilaian secara serentak. Hasil daripada soal selidik mendapati bahawa gerakan mengangkat, membawa dan pergerakan yang berulang adalah faktor utama dalam mempengaruhi postur kerja dan aktiviti otot. Kajian ini menyimpulkan bahawa sistem penilaian postur kerja telah menunjukkan hasil ketepatan yang baik dalam mengukur sudut lengan dan bahagian atas siku. Manakala sistem pengukuran EMG dapat menghasilkan corak data EMG yang sama dengan sistem EMG yang terdapat di pasaran. Kajian lanjut diperlukan untuk meningkatkan kesahihan, kebolehpercayaan dan kebolehgunaan prototaip ini supaya dapat memudahkan pengamal ergonomik dan jurutera untuk menilai postur kerja dan aktiviti otot ketika melakukan tugas pengendalian bahan secara manual.

i

ABSTRACT

Manual material handling (MMH) is one of the common activities in many industrial sectors such as manufacturing industry. Improper techniques in performing MMH tasks can lead to muscle's sprain and strain among industrial workers. Ergonomics practitioners and engineers require an assessment system which allows them to investigate the interaction of work posture and muscle activity of a worker when executing MMH tasks so that muscle's sprain and strain can be avoided. Hence, the assessment system should allow a simultaneous measurement of work posture angles and electromyography (EMG) signals and low cost. The existing assessment system did not meet these requirements as the ergonomics practitioners have to carry out the assessment of work posture and muscle activity using a discrete system. The aim of this study was to develop and validate a prototype of simultaneous assessment system for measuring work posture angles and EMG signals of a worker who doing MMH tasks. A questionnaire survey was conducted among 30 respondents to identify factors that affect work posture and muscle activity in MMH tasks. The Microsoft Visual Studio software, a 3D camera (Microsoft Kinect), Advancer Technologies muscle sensors and a microcontroller (NI DAQ USB-6000) were applied to develop the work postural angles and EMG signals measurement system. Additionally, a graphical user interface was created in the system to enable ergonomics practitioners to perform work posture and muscle activity assessment simultaneously. Results of the questionnaire survey found that lifting, carrying and repetitive movements are common factors that affecting work posture and muscle activity. Based on the validation results, this study concluded that the work posture assessment system has shown a good accuracy in measuring upper arm and elbow angles. Meanwhile, the EMG measurement system was able to generate a same pattern of electromyography data with a commercial EMG system. Further study is required to enhance the validity, reliability and usability of the prototype so that it may facilitate ergonomics practitioners and engineers to assess work posture and muscle activity in MMH task.

ii

DEDICATION

I dedicate this report to only my beloved father, Abullais bin Murtuza my appreciated mother, Fatimah binti Aziz my adored brother and sister, Faris and Asnie for giving me moral support, cooperation, encouragement and also understandings Thank You so Much & Love You All Forever

ACKNOWLEDGEMENT

In the name of Allah, the most gracious, the most merciful, with the highest praise to Allah that I manage to complete this final year project successfully without difficulty.

My respected supervisor, Dr. Isa Bin Halim for the great mentoring that was given to me throughout the project. Besides that, I would like to express my gratitude to my supervisor's master student, Tarek Albawab for his kind advice and guidance as well as exposing me with meaningful experiences throughout the study.

Last but not least, I would like to give special thanks to my friends, classmates and some supporting UTeM staffs who gave me much motivation and cooperation mentally in completing this report especially to, Mr Zahar for permissions using laboratory and equipment's. They had given their critical suggestion and comments throughout my research. Thanks for the great friendship.

Finally, I would like to thank everybody who important to this report, as well as expressing my apology that I could not mention personally each one of you.

TABLE OF CONTENTS

Abstrak	Ι
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	V
List of Tables	Х
List of Figures	xi
List of Abbreviations	XV
List of Symbols	xvi

CHAPTER 1: INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	5
1.3.	Objectives of study	7
1.4	Scope	7
1.5	Significance of study	8
1.6	Report Outline	9

CHAPTER 2: LITERATURE REVIEW

2.1	Obser	ving Factors that Influencing Work Posture and Muscle Activity in	
	Manua	al Material Handling Tasks	10
	2.1.1	Workplace Observation	10
	2.1.2	Pilot Study	11
	2.1.3	Questionnaire Survey	12
	2.1.4	Interview	15
	2.1.5	Videotape Assessment	15
2.2	A Pro	totype of Simultaneous Assessment System for Assessing Work Posture	
	and M	uscle Activity in Manual Material Handling Tasks	16
	2.2.1	Ergonomic Assessment Tools for Work Posture	16

		2.2.1.1 Rapid Upper Limb Assessment (RULA)	16
		2.2.1.2 Rapid Entire Body Assessment (REBA)	20
		2.2.1.3 Ovako Working Posture Analysing System (OWAS)	22
	2.2.2	Methods in Assessing Work Posture	23
		2.2.2.1 RULA Mobile Android Application Software	23
		2.2.2.2 Real time RULA-Kinect Sensor	25
	2.2.3	Ergonomics Assessment Tools for Muscle Activity	28
		2.2.3.1 Electromyography (EMG)	28
2.3	Valid	ity the Prototype of the Simultaneous Assessment System of Work	
	Postu	re and Muscle Activity	35
	2.3.1	Validity of Integrated RULA-Kinect	35
	2.3.2	Validity of Electromyography (EMG)	37
2.4	Sumn	nary of Literature Review	38

CHAPTER 3: METHODOLOGY

3.1	Obser	ving Factors that Influencing Work Posture and Muscle Activity in	
	Manu	al Material Handling Tasks	40
	3.1.1	Questionnaire Survey	40
3.2	Devel	oping a Prototype of the Simultaneous Assessment System for	
	Asses	sing Work Posture and Muscle Activity in Manual Material Handling	
	Tasks		43
	3.2.1	Postural Angle Evaluation System	43
		3.2.1.1 Outline Design of Software Development	43
		3.2.1.2 Outline Design of Utilisation the Kinect Joint-motion	
		Evaluation Instrument	44
	3.2.2	Electromyography (EMG) for Muscle Activity	45
		3.2.2.1 Hardware Development	45
		3.2.2.2 Software Development	47
		3.2.2.3 Graphical User Interface (GUI)	50
		3.2.2.4 Display the rectified and integrated EMG signal	51
		3.2.2.5 Develop database of EMG results	52
		3.2.2.6 Display the EMG results	52
		3.2.2.7 Operating the Muscle Activity System	53

3.3	Evalu	ating the Validity the Prototype of the Simultaneous Assessment	
	System	m of Work Posture and Muscle Activity	55
	3.3.1	Postural Angle Evaluation System	55
	3.3.2	Electomyography (EMG)	56
		3.3.2.1 First Stage of Validation	57
		3.3.2.2 Second Stage of Validation	57
		3.3.2.3 Final Stage of Validation	58

CHAPTER 4: RESULTS AND DISCUSSIONS

Factor	rs that Influencing Work Posture and Muscle Activity in Manual	
Mater	ials Handling Tasks	60
4.1.1	Section A: Demographic and Work Activity of Respondents	60
4.1.2	Section B: Problems Encountered and Root Causes	63
4.1.3	Section C: Factors that Affect Work Posture and Muscle Activity	64
4.1.4	Section D: Impacts of the Manual Materials Handling Tasks to	
	Body Comfort	66
Devel	oping A Prototype of the Simultaneous Assessment System for	
Asses	sing Work Posture and Muscle Activity in Manual Materials Handling	
Task		68
Valida	ating the Prototype of the Simultaneous Assessment System of Work	
Postu	re and Muscle Activity	75
4.3.1	Descriptive Statistics and Normality Test	76
4.3.2	t-Test: Paired Two Sample of Means	81
4.3.3	Pearson Correlation Coefficient	83
4.3.4	Interaction between EMG Signals and Postural Angles	85
4.3.5	Comparison between Prototype EMG and Noraxon MEG	88
	4.3.5.1 EMG Hardware	89
	4.3.5.2 Noise Filtration Method	90
	Factor Mater 4.1.1 4.1.2 4.1.3 4.1.4 Devel Asses Task Valida Postur 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5	 Factors that Influencing Work Posture and Muscle Activity in Manual Materials Handling Tasks 4.1.1 Section A: Demographic and Work Activity of Respondents 4.1.2 Section B: Problems Encountered and Root Causes 4.1.3 Section C: Factors that Affect Work Posture and Muscle Activity 4.1.4 Section D: Impacts of the Manual Materials Handling Tasks to Body Comfort Developing A Prototype of the Simultaneous Assessment System for Assessing Work Posture and Muscle Activity in Manual Materials Handling Task Validating the Prototype of the Simultaneous Assessment System of Work Posture and Muscle Activity 4.3.1 Descriptive Statistics and Normality Test 4.3.2 t-Test: Paired Two Sample of Means 4.3.3 Pearson Correlation Coefficient 4.3.4 Interaction between EMG Signals and Postural Angles 4.3.5.1 EMG Hardware 4.3.5.2 Noise Filtration Method

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1	Factors that Influencing Work Posture and Muscle Activity in Manual			
	Materials Handling Tasks	91		
5.2	Developing A Prototype of the Simultaneous Assessment System for			

	Assessing Work Posture and Muscle Activity in Manual Materials Handling	
	Task	91
5.3	Validating the Prototype of the Simultaneous Assessment System of Work	
	Posture and Muscle Activity	92
5.4	Recommendation for Future Study	92
5.5	Sustainable Design and Development	92
	5.5.1 Complexity	93
REFI	ERENCES	94
APPE	ENDICES	
А	Questionnaire Survey Form	102
В	Standard Operating Procedure (SOP)	105
С	Result turnitin	107

LIST OF TABLES

2.1	Rule of thumb for various degree of internal consistency	14
2.2	RULA final score, level of musculoskeletal hazard and signs needed	19
2.3	REBA final score, level musculoskeletal hazard and signs needed	21
2.4	OWAS activity categories for prevention	23
2.5	Screens and its function	24
2.6	Colours correlated with RULA scores	26
2.7	Postural assessment and muscle activity systems developed by previous studies	39
3.1	Procedure and action to achieve the second GUI	45
3.2	Standard operating procedure of validation process of EMG	57
4.1	Angles of different body parts in neutral posture	69
4.2	Maximum angle in flexion and abduction postures	69
4.3	Maximum EMG signals (μV) can be measured by Prototype EMG	74
4.4	Accuracy of the work posture assessment system	75
4.5	Maximum electromyography signals (μV) in different muscles for all subjects	76
4.6	Descriptive statistics for Noraxon EMG	77
4.7	Descriptive statistics for Prototype EMG	77
4.8	t-Tests of right biceps for both Noraxon and Prototype EMG	82
4.9	t-Tests of left biceps for both Noraxon and Prototype EMG	82
4.10	t-Tests of right brachioradialis for both Noraxon and Prototype EMG	82
4.11	t-Tests of left brachioradialis for both Noraxon and Prototype EMG	83
4.12	Angle of lower and upper arm and electromyography signals (μV) for each	
	muscle	86
4.13	Comparison the cables between Prototype EMG and Noraxon EMG	89
4.14	Comparison the noise filtration method between Prototype EMG and	
	Noraxon EMG	90

LIST OF FIGURES

1.1	Two workers are lifting an aircraft parts in an awkward posture	2
1.2	Assessment work posture using Kinect sensor	3
1.3	Exterior electrodes made up from silver or silver chloride attached to lower back	κ 4
1.4	Two workers are holding the aircraft parts in sustained position	5
1.5	Two workers carrying the aircraft parts to another station repeatedly	6
2.1	Nordic Questionnaire	14
2.2	Example of RULA worker evaluation worksheet	17
2.3	Posture scores for body part region A: upper arm, lower arm, wrist and wrist	
	twist	18
2.4	Posture scores for body part region B: neck, trunk and legs	18
2.5	RULA scoring worksheet	19
2.6	Region A and B body part of REBA diagram	20
2.7	REBA scoring worksheet	21
2.8	Example of REBA worker evaluation worksheet	22
2.9	OWAS assessment diagram	23
2.10	RULA apps	24
2.11	Microsoft Kinect sensor	25
2.12	RULA scores range from 1 until 4 relying on the angle of the parallel joint	27
2.13	Steps used for RULA scoring	27
2.14	Applications areas of kinesiological EMG	28
2.15	Raw EMG recording of 3 contractions bursts	29
2.16	Electrodes lead with cable built-in preamplifiers	30
2.17	A fine wire electrode	31
2.18	Method to embed the fine wires into the muscle tissue	32
2.19	Anatomical historical framework on the human body in behind and front view	32
2.20	Front view of anatomical positions of chosen electrode sites	33
2.21	Behind view of anatomical positions of chosen electrode sites	34
2.22	Analysis of the posture correction approach	36

2.23 EMG classification procedure

3.1	A respondent answered the questionnaire	41
3.2	Two respondents were explained about the questionnaire	41
3.3	Flow chart of the preparation of questionnaire survey	42
3.4	Step flow fiagram of the software development	43
3.5	Kinect Joint-motion angle Evaluation System Interface	44
3.6	National Instruments USB-6000 (NI DAQ USB-6000) pin out	45
3.7	National Instruments USB-6000 (NI DAQ USB-6000) device	47
3.8	Advancer Technologies Muscle Sensor v3	46
3.9	Circuit schematic of the sensor	47
3.10	Example of simple circuit connection for the EMG	48
3.11	Complete circuit connection of the EMG	48
3.12	First GUI – Individual particulars, muscle, record and EMG electrode site	50
3.13	Second GUI – Control panel and graph of EMG signal	51
3.14	Types of EMG signal	51
3.15	Example of printed EMG results	52
3.16	Flow chart of developing the Electromyography (EMG) system	54
3.17	Setup procedure for fixed postural verification	55
3.18	Dynamic postural verification analysis	56
3.19	Validation test of the circuit with the battery or load	57
3.20	Validation test of the muscle sensors or amplfiers one by one	58
3.21	Validation test between two different subjects from the total of 26 subjects	59
4.1	Gender, age and occupation of all the respondents	61
4.2	Work activity voted by the respondents	62
4.3	Range class of mass	62
4.4	Problems encountered by the respondents	63
4.5	Root causes of the problems	63
4.6	Load factor	64
4.7	Task factor	64
4.8	Working envrionment and oraganisation factor	65
4.9	Individual factor	65

37

4.10	Neck and elbows area	66
4.11	Forearms and wrists/hands area	66
4.12	Thighs and lower legs area	67
4.13	Ankles/feet and knees area	67
4.14	Hips and lower back area	67
4.15	Upper back and shoulders area	68
4.16	Neutral posture of a human	68
4.17	Neck lateral flexion	69
4.18	Neck flexion	69
4.19	Right upper arm flexion	70
4.20	Right upper arm abduction	70
4.21	Right elbow flexion	70
4.22	Left upper arm flexion	70
4.23	Left upper arm abduction	71
4.24	Left elbow flexion	71
4.25	Trunk lateral flexion	71
4.26	Trunk flexion	71
4.27	Trunk twist	72
4.28	Right upper leg flexion	72
4.29	Right upper leg abduction	72
4.30	Right knee flexion	72
4.31	Left upper leg flexion	73
4.32	Left upper leg abduction	73
4.33	Left knee flexion	73
4.34	Prototype of simultaneous work posture and muscle activity assessment system	74
4.35	GUI of both work posture and muscle activity assessment system	74
4.36	Simultaneous GUI of both work posture and muscle activity assessment system	75
4.37	Normality plot of right biceps for Noraxon EMG	78
4.38	Normality plot of right biceps for Prototype EMG	78
4.39	Normality plot of right brachioradialis for Noraxon EMG	79
4.40	Normality plot of right brachioradialis for Prototype EMG	79
4.41	Normality plot of left biceps for Noraxon EMG	80
4.42	Normality plot of left biceps for Prototype EMG	80

xii

4.43	Normality plot of left brachioradialis for Noraxon EMG	81
4.44	Normality plot of left brachioradialis for Prototype EMG	81
4.45	Electromyography signals generated by Noraxon and Prototype EMG for	
	right biceps	84
4.46	Electromyography signals generated by Noraxon and Prototype EMG for	
	right brachioradialis	84
4.47	Electromyography signals generated by Noraxon and Prototype EMG for	
	left biceps	85
4.48	Electromyography signals generated by Noraxon and Prototype EMG for	
	left brachioradialis	85
4.49	Interaction between postural angles and EMG signals in right biceps	87
4.50	Interaction between postural angles and EMG signals in right brachioradialis	87
4.51	Interaction between postural angles and EMG signals in left biceps	88
4.52	Interaction between postural angles and EMG signals in left brachioradialis	88
4.53	Cables of Prototype EMG	89
4.54	Cables of Noraxon EMG attached with pre-amplifier	89
4.55	Prototype EMG device with cables	89
4.56	Noraxon EMG device with cables	89
4.57	Prototype EMG cable connector	89
4.58	Noraxon EMG cable connector	89
4.59	Operational amplifier (Opamp)	90
4.60	Cables with pre-amplifier	90
4.61	Noraxon Software	90

LIST OF ABBREVIATIONS

MMH	-	Manual material handling
SOCSO	-	Social Security Organisation
RULA	-	Rapid Upper Limb Assessment
Kinect	-	Microsoft Kinect Sensor
EMG	-	Electromyography
REBA	-	Rapid Entire Body Assessment
OWAS	-	Ovako Working Posture Analysing System
IR	-	Infrared
SDK	-	Software Development Kit
MVC	-	Maximum voluntary contraction
MUAP	-	Motor Unit Action Potential
sEMG	-	Surface Electromyography
CMRR	-	Common Mode Rejection Ratio
ISB	-	International Society of Biomechanics
RGB	-	Red, green and blue
GUI	-	Graphical User Interface
PDF	-	Portable Document Format
NI	-	National Instruments
DAQ	-	Data accquistion
USB	-	Universal Serial Bus
LiPO	-	Lithium-ion polymer
LED	-	Light emit detector
AI	-	Analogue Input
GND	-	Ground
SIG	-	Signal
SOP	-	Standard Operating Procedure
Opamp	-	Operational amplifier

xiv

LIST OF SYMBOLS

D	-	Dimensional
ТМ	-	Trademark
a	-	Alpha
Hz	-	Hertz
%	-	Percentage
cm	-	Centimetre
V	-	Volt
etc	-	Etcetera
μF	-	Micro Faraj
kΩ	-	kilo-ohm
kg	-	kilogram

XV

CHAPTER 1 INTRODUCTION

This chapter introduces the background of study which focuses to the work posture and muscle activity in manual materials handling tasks and their assessment system. In addition, this chapter also will cover the problem statements, objective of study, scope and limitations of study as well as significance of study.

1.1 Background of Study

Manpower contribution as manual work asset is still overwhelming in current manufacturing activities. Manual Material Handling (MMH) activities or tasks are the common term used to describe the activities. MMH utilization was favoured over automation because of its high adaptability and being generally low in cost. MMH holds advantage in its adaptability to maneuver amid basic and light material transfer, in the event that compared to perform the same action utilizing mechanical aids (Deros et al., 2015).

A MMH task is the process of moving or supporting an object by using physical strength of the human. Examples of manual handling tasks are pushing, pulling, lifting, holding, and carrying activities. These activities can be found in many working environments such as manufacturing industry, office, farm, and construction industry. Figure 1.1 shows two workers performing MMH task in an industry. If the MMH are performed erroneously or improperly, this task may contribute to physical discomfort and injuries to the workers.

Figure 1.1 Two workers are lifting an aircraft parts in an awkward posture

MMH activities are frequently of concern when surveying work activities for dangers that have the potential to lead to musculoskeletal disorders. Musculoskeletal disorders include strains and sprains to the lower back, shoulders and upper limbs. Possibly damaging work practices may include awkward posture such as twisting and bending, high repetitive works, overexertion of muscles, contact stress on body parts and sustaining static posture for a long duration. Improper design of MMH tasks is one of the root causes of musculoskeletal disorders associated with sprain and strain.

In the past three years, Social Security Organization (SOCSO) of Malaysia reported total of 20440 sprain and strain cases in workplaces (SOCSO Annual Reports 2016, 2015 and 2014). In order to prevent and reduce the occurrence of sprain and strain among industrial workers, there are many ways and methods that been used by ergonomics practitioners to assess work posture and muscle activity. For example, a previous study applied Rapid Upper Limb Assessment (RULA) and Microsoft Kinect Sensor (Kinect) to assess work posture during MMH tasks in a manufacturing industry (Jiang et al., 2017). Figure 1.2 shows one of the methods used by the ergonomic practitioner to assess work posture.

Figure 1.2: Assessment work posture using Kinect sensor (Source: Xu et al., 2017)

A neutral work posture is a combination of balanced strength and flexibility in the skeletal muscles, enabling workers to perform MMH tasks in a healthy manner. To ensure the muscles are not exposed to any strenuous contraction during MMH tasks, electromyography (EMG) can be used to quantify the muscle activity. EMG is a demonstrative step which assesses the well-being condition of muscles and nerve cells that control them. These nerve cells are known as motor neurons. They transmit electrical signals that cause the muscles to contract and relax. Muscular motion includes the activity of muscles and nerves which requires an electrical current. This electrical current is much weaker than the one in domestic wiring.

An EMG device converts these signals into charts or numbers and this EMG will be used if someone is having a sign of illness of the muscle or nerve disorders. Most of the EMG is being used by the doctors in the hospital in order to assist them to make a diagnosis for those are having any muscle and nerve disorders. There also some specialists are using this EMG to observe and evaluate the muscle activity of the workers or operators in manufacturing industry in order to reduce the ergonomic problems faced by them during the MMH activities. Figure 1.3 shows an assessment of muscle activity of worker who performing MMH task.

Figure 1.3: Exterior electrodes made up from silver or silver chloride attached to lower back (Source: Halim et al., 2012)

A simultaneous assessment system of work posture and muscle activity will allow the ergonomics practitioners to understand the interaction of postural angle and muscle effort in MMH tasks. For instance, if a worker is bending downward his back 45-degree to lift a sheet metal, an ergonomics practitioner can analyse the effort of muscle of this worker during this bending position through a simultaneous assessment system. Even though the work posture assessment and muscle activity assessment produce different data, however, the data can be used by the ergonomics practitioners to design better MMH tasks by considering postural data and muscle activity simultaneously. An example of simultaneous ergonomics assessment of posture and whole-body vibration been carried out by Hermanns et al., (2008).

Based on the literature, numerous studies have developed the work posture and muscle activity assessment systems. However, the developed systems do not allow the ergonomics practitioners to perform assessment of work posture and muscle activity simultaneously, even though muscle is very crucial to allow human to move and maintain the work posture during manual materials handling task. Due to unavailability of the simultaneous posture and muscle activity assessment system, posture and muscle relationship in manual materials handling task is difficult to examine. As a consequence, the ergonomics practitioners might not be able to investigate the tasks of manual materials handling comprehensively, in which can lead to ineffective ergonomics solution. In recognition the above-mentioned issue, the aim of this study is to develop a prototype of simultaneous assessment system for assessing work posture and muscle activity in MMH tasks. The assessment system utilises low-cost EMG hardware and 3D camera (Microsoft Kinect sensor) to objectively capture muscle activity and work postural data. The engineers or ergonomics practitioners can utilize this system to screen any mismatches between worker (posture and muscle activity) and MMH tasks; and consequently provide critical forward action data for the purpose of redesigning MMH activities. It is expected that the use of simultaneous system may facilitate the human-system interaction through the optimization of muscle activity and work postures. Hence, better compatibility of task and human maybe achieved resulting in workers' efficiency, productivity and occupational health improvement.

1.2 Problem Statement

Workers in manufacturing who performing MMH tasks are always complaining that they are at high chance to have musculoskeletal disorders such as pain in the back, shoulder, and upper limbs (Akodu & Pt, 2015). Figure 1.4 and 1.5 show two workers performing the MMH tasks that can lead to musculoskeletal disorders.

Figure 1.4 Two workers are holding the aircraft parts in sustained position

Figure 1.5 Two workers carrying the aircraft parts to another station repeatedly

Based on above figures, the workers performing the MMH task in an awkward posture and strenuous muscle efforts. Due to the awkward posture and strenuous muscle, it can lead to strain and sprain in the muscles. The existing work posture and muscle activity assessment tools are in a separate system, which not allow a simultaneous assessment. The engineers and ergonomics practitioners require an integrated system to assess work posture and muscle activity related to MHH tasks. The assessment system should allow simultaneous assessment, portable, low-cost and easy to use. In addition, the system should provide real time data as well as rapid results. The existing assessment system did not meet all these requirements. Thus, a development of an assessment system that meets above requirement is needed.