RELIABILITY STUDY OF PRINTED ELECTRONICS ON FLEXIBLE SUBSTRATE FOR AUTOMOTIVE LIGHTING APPLICATION

SITI KHUZAIMAH BT MOHD AMIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

RELIABILITY STUDY OF PRINTED ELECTRONICS ON FLEXIBLE SUBSTRATE FOR AUTOMOTIVE LIGHTING APPLICATION

SITI KHUZAIMAH BT MOHD AMIN

A report submitted

In fulfilment of the requirements for the degree of

Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

JUNE 2019

DECLARATION

I declare that this project report entitled "Reliability Study of Printed Electronics on Flexible Substrate for Automotive Lighting Application" is the result of my own work except as cited in the references

Signature	:
Name	:
Date	:

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:
Supervisor's Name	:
Date	:

DEDICATION

To my beloved parents;

Hasman bin Mohd, Jumeah bt Awan

ABSTRACT

This research demonstrates the effect of different geometrical parameter on the reliability performance of the printed circuit. The circuit thickness is fixed at 1 mm while the width are varied at 1 mm, 2 mm and 3 mm. The square-shaped circuit pattern is printed on PET substrate by using the screen-printing method. The samples are tested in both functionality and reliability performances. Functionality test result shows that thicker line width contribute to lesser sheet resistivity, which will increase the electrical conductivity. The initial sample's sheet resistance also shows good compliance to the theoretical value provided by the Conductive Ink Technical Data Sheet. The samples are then exposed to twisting test and the overall resistance are recorded. The values are then compared with the preferred resistance value for a standard LED. The resistance comparison before and after application of mechanical load verified that the circuit will experience higher resistance and sheet resistance value. The measured resistance from this research shows exceptionally high reading; exceeding the needed resistance for LED lighting application. Theoretically, the LED, however, will be able to light up but it will contribute to electrical energy wastage since higher current are needed to overcome the high circuit resistance. Thus, it can be concluded that the printed circuit board in this research are only sufficient to act as the benchmark design for further improvement to serve industrial or market purpose.

ABSTRAK

Kajian ini mengenalpasti kesan dari perbezaan parameter pada ketahanan litar bercetak. Ketebalan litar ditetapkan pada 1 mm manakala kelebarannya terbahagi kepada 3 bacaan iaitu 1 mm, 2 mm dan 3 mm. Litar yang berbentuk petak tersebut dicetak diatas substrat PET dengan menggunakan kaedah percetakan skrin. Sampel tersebut diuji dengan dua cara iaitu dari segi fungsi dan juga ketahanan. Keputusan dari ujian fungsi menunjukkan litar yang mempunyai kelebaran yang tinggi menyumbang kepada pengurangan dari nilai rintangan lembaran, dan ini meningkatkan nilai kekonduksian elektrik. Nilai awal bagi rintangan lembaran untuk sampel juga selaras dengan nilai teori seperti yang dinyatakan di Conductive Ink Technical Data Sheet. Sampel kemudiannya didedahkan kepada daya pusingan berulang dan nilai rintangan dicatatkan. Kemudian, nilai tersebut dibandingkan dengan nilai rintangan yang sesuai bagi penggunaan LED. Perbezaan antara kedua bacaan (sebelum dan selepas dikenakan daya) membuktikan bahawa litar akan mengalami nilai rintangan yang lebih setelah dikenakan daya pusingan, melebihi nilai yang dikehendaki oleh LED. Secara teorinya, LED akan dapat dinyalakan tanpa masalah, namun ianya akan mengakibatkan pembaziran tenaga elektrik kerana nilai arus yang tinggi diperlukan bagi mengatasi nilai rintangan litar yang tinggi. Secara konklusinya, litar yang dihasilkan dari kajian ini hanya mampu dijadikan tanda aras bagi pembaharuan rekaan yang akan mempunyai fungsi di pasaran

v

ACKNOWLEDGEMENT

First of all, I would like to express my gratitude as I was able to participate and take part in this Projek Sarjana Muda (PSM) 1 and to be able to complete both the report writing and also experimental procedure.

Highest gratitude to Dean of Faculty of Mechanical Engineering, Dr Ruztamreen Jenal that allow PSM as one of practical knowledge to expose students towards thesis writing

A special thanks to my lecturer supervisor, Dr Muhd Ridzuan bin Mansur that helped me through his guidance, advices and experience for the completion of this paper.

Also, I would like to thank my lecturers in Universiti Teknikal Malaysia Melaka; specifically, FKM in which, without their knowledge sharing, I wouldn't be able to complete the experimental procedure and also technical report writing.

Support from my parents and guardians are one of my strength to be able to finish this PSM and thus, to my parents are the highest salutation.

Lastly, I would like to thank my fellow friends that always have my back and to support me when needed.

vi

TABLE OF CONTENT

ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
LIST OF FIGURES	ix
LIST OF TABLES	xii
LIST OF APPENDICES	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Background Of Research	1
1.2 Problem Statement	2
1.3 Research Question	4
1.4 Objective	4
1.5 Research Scope	5
1.5.1 Scope Of Research	5
1.5.2 Limitation Of Study	5
1.6 Planning And Execution	6
CHAPTER 2 LITERATURE REVIEW	8
2.1 Introduction	8
2.2 Flexible Electronics	8
2.2.1 Advantage Of Flexible Circuit	9
2.2.2 Use Of Flexible Circuit In Industry	10
2.2.3 Use Of Flexible Circuit In Automotive Industr	у 11
2.3 Conductive Ink	12
2.3.1 Types Of Ink	13
2.3.2 Carbon Ink	14
2.4 Substrate	15
2.4.1 Polyethylene Terephthalate (Pet)	16
2.5 Printing Method	17
2.5.1 Screen Printing	17

2.6 Curing Process For The Ink	18
2.7 Sheet Resistivity	19
2.8 Mechanical Testing Method	20
2.8.1 Twisting Test	21
CHAPTER 3 METHODOLOGY	25
3.1 Introduction	25
3.2 Project Methodology	26
3.2.1 Planning And Literature Review	26
3.2.2 Material Identification	28
3.2.3 Sample Design	30
3.2.4 Sample Preparation	31
3.2.5 Cyclic Twisting	33
3.2.6 Testing	36
3.2.7 Data Collection And Analysis	38
CHAPTER 4 RESULTS AND DISCUSSION	39
4.1 Introduction	39
4.2 Sheet Resistance Measurement Before Twisting Load	39
4.2.1 Total Resistance Reading	40
4.2.2 Total Sheet Resistivity	41
4.2.3 Comparison Between Square-Patterned Circuit And Straight-Line Circuit	42
4.3 Sheet Resistance Measurement After Twisting Load	45
4.3.1 Twisting Test: Line Width 1 Mm	45
4.3.2 Twisting Test: Line Width 2 Mm	47
4.3.3 Twisting Test: Line Width 3 Mm	49
4.4 Data Comparison	50
4.5 Discussion	52
4.5.1 Initial Resistance	52
4.5.2 Resistance Changes After Twisting Test	54
CHAPTER 5 CONCLUSION AND RECOMMENDATION	61
5.1 Conclusion	61
5.2 Recommendation For Future Work	62
REFERENCES	63

LIST OF FIGURES

FIGURE TITLE

PAGE

1.1	Planning for PSM 1	6
1.2	Planning for PSM 2	7
2.1	Example of flexible display	9
2.2	Example of flexible printed circuit	10
2.3	Flexible lithium ion batteries	11
2.4	General particle of carbon black	14
2.5	Principle for screen printing method	18
2.6	Graph of resistance versus bending time	19
2.7	Cyclic twisting load experiment	19
2.8	A 2-point rotation test	20
2.9	Graph plot of torque vs twist angle	21
2.10	Data tabulation for twisting cycle	22
2.11	Graph plot for torsion cycle of carbon-based conductive ink	23
2.12 (a)	Graph plot for change in resistance (%) vs number of bending	23
	cycles for PET substrate and silver conductive ink	
2.12 (b)	Conductive ink pattern variation for Merilampi's research	23
2.13	Effect of line width and ink layer on resistance reading	24
3.1	Research's flow chart	27
3.2 (a)	Bare Conductive ink	28
3.2 (b)	PET Roll	28
3.3 (a)	Available stencil in lab	30
3.3 (b)	Square-shaped circuit stencil	30
3.4	Manual set up for straight line circuit	31
3.5	After application of conductive ink	32

3.6 (a)	Line width of 2 mm	32
3.6 (b)	Line width of 3 mm	33
3.6 (c)	Straight line of width 3 mm	32
3.7 (a)	Initial jig used for testing	34
3.7 (b)	The motor with rack and pinion gearing system	34
3.7 (c)	Jig fixed end	34
3.7 (d)	Sample placement	34
3.8 (a)	Overall jig illustration	35
3.8 (b)	Clipping mechanism	35
3.8 (c)	Usage of limit switch	35
3.9	Distance for resistance measurement for square-shaped circuit	36
3.10	Distance for resistance measurement for straight line circuit	36
4.1	Total resistance and number of corners	41
4.2	Sheet resistivity versus line width	42
4.3	Comparison circuit: Resistance versus W/L	44
4.4	Comparison circuit: Sheet resistance versus number of corners	44
4.5	Graph of resistance versus length for thickness of 1 mm	46
4.6	Graph of sheet resistance versus Corner for thickness of 1 mm	46
4.7	Graph of resistance versus length for thickness of 2 mm	48
4.8	Graph of sheet resistance versus Corner for thickness of 2 mm	48
4.9	Graph of resistance versus length for thickness of 3 mm	49
4.10	Graph of sheet resistance versus Corner for thickness of 3 mm	50
4.11	Graph of data comparison	51
4.12 (a)	Distorted printed ink	53
4.12 (b)	Ink distortion under microscope observation	53
4.12 (c)	Manual stencil for square-shaped circuit	53
4.13 (a)	First sample of 1 mm after test	55
4.13 (b)	Third sample of 1 mm after test	55
4.13 (c)	Close up of circuit failure	55
4.14 (a)	1 mm sample before test	56
4.14 (b)	Damage at first corner	56
4.14 (c)	Damage at sixth corner	56
4.15 (a)	Failure in sixth corner	57

4.15 (b)	Microscopic image of circuit damage	57
4.15 (c)	Microscopic image of circuit damage	57
4.16 (a)	First sample	58
4.16 (b)	Second sample	58
4.16 (c)	Third sample	58

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	Limitation of study	5
3.1	Bare Conductive ink information	29
3.2	Properties for PET	30
3.3	Differences between jigs used in testing	33
3.4	Total number of samples	38
3.5	Total number of samples available for testing	38
4.1	Total resistance and number of corners	40
4.2	Average sheet resistivity for square-shaped circuit	42
4.3	Comparison between square-shaped and straight-line circuit	43
4.4	Data tabulation for thickness of 1 mm	45
4.5	Data tabulation for thickness of 2 mm	47
4.6	Data tabulation for thickness of 3 mm	49
4.7	Data comparison	51
4.8	Data summary	60

LIST OF ABBREVIATION

FPCB	- Flexible Printed Circuit Board
FPC	- Flexible Printed Circuit
OLED	- Organic Light Emitting Diode
PET	- Polyethylene terephthalate
PEN	- Polyethylene naphthalate
LCD	- Liquid crystal display
LED	- Light Emitting Diode
PDMS	- Polydimethylsiloxane
RFID	- Radio-frequency identification
CNT	- Carbon Nano Tube
SEM	- Scanning Electron Microscopy

xiii

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	RAW DATA OF SQUARE-SHAPED CIRCUIT WITH LINE	74
	WIDTH: 1 mm	
В	RAW DATA OF SQUARE-SHAPED CIRCUIT WITH LINE	76
	WIDTH: 2 mm	
С	RAW DATA OF SQUARE-SHAPED CIRCUIT WITH LINE	78
	WIDTH: 3 mm	
D	RAW DATA OF STRAIGHT-LINE CIRCUIT WITH LINE	80
	WIDTH: 3 mm	
E	RAW DATA OF TWISTING TEST WITH LINE WIDTH: 1	81
	mm	
F	RAW DATA OF TWISTING TEST WITH LINE WIDTH: 2	83
	mm	
G	RAW DATA OF TWISTING TEST WITH LINE WIDTH: 3	85
	mm	
Н	TWISTING TEST: DATA SUMMARY	87
Ι	BARE CONDUCTIVE INK DATA SHEET	88

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND OF RESEARCH

In the uprising demand for downsizing of mobile electronics, flexible electronics have become an important aspect of technology. The evolution of electronic circuitry began with complicated wiring that requires high maintenance and usually end up with bulky design. This has been simplified into a single piece of board which convey the same function but with a minimised and smaller design. The future of electronic board is to have the flexible properties because of the advantageous applications such as in portable or wearable electronics, electric automobiles or even automotive applications. The working principle of a flexible electronic circuit is usually to have a conductive ink, printed onto a flexible substrate, which functions to hold the ink. The usage of ink and the substrate are both to replace the copper layer and circuit board; respectively. The difference being made is the rigid circuit board being substituted with a flexible and bendable material.

The modern automobile has a broad electronic circuit consisting of electric, electromechanical and electronic loads that are vital to either vehicle operation, safety or comfort. In order for a vehicle to function smoothly and safely, it takes more than the engine operation. It also needs other contributing factors such as the air conditioning system for comfort and automotive lighting for safety and illuminating purposes. Example of automotive lighting includes headlights, signal lights and internal lights. The car headlight

1

has a significant influence on traffic safety, the same goes with the signal and internal lights. Nevertheless, it is proven that the main goal of vehicle lighting is to enable the driver to see and for them to be seen. Thus, researchers must progressively develop the lighting systems to make driving safer. (Mou et al., 2018).

This research tested the reliability of flexible, printed electronic circuit for the automotive lighting application. This study will be focused on prototyping of a flexible circuit and to test its function under cyclic twisting and the effect on electricity flow through the measurement of resistivity

1.2 PROBLEM STATEMENT

As said by Lim et al. (2013), the desire of flexibility, compact, lightweight and low cost in current electronic device increases the application of flexible printed circuit board (FPCB). Flexible electronics are not a new thing in industrial applications, but there are always room for improvement and development of the technology. According to Chu et al. (2017), with the popularity of intelligent terminals, flexible electronic products present a huge market prospect. Various experiments are done for the sake of futuristic and sleek application of either devices or machinery. Since the circuit is made up of flexible substrate, it is expected to operate for a supple application with small failure possibilities. Several researches have reported on the reliability performance of FPCB under various mechanical loading by using different type of substrates such as paper, PET, TPU etc and different type of conductive ink such as silver ink, copper etc. However, there is no reported results so far on the reliability performance of FPCB under cyclic twisting load by using PET substrate and carbon-based conductive ink at varying square patterned circuit width. In this research,

2

the performance of the flexible circuit before and after the cyclic twisting test was measured. The performance of the FPCB were assessed in terms of the effect of the cyclic twisting load on the change of sheet resistivity.

1.3 RESEARCH QUESTION

The questions related to this research:

- i) What are the effects of cyclic twisting test on the FPCB performance at varying circuit width?
- ii) Is this geometrical parameter suits with the LED lighting application?

1.4 OBJECTIVE

The objectives of this research are as listed below:

- To develop printed electronic sample on flexible substrate using carbon blackbased conductive paste
- ii) To study the effect of square-patterned connection on sheet resistivity at varying line width
- iii) To evaluate the sample reliability when subjected to cyclic twisting load

4

1.5 RESEARCH SCOPE

1.5.1 Scope of research

The scopes for this research are as follows:

- i) Usage of Polyethylene Terephthalate (PET) as the substrate and carbon-black based conductive ink as the circuit
- ii) Printing of square-patterned conductive ink on flexible substrate by using screen printing method
- iii) Resistance measurement on flexible printed circuit by using a multi-meter
- iv) Testing of samples on cyclic twisting load
- v) Data collection and analysis

1.5.2 Limitation of study

This limitation of this study are as follows:

Material of substrate	Polyethylene terephthalate
Ink type	Carbon-based
Printing method	Screen printing method
Reliability test	Measurement of the sheet resistivity
Mechanical test	Twisting test

1.6 PLANNING AND EXECUTION

The research activity and PSM progress is being shown as in the Figure 1.1 and 1.2 below.

Activities/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Research title															
review															
Literature															
review															
Design of															
experiment															
Sample															
fabrication															
Testing/Data															
collection															
Data analysis															
Report writing										I					
Report															
submission															
PSM															
presentation															

Figure 1. 1 Planning for PSM 1

Activities/Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Literature															
review															
Design of															
experiment															
Torsion test on															
samples															
Data collection															
Data analysis															
Report writing															
Report															
submission															
PSM															
presentation															

Figure 1. 2 Planning for PSM 2

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter focus on explaining on the materials and testing process for the study. Discussion will include description on polyethylene terephthalate as the substrate, conductive ink, printing method and experimental method such as measurement of bulk resistivity, surface roughness, hardness, optical microscope and adhesion peel test.

2.2 Flexible electronics

Development of the latest technology, gadget and invention has further advanced with the innovation of flexible and durable device; illustration shown in Figure 2.1 below. Electronic printing has been available since the 1950s (Suganuma, 2014) in which some of the requirements are mechanical stability, flexibility and electrical conductivity (Bao et al., 2016; Yang et al., 2018).