THE EFFECT OF HEAT TREATMENT SCHEDULE ON MECHANICAL PROPERTIES OF DIFFERENT CARBON NANOTUBES CONTENTS IN ALUMINIUM ALLOY COMPOSITES

CAROLYN LAU YEE JIE

B051510061

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2019

THE EFFECT OF HEAT TREATMENT SCHEDULE ON MECHANICAL PROPERTIES OF DIFFERENT CARBON NANOTUBES CONTENTS IN ALUMINIUM ALLOY COMPOSITES

Submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering (Hons.)

by

CAROLYN LAU YEE JIE B051510061 950620136136

FACULTY OF MANUFACTURING ENGINEERING 2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: THE EFFECT OF HEAT TREATMENT SCHEDULE ON MECHANICAL PROPERTIES OF DIFFERENT CARBON NANOTUBES CONTENTS IN **ALUMINIUM ALLOY COMPOSITES**

Sesi Pengajian: 2018/2019 Semester 2

Saya CAROLYN LAU YEE JIE (950620-13-6136)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD	Disahkan oleh:
Alamat Tetap:	Cop Rasmi:
 Tarikh:	Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

FAKULTI KEJURUTERAAN PEMBUATAN

Tel: +606 - 270 2571 / Faks: +606 - 270 1047

Rujukan Kami (Our Ref) : UTeM. Rujukan Tuan (Your Ref) :

Ketua Pustakawan Perpustakaan Laman Hikmah, University Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal Melaka. Jun 2019

Tuan/Puan,

PENGKELASAN LAPORAN PSM SEBAGAI SULIT/TERHAD LAPORAN PROJEK SARJANA MUDA KEJURUTERAAN PEMBUATAN.

NAMA: CAROLYN LAU YEE JIE

Sukacita dimaklumkan bahawa Laporan PSM yang tersebut di atas bertajuk "*The Effect of Heat Treatment Schedule on Mechanical Properties of Different Carbon Nanotubes Contents in Aluminium Alloy Composites*" mohon dikelaskan sebagai *SULIT / TERHAD untuk tempoh LIMA tahun dari tarikh surat ini.

2. Hal ini adalah kerana ianya merupakan projek yang ditaja sepenuhnya oleh syarikat luar (Nama Syarikat) dan hasil kajiannya adalah sulit.

Sekian dimaklumkan. Terima kasih.

Yang benar,

Tandatangan dan Cop Penyelia

NOTA: BORANG INI HANYA DIISI JIKA DIKLASIFIKASIKAN SEBAGAI SULIT DAN TERHAD. JIKA LAPORAN DIKELASKAN SEBAGAI TIDAK TERHAD, MAKA BORANG INI TIDAK PERLU DISERTAKAN DALAM LAPORAN PSM.

DECLARATION

I hereby, declared this report entitled "The effect of Heat Treatment Schedule on Mechanical Properties of Different Carbon Nanotubes Contents in Aluminium Alloy Composites" is the results of my own research except as cited in reference

Signature	:
Author's Name	: CAROLYN LAU YEE JIE
Date	:

C Universiti Teknikal Malaysia Melaka

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfillment of the requirements for the degree of Bachelor of Manufacturing Engineering (Hons.). The members of the supervisory committee are as follow:

.....

(Dr. Mohd Shukor bin Salleh)

C Universiti Teknikal Malaysia Melaka

ABSTRAK

Kajian berkaitan dengan kajian aloi aluminium A356 yang diperkuat dengan Multi-Walled Nanotubes Karbon (MWCNTs) yang disediakan oleh pemutus acuan kekal untuk penyediaan bahan bakar dan proses pembuatan di dalam silinder hidraulik untuk membentuk Metal Matrix Composites (MMC). Kesan jadual rawatan haba T5 dan T6 pada MWCNTs / A356 telah disiasat. Kandungan MWCNTs adalah 0.5wt. % dan 0.75wt. % masing-masing, yang akan dibalut dengan 0.5wt. % daripada kalsium Magnesium (Mg) sebagai agen pembasuh. Campuran A356 dan MWCNTs diaduk dalam 10 dan 15 minit dengan menggunakan pengikis mekanikal jenis turbin. Selepas proses thixoforming, rawatan haba T6 dilakukan untuk komposit MWCNTs / A356 dengan rawatan haba penyelesaian pada 540 °C selama 8 jam, proses pelindapkejutan pada 24 °C dan diteruskan oleh penuaan tiruan pada 150 °C selama 4 jam, manakala rawatan haba T5 juga akan berusia pada 150 °C selama 4 jam tetapi tanpa rawatan haba penyelesaian. Struktur mikro setiap spesimen dicirikan dengan Mikroskop Optik (OM), Pengimbasan Mikroskopik Elektron (SEM) dan Difraksi Xray (XRD). Penguji Mesin Universal (UTM) dan Vickers Kekerasan Penguji adalah peralatan yang digunakan untuk menjalankan ujian kekerasan dan uji tegangan mengikut standard ASTM: E8M. Pengoptimuman aloi MWCNT-A356 komposit proses fabrikasi proses fabrikasi menggunakan DOE Kaedah Taguchi. Hasil jangkaan menunjukkan pembentukan mikrostruktur bukan dendritik dan mencapai fasa pengagihan homogen untuk komposit MWCNTs / A356 yang dirawat haba. T6 haba yang dirawat spesimen mendedahkan kekerasan yang lebih tinggi dan kekuatan tegangan berbanding dengan spesimen yang dirawat haba T5.

ABSTRACT

The present research deals with the study of A356 aluminium alloy reinforced with Multi-Walled Carbon Nanotubes (MWCNTs) prepared by permanent mould casting for feedstock preparation and thixoforming process in a hydraulic cylinder press to form Metal Matrix Composites (MMC). The effect of T5 and T6 heat treatment schedule on thixoformed MWCNTs/A356 are investigated. The contents of MWCNTs are 0.5wt. % and 0.75wt. % respectively, which will be wrapped with 0.5wt. % of Magnesium (Mg) flasks as a wetting agent. The mixture of A356 and MWCNTs is stirred in 10 and 15 min by using a turbine type mechanical stirrer. After thixoforming process, T6 heat treatment is performed to thixoformed MWCNTs/A356 composites with solution heat treatment at 540 °C for 8 hours, quenching process at 24 °C and continued by artificial ageing at 150 °C for 4 hours, while T5 heat treatment also will be aged at 150 °C for 4 hours but without solution heat treatment. The microstructure of each specimens are characterised with Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Universal Testing Machine (UTM) and Vickers Hardness Tester are the equipment that used to conduct the hardness test and tensile test according to ASTM: E8M standard. Optimization of the MWCNT-A356 alloy composites feedstock fabrication process parameters using DOE of Taguchi Method. The results showed the formation of non-dendritic microstructure and achieved a homogeneous distribution phase for the heat-treated thixoformed MWCNTs/A356 composites. T6 heat-treated specimens revealed higher hardness and tensile strength compared to the T5 heat-treated specimens.

DEDICATION

Only

my beloved father, Lau Chit Chin

my appreciated mother, Hii Mee Ping

my adored sisters, Patricia Lau Ee Yii and Phyllisia Hii Wang Ying

for giving me moral support, money, cooperation, encouragement and also understandings

Thank You So Much & Love You All Forever

To my supervisor, Dr. Mohd Shukor bin Salleh, family, all my friends, without whom none of my success would be possible

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude to my supervisor Dr. Mohd Shukor bin Salleh who invested his full effort to guide me in achieving the goal of this research project. Thank you for all your guidance, supports, advices and opportunity for me to learn and endure the experience while working on this Final Year Project.

Moreover, I would also like to acknowledge with much appreciation to Mr. Hanizam bin Hashim, lecturer of Faculty of Engineering Technology, whose contribution in stimulating suggestions to make this project runs smoothly and helped me to coordinate my project especially in writing the report.

Besides, a special thanks goes to all the assistant engineers and technicians of Faculty of Manufacturing Engineering and Faculty of Engineering Technology, UTeM, who gave the permission to use all required equipment and the necessary materials to complete the task. Thank you for giving me a lot of assistance and knowledge when doing this project.

Last but not least, I would also like to express my deepest appreciation to my beloved parents and family for their supports and encouragement for me to complete this project efficiently. I would like to thank all of my friends who gave me motivation and support in solving the problems faced in this project.

TABLE OF CONTENT

Abstrak	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of Contents	V
List of Tables	ix
List of Figures	Х
List of Abbreviations	xiii
List of Symbols	XV

CHAPTER 1: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objective	4
1.4	Scope	5

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction		6
2.2	Compo	osites	6
2.3	Metal I	Metal Matrix Composites (MMCs)	
	2.3.1	Matrix	7
	2.3.2	Reinforcement	8
		2.3.2.1 Particle-reinforced composites	9
		2.3.2.2 Continuous fibres-reinforced composites	10
		2.3.2.3 Shorts fibres-reinforced (whiskers) composites	10
2.4	Alumir	nium Matrix Composites (AMCs)	10
2.5	Alumir	Aluminium and A356 Aluminium Alloy	
	2.5.1	Aluminium	12

	2.5.2	Aluminium Alloy Composites	12
	2.5.3	A356 Aluminium Alloy	13
2.6	Carbo	n Nanotubes (CNTs)	14
	2.6.1	Structure of CNTs	16
		2.6.1.1 Structure of Single-Walled Carbon Nanotubes	16
		2.6.1.2 Structure of Multi-Walled Carbon Nanotubes	17
	2.6.2	Mechanical Properties of CNTs	18
		2.6.2.1 Young's Modulus	18
		2.6.2.2 Tensile Strength	19
2.7	A356-	-CNTs Composites	21
	2.7.1	Effect of CNTs content on Mechanical Properties	22
	2.7.2	Effect of CNTs content on Fracture Surface	24
2.8	Manu	afacturing Techniques for MMCs	25
	2.8.1	Liquid Phase Processing	25
		2.8.1.1 Stir Casting	26
		2.8.1.2 Squeeze Casting	27
		2.8.1.3 Compocasting	28
	2.8.2	Solid State Processing	29
		2.8.2.1 Powder Metallurgy (PM)	29
	2.8.3	Semi-solid Metals Processing (SSM)	31
		2.8.3.1 Rheocasting	32
2.9	Thixo	forming	33
	2.9.1	Microstructure of Thixoformed Particles	34
	2.9.2	Advantages and Disadvantages of Thixoforming	35
2.10	Coolii	ng Slope Casting (CS)	36
	2.10.2	2 Microstructural Evolution of Cooling Slope Casting	37
2.11	Perma	anent Mould Casting	38
2.12	Heat 7	Γreatment	39
2.13	T5 an	nd T6 Heat Treatment	40
	2.13.1	Effect of T5 and T6 Heat Treatment	41
2.14	Tensil	le Testing	44
2.15	Hardn	less Testing	46
2.16	Desig	n of Experiment (DOE)	47

CHAPTER 3: METHODOLOGY

3.1	Gantt Chart		48
3.2	Flow Chart		49
3.3	Taguc	hi Method by DOE	50
3.4	Expe	rimental Procedure	50
	3.4.1	Materials Preparation	50
	3.4.2	Feedstock Production by using Permanent Mould Casting	51
	3.4.3	Thixoforming	53
	3.4.4	T5 Heat Treatment	54
	3.5.5	T6 Heat Treatment	54
3.5	Microstructure Characterisation		
	3.5.1	Sample Preparation	55
	3.5.2	Optical Microscopy	55
	3.5.3	Scanning Electron Microscopy (SEM-EDX)	56
	3.5.4	X-Ray Diffraction Analysis (XRD)	57
3.6	Hardı	ness Test	57
3.7	Tensil	e Test	58
	3.8.1	Samples Preparation	58
	3.8.2	Testing	59

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Mater	ial Characterization	60
	4.1.1	Optical Microscopy Analysis	60
	4.1.2	Scanning Electron Microscopy (SEM-EDX) Analysis	62
	4.1.3	X-ray Diffraction (XRD) Analysis	65
4.2	Mecha	anical Test	66
	4.2.1	Hardness Test	66
	4.2.2	Tensile Test	69
4.3	Desig	n of Experiment (DOE) Analysis	71
	4.3.1	Hardness	71
	4.3.2	Tensile Strength	72

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	75
5.2	Recommendation	77
5.3	Sustainability Development	77
5.4	Complexity	78
5.5	Life-long Learning	79

REFERENCES

APPENDICES

A	Gantt chart for FYP 1	91

80

BGantt chart for FYP 292

LIST OF TABLES

2.1	Cast aluminium alloy designation	13
2.2	The chemical composition of A356 Al alloy	14
2.3	Relation between m and n for CNTs categorization	17
2.4	Mechanical properties of carbon nanotube compared with some other	
	material	21
2.5	Mechanical properties of A356 alloy	22
2.6	Summarisation of the T temper designations for aluminium alloys	40
2.7	Chemical composition of A356 alloy (wt. %)	43
2.8	Mechanical properties of A356 aluminum alloy obtained by tensile tests in	
	different treatment conditions	43
3 1	Selected factors and levels	50
3.1	DOF	50
5.2		
3.3	Chemical composition of A356 alloy (wt. %)	
511		
3.4	Tensile test specimen dimensions - ASTM E8M	59
4.1	Composition of thixoformed T6 A356/MWCNTs composites	64
4.2	Hardness testing result	67
4.3	Classification of parameters in term of CNTs wt. % and stirring time	68
4.4	Tensile properties of thixoformed A356/MWCNTs composite	69

LIST OF FIGURES

2.1 Types of reinforcement for MMCs: (a) Particle (b) Whisker (c) Continuous		
	Fibre (d) Laminate.	9
2.2	Single-walled carbon nanotubes	15
2.3	Multi-walled carbon nanotubes (MWCNTs)	15
2.4	Schematic diagram of roll-up vector, r	16
2.5	Illustration of the CNTs structure (a) Armchair, (b) Zigzag, and (c) Chiral	17
2.6	Stress-strain curves of SWCNT	19
2.7	Stress-strain curve of MWCNTs	19
2.8	SEM image of Tensile loaded MWCNTs	20
	(A) MWCNTs between two AFM tips, and (B) Magnified image of area in (A)	20
2.9	SEM image of tensile loaded SWCNTs	20
2.10	The effect of CNTs content on the tensile strengths of the composites	23
2.11	The effect of CNTs content on the indentation modulus of the composites	23
2.12	SEM image of the fracture surface of A356 aluminium alloy and	
	A356/MWCNTs composites with different MWCNTs content	24
2.13	Schematic of stir casting process	26
2.14	Illustration of the direct and indirect modes of the squeeze casting process	28
2.15	Schematic of compocasting diagram	29
2.16	Flow chart of the basic powder metallurgy process	30
2.17	Powder metallurgy and extrusion process for fabricating particulate or short	
	fibrereinforced MMCs	31
2.18	Rheocasting process	32
2.19	Schematic of thixoforming process	34
2.20	Die of thixoforming	34
2.21	(a) Dendritic microstructure (b) Globular microstructure	35
2.22	Cooling slope casting process	37
2.23	Morphology of A356 alloy by (a) Conventional casting, and (b) Cooling slope	
	casting	37

2.24	Microstructures of the CS cast A356 alloy poured at (a) $630 \degree C$ (b) $640 \degree C$		
	(c) 650 °C	38	
2.25	Microstructure of conventional cast alloy after T6 heat treatment	42	
2.26	Microstructure of cooling slope cast alloy after T6 heat treatment	42	
2.27	Result of SEM of the AA6063 alloy after (a) T5 and (b) T6 Heat Treatment	44	
2.28	Typical tensile sample	45	
2.29	Comparison of ultimate the tensile strength and yield strength of the as- cast, as		
	thixoformed and thixoformed T6 A319 alloys	45	
2.30	Comparison of elongation of the as- cast, as thixoformed and thixoformed T6		
	A319 alloys	46	
2.31	Comparison of the hardness in the as-cast, as-thixoformed and thixoformed T6		
	samples.	47	
3.1	Flow chart of the process	49	
3.2	Schematic of experiment setup	51	
3.3	Weighing machine	52	
3.4	Bandsaw machine	52	
3.5	Portable melting furnace	52	
3.6	Injecting MWCNTs by using plunger	52	
3.7	Cylindrical stainless-steel mould	53	
3.8	Mechanical stirrer	53	
3.9	Thixoforming Setup	54	
3.10	Nabertherm 30-3000°C furnace	55	
3.11	SEM-EDX machine	56	
3.12	Mini sputter coater	56	
3.13	Vickers hardness tester	57	
3.14	(a) EDM wire-cut machine, and (b) CNC turning machine	58	
3.15	Dog-bone shape specimen	58	
3.16	(a) Universal testing machine, and (b) Setup of tensile test sample	59	
4.1	The microstructure of (a) A356 aluminium alloys and (b) thixoformed		
	A356/MWCNTs composites under optical microscope.	60	

4.2	Optical micrograph of the thixoformed A356/MWCNTs composites (a), after		
	T5 (b) and T6 heat treatment (c) in 200X magnification.	61	
4.3	SEM micrograph of thixoformed T5 A356/MWCNTs composites	62	
4.4	SEM-EDX analysis of thixoformed T5 A356/MWCNTs composites		
4.5	SEM micrograph of thixoformed T6 A356/MWCNTs composites		
4.6	SEM-EDX analysis of thixoformed T6 A356/MWCNTs composites		
4.7	XRD pattern of samples 1		
4.8	XRD pattern of samples 8		
4.9	Vickers hardness for thixoformed T5 and T6 heat-treatment		
4.10	Fracture of tensile sample		
4.11	Effect of T5 and T6 heat treatment on UTS of different samples		
4.12	Percentage of elongation of thixoformed T5 and T6 samples		
4.13	Main effects plot for SN ratio for hardness versus CNT wt. %, stirring time		
	and heat treatment	71	
4.14	Taguchi analysis of hardness	72	
4.15	Main effects plot for SN ratio for tensile strength versus CNT wt%, stirring		
	time and heat treatment	73	
4.16	Taguchi analysis of tensile strength	73	

LIST OF ABBREVIATIONS

ANSI	-	American National Standard Institute
ASTM	-	American Society for Testing and Materials
AFM	-	Atomic Force Microscopy
Al-MMCs	-	Aluminium Metal Matrix Composites
ANSI	-	American National Standards Institute
CMCs	-	Ceramic Matrix Composites
CNC	-	Computed Numerical Control
CNTs	-	Carbon Nanotubes
CS	-	Cooling Slope Casting
CVD	-	Chemical Vapour Deposition
DC	-	Direct Current
EDX	-	Energy Dispersive X-ray
EDM	-	Electrical Discharge Machine
HIP	-	Hot Isostatic Press
HRTEM	-	High-Resolution Transmission Electron Microscopy
MMCs	-	Metal Matrix Composites
MWCNTs	-	Multi-Walled Carbon Nanotubes
NRC	-	New Rheocasting
ОМ	-	Optical Microscopy
PM	-	Powder Metallurgy
PMCs	-	Polymer Matrix Composites
PRMMCs	-	Processing Parameter on Metal Matrix Composites
SC	-	Squeeze Casting
SEM	-	Scanning Electron Microscopy
SIMA	-	Strain Induced Melted Activation
SSM	-	Semi Solid Metal Processing
SWCNTs	-	Single-Walled Carbon Nanotubes
UTM	-	Universal Testing Machine
UTS	-	Ultimate Tensile Strength

XRD	-	X-ray Diffraction
XRF	-	X-ray Fluorescence
YS	-	Yield Stress

LIST OF SYMBOLS

%	-	Percentage
μm	-	Micrometre
Bal.	-	Balanced
°C	-	Degree Celsius
cm	-	Centimetre
g	-	Gram
g/cm ³	-	Gram Per Cubic Centimetre
HV	-	Vickers Hardness
Kw	-	Kilowatt
L/min	-	Litre per Minute
Kn	-	Kilo Newton
m/s	-	Metre Per Second
mm	-	Millimetre
min	-	Minutes
MPa	-	Mega Pascal
Mm	-	Millimetre
nm	-	Nanometre
rpm	-	Rotation Per Minute
Тра	-	Tera Pascal
wt. %	-	Weight Percentage

CHAPTER 1 INTRODUCTION

1.0 Background of Study

A composite material is a duplex and a multifunctional material that made when more than one constituent materials are combined microscopically to produce a different characteristic of the material. These constituent materials have significantly distinct in physical, chemical, and mechanical properties. The two constituents work together to produce a unique composite material that has enhanced the properties when compared to the individual components that used alone. The great advantages of composite materials are that they are light weight, high strength and stiffness, and high resistance to creep and corrosion. A composite material is composed primarily of a matrix to increase the mechanical strength and stiffness and a reinforcement which is usually the discontinuous phase or secondary phase. In recent year, metal matrix composites (MMCs) have attracted more attention by the researchers and become the vital materials reliant on the requirement. Specifically, the particulate reinforced Aluminium metal matrix composites have received significant attention due to the improved mechanical and tribological properties such as strength, stiffness, impact resistance and wear resistance (Vinay *et al.*, 2018).

Aluminium and its alloys have been dominating the market for the aerospace and automotive industries. Some of the intrinsic properties and characteristics contributed to its widespread use include lightness, low toxicity, good formability, better thermal stability and corrosion resistance. As a potential candidate for structural applications, these materials required high specific strength and stiffness. However, further strengthening of aluminium is still required (Toozandehjani *et al.*, 2015). The Al-Si alloys are more typical of all aluminium alloys available for commercial use. This can be due to their extensively useful options, such as high strength to weight magnitude relation, exceptional solidity and pressure

tightness, low thermal expansion coefficient, good mechanical properties and resistance to corrosion (Aithal *et al*, 2016).

Carbon nanotube (CNT) is the composed of sheets of carbon atom in nano-sized cylindrical tubes (Iijima 1991). The mechanical properties of CNT such as high elastic modulus, bending strength and tensile strength become the focus of attention because it is useful as a reinforcement (Zhang *et al.*, 2001). The dispersion and high processing temperature of CNTs are the challenges which have restricted the reinforcement of CNTs into metal composites. The challenges making the reinforcement become complicated and even taking more time. Although CNTs have high thermal and electric conductivity and high tensile strength (Harris *et al.*, 2004). However, the development of CNT-metal composites for thermal management and potential application has grown significantly. The CNTs in the matrix must in the uniform dispersion, and excellent bonding at the interface between the matrix and reinforcement which are the main requirement to accomplish the two properties (Esawi *et al.*, 2011).

Thixoforming is one of the semi-solid metal processing that used to explain about a partial melted non-dendritic alloy slug with the near net shaping between a metal die (Fan, 2002). Thixoforming involve feedstock preparation and continued by partially re-melting before near net shaped products is form. For thixoforming it is necessary to have a spheroidal non-dendritic structure of the solid phase, this microstructure can be obtained by some methods such as mechanical stirring, magneto hydrodynamic stirring, grain refinement and cooling slope (CS) method. Among all methods, CS method possesses some advantages in comparison with other methods. The technique is simple and does not need complicated equipment. The non-dendritic microstructure is produced by pouring the molten alloy with a modest amount of superheat on an inclined plate (Abdulrazaq *et al.*, 2017).

Heat treatment is a process where metals and metal matrix composites are repeatedly heated and cooled to achieve some improved properties. Cooling rate and heating temperature are the major factors which influences the changes in the microstructure of metals, which further affect the mechanical properties of heat treated metals (Kakani and Kakani, 2004). The most commonly used heat treatments for aluminium alloys are T5 and T6 heat treatment. T5 heat treatment is including cooled after casting or hot working and artificially aging, while T6 heat treatment required of solution heat treatment, quenched in water and artificially aging.

In this study, the aluminium matrix will be reinforced with the MWCNTs by using permanent mould casting with the weight ratio parameters, 0.5 and 0.75wt. % and the aid of Magnesium as wetting agent with 0.5 wt. %. Reheating process will be applied to semisolid temperature range to get spheroidal solid particle in liquid matrix before thixoforming (Birol, 2007). After the feedstock MWCNTs/Al composites is formed, the composites are then undergoing thixoforming process to form a cylindrical shape. T5 and T6 heat treatment is then carried out using electric furnace with a temperature control of ± 2 °C. In T6 heat treatment, the solution treatments are performed at 540 °C for 8 hours and the samples are then quenched in water at 24 °C. Hence, artificially aging are performed at 150 °C for 4 hours in each T5 and T6 heat treatment.

Furthermore, the effect of heat treatment on microstructure evolution of thixoformed CNTs/Al composites samples are studied by using material characterisation equipment, for example optical microscopy, Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) and X-ray diffraction (XRD). After characterisation, the heat treated of thixoformed CNTs/Al composites are undergone mechanical tests, including hardness tests and tensile tests. Thus, T-test and F-test are conducted for statistical analysis which used to compare the effect of T5 and T6 heat treatment of the thixoformed CNTs-reinforced A356 aluminium alloy composite.

1.2 Problem Statement

Carbon nanotube (CNT) has been considered as an ideal reinforcement for the development of a superior class of metal matrix composites due to its low density, high Young's modulus, tensile and shear strength. However, CNTs reinforced aluminium matrix composites are still in exploration stage with no available commercial applications as previous researches. Hence, the reinforcement in composite materials has not focused much on CNT reinforced metal matrix composites and very limited work has been done on CNT/Al composite foams (Ma *et al.*, 2018).

The achievement of a uniform distribution of CNTs reinforcement into the metal matrix is one of the challenge in fabrication of CNT-reinforced MMCs. Attaining a homogeneous mixture is difficult due to strong Van Der Waals forces and the attractive or