CONCEPTUAL RETROFIT DESIGN OF A GREEN BUILDING OFFICE FROM AN EXISTING BUILDING

LUA YONG WENG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

CONCEPTUAL RETROFIT DESIGN OF A GREEN BUILDING OFFICE FROM AN EXISTING BUILDING

LUA YONG WENG

This report is submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this project report entitled "Conceptual Retrofit Design of A Green Building Office From An Existing Building" is the result of my own work except as cited in the references.

Signature	:
Name	: LUA YONG WENG
Date	:

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:	
Supervisor Name	:	ASSOC. PROF. DR. TEE BOON TUAN
Date	:	

DEDICATION

My humble effort I dedicate to my loving father and mother for their endless love, support and encouragement along my life.

ABSTRACT

Green building is superior in carbon savings and cost savings. Green buildings use lower energy and are healthy for occupant during living or working inside as compared to a conventional building. One of the green building criteria is to achieve good indoor environmental quality. The main objective of this study is to conduct a comparative analysis on the retrofit design of sustainable green building office by determining the indoor environment condition in term of temperature, relative humidity and carbon dioxide on Centre for Languages and Human Development (PBPI) building located at the UTeM's main campus. Thermal comfort and indoor air quality analysis were conducted to evaluate the indoor environment quality of the lecture room. The analysis consists of physical measurement and subjective measurement. Physical parameter data are collected in two sessions which is from 9 am to 12 pm and from 2 pm to 5 pm with a gap of 5 second interval for 5 minutes in each zone. Physical measurements were conducted with occupancy and no occupancy condition while subjective measurement was carried out through the questionnaire. The result shows that the indoor air quality in term of carbon dioxide of the building is more than 1000 ppm during occupancy, hence it is not within the GBI Standard. The total average relative humidity was recorded 58.35% within GBI Standard (55%-70%). The average operating temperature was recorded 22.21°C less than GBI Standard (23°C - 26°C). Based on the findings, the indoor environment quality improvement retrofit design are proposed with a green building element.

ABSTRAK

Bangunan hijau lebih baik dalam penjimatan karbon dan penjimatan kos. Bangunan hijau menggunakan tenaga yang lebih rendah dan sihat untuk penghuni yang tinggal atau bekerja di dalamnya berbanding dengan bangunan konvensional. Salah satu piawai bangunan hijau adalah untuk mencapai kualiti keadaan persekitaran dalaman yang baik. Objektif utama kajian ini adalah untuk menjalankan analisis komparatif mengenai pengubahsuaian reka bentuk bangunan pejabat hijau yang mampan dengan menentukan keadaan persekitaran dalaman dari segi suhu, kelembapan dan karbon dioksida di dalam bangunan Pusat Bahasa dan Pembangunan Insan (PBPI) yang terletak di kampus Utama UTeM. Kajian keselesaan terhadap suhu dan mutu udara dalaman dijalankan untuk menilai mutu keadaan persekitaran dalaman bilik kuliah. Analisis ini terdiri daripada pengukuran fizikal dan pengukuran subjektif. Maklumat pengukuran fizikal dikumpulkan dalam dua sesi iaitu dari 9 pagi hingga 12 malam dan dari pukul 2 petang hingga 5 petang dengan jurang selang 5 saat selama 5 minit dalam setiap zon. Pengukuran fizikal dijalankan dalam dua bentuk, iaitu semasa mempunyai penghuni dan semasa tiada penghuni manakala pengukuran subjektif dijalankan melalui soal selidik. Hasilnya menunjukkan bahawa mutu udara dalaman dari segi karbon dioksida bangunan lebih tinggi daripada 1000 ppm semasa mempunyai penghuni, oleh itu ia tidak mematuhi Piawaian GBI. Jumlah kelembapan purata dicatatkan 58.35% iaitu mematuhi piawaian GBI (55% -70%). Suhu operasi purata dicatatkan 22.21°C, iaitu lebih rendah daripada Piawaian GBI (23°C - 26°C). Berdasarkan hasil kajian, mencadangkan pengubahsuai reka bentuk untuk meningkatkan keadaan persekitaran dalaman dengan mengambil kira unsur bangunan hijau.

ANKNOWLEDGEMENTS

I would like to express my deepest appreciation to my supervisor Assoc. Prof. Dr. Tee Boon Tuan for his guidance, advice and support throughout this project. I would also like to take this opportunity to thank UTeM, especially the Faculty of Mechanical Engineering and Centre for Languages and Human Development for the support of facilities and utilities. Besides, I would like to thank Mr Asjufri bin Muhajir, assistant engineer for air-conditioning laboratories for his support to teach me how to conduct physical measurement. I would like to thank my course mates for giving me their support, patience and encouragement. Finally, I would like to thank my family for their support.

TABLE OF CONTENTS

CHAPTER	CON	TENT	PAGE			
	DEC	LARATION				
	APP	ROVAL				
	DED	ICATION				
	ABS'	ABSTRACT				
	ABS'	ГКАК	ii			
	ACK	ACKNOWLEDGEMENTS				
	TAB	LE OF CONTENTS	iii			
	LIST	COF TABLES	vii			
	LIST	COF FIGURES	viii			
	LIST	LIST OF APPENDICES				
	LIST	COF ABBREVIATIONS	Х			
	LIST	COF SYMBOLS	xi			
CHAPTER 1	INTI	1				
	1.1	Background of study	1			
	1.2	Problem Statement	2			
	1.3	Objective	3			
	1.4	Scope of Project	3			
	1.5	General Methodology	3			
	1.6	The Importance of The Study	5			
	1.7	Project Outcome	5			
CHAPTER 2	LITH	ERATURE REVIEW	6			
	2.1	Introduction	6			
	2.2	Green Building Theory	6			
		2.2.1 Green building	6			
		2.2.2 Green retrofit	7			
	2.3	Green building criteria	8			
		2.3.1 Green building rating tool	8			
	2.4	Sustainability rating system description	12			

2.4.1	LEED	12
2.4.2	Green Star	12
2.4.3	GBI	13

2.4.4 BREEAM 14

2.5	Indoor Environmental Quality Factors	14
	2.5.1 Indoor air temperature	15
	2.5.2 Indoor air humidity	15

2.5.3 Indoor Carbon Dioxide 15

CHAPTER 3	MET	THODOLOGY	17
	3.1	Introduction	17
	3.2	Building description	18
		3.2.1 Centre for Languages and Human	18
		Development (PBPI)	
	3.3	Project flow chart	20
	3.4	Analysis of Indoor Environmental Quality	22
		3.4.1 Initial walk-through tour	22
		3.4.2 Physical Parameters Measurement	23
		3.4.3 Survey	25
	3.5	Retrofit Analysis	27
CHAPTER 4	RES	ULTS AND ANALYSIS	28
	4.1	Physical Measurement Result	28
		4.1.1 Ground floor (With Occupants and	28
		Without Occupants)	
		4.1.1.1 Lecture Room BK1	28
		4.1.1.2 Language laboratories MB1	33
		4.1.2 First floor (With Occupants and Without	38
		Occupants)	
		4.1.2.1 Lecture room BK5	38

	REF	ERENC	E					76
	5.2	Recon	nmendatio	on				75
	5.1	Concl	usion					74
CHAPTER 5	CON	CLUSI	ON AND	RECO	DMME	NDATION		74
		4.5.6	Ventilat	ion Eff	ectiven	ess		73
		4.5.5	Installat	ion of a	air grille	es		72
		4.5.4	Air Con	dition (Control	Setting		72
		throug	ghout the	buildin	g			
		4.5.3	Use low	VOC	paint an	d coating		71
		HVA	2					
		4.5.2	Replace	existin	g HVA	C to Green		69
		4.5.1	Carbon	dioxide	e monito	oring and cont	rol	67
	the g	reen buil	ding elen	nent				
	4.5	Recon	nmendatio	ons for	retrofit	design base o	f	67
		4.4.3	Regressio	n analy	rsis at se	cond floor		66
		4.4.2]	Regressio	n analy	sis at fi	rst floor		65
		4.4.1	Regressio	n analy	sis at gi	ound floor		65
	4.4	Regre	ssion Ana	lysis				64
	and c	questionr	naire					
	4.3	Comp	arison bet	tween o	bjectiv	e measuremer	nt	63
		4.2.3	Survey an	alysis a	at secon	d floor		61
		4.2.2	Survey an	alysis a	at first f	oor		59
		4.2.1 \$	Survey an	alysis a	at groun	d floor		57
	4.2	Subjec	ctive Asse	essmen	t			56
		4.1.4	Overall	physica	al measu	irement result	t	53
			4.1.3.1 I	Lecture	room E	K8		48
		Witho	out Occupa	ants)				
		4.1.3	Second	floor	(With	Occupants	and	48
			4.1.2.2 1	Langua	ge labo	atories MB3		43

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Green building rating tools.	9
2.2	Assessment criteria of selected green building rating tool.	10
2.3	Acceptable range for physical parameters by ASHRAE	16
	Standard [Source: ASHRAE, 2017]	
2.4	Acceptable range for physical parameters by GBI Standard	16
3.1	PBPI building facilities	19
4.1	Physical measurement results at ground floor	53
4.2	Physical measurement results at first floor	54
4.3	Physical measurement results at second floor	54
4.4	Occupants thermal sensation vote for Ground floor	57
4.5	Occupants relative humidity sensation vote for Ground floor	58
4.6	Occupants thermal sensation vote for First floor	60
4.7	Occupants relative humidity sensation vote for first floor	61
4.8	Occupants thermal sensation vote for Second floor	62
4.9	Occupants relative humidity sensation vote for second floor	63
4.10	Classification of R-squared value (Moore et al., 2013)	64
4.11	Specifications of HDH transmitters	68

4.12	Specifications of different type Air Conditioner	70
4.13	Specifications of transfer air grille	73

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Project flow chart.	4
2.1	The Green Star rating scale. [Source: Green Star: 2016]	13
3.1	PBPI building from Satellite view. [Source: Google Maps]	18
3.2	PBPI building.	19
3.3	Project flow chart.	21
3.4	PBPI corridor.	22
3.5	TSI IAQ-CALC 7545 Indoor Air Quality meter	24
3.6	Measurement of Temperature, CO ₂ and Relative Humidity	25
	conducted at MB1	
3.7	Measurement of Temperature, CO ₂ and Relative Humidity conducted at MB5, first floor of PBPI building using a TSI Indoor Air Quality meter	25
3.8	During distributing the questionnaire survey form to occupants	27
3.9	Occupants filled questionnaires in lecture room	27
4.1	Indoor air temperature in lecture room during morning	29
4.2	Indoor air temperature in lecture room during afternoon	30
4.3	Relative humidity in lecture room during morning	31

4.4	Relative humidity in lecture room during afternoon	31
4.5	Carbon dioxide in lecture room during morning	32
4.6	Carbon dioxide in lecture room during afternoon	33
4.7	Indoor air temperature in lecture room during morning	34
4.8	Indoor air temperature in lecture room during afternoon	35
4.9	Relative humidity in lecture room during morning	36
4.10	Relative humidity in lecture room during afternoon	36
4.11	Carbon dioxide in lecture room during morning	37
4.12	Carbon dioxide in lecture room during afternoon	38
4.13	Indoor air temperature in lecture room during morning	39
4.14	Indoor air temperature in lecture room during afternoon	40
4.15	Relative humidity in lecture room during morning	41
4.16	Relative humidity in lecture room during afternoon	41
4.17	Carbon dioxide in lecture room during morning	42
4.18	Carbon dioxide in lecture room during afternoon	43
4.19	Indoor air temperature in lecture room during morning	44
4.20	Indoor air temperature in lecture room during afternoon	45
4.21	Relative humidity in lecture room during morning	46
4.22	Relative humidity in lecture room during afternoon	46
4.23	Carbon dioxide in lecture room during morning	47
4.24	Carbon dioxide in lecture room during afternoon	48
4.25	Indoor air temperature in lecture room during morning	49

4.26	Indoor air temperature in lecture room during afternoon	50
4.27	Relative humidity in lecture room during morning	51
4.28	Relative humidity in lecture room during afternoon	51
4.29	Carbon dioxide in lecture room during morning	52
4.30	Carbon dioxide in lecture room during afternoon	53
4.31	Graph of PMV versus operative temperature at ground floor	65
4.32	Graph of PMV versus operative temperature at first floor	66
4.33	Graph of PMV versus operative temperature at second floor	66
4.34	HDH transmitters operating diagram	68
4.35	Awning window in lecture room	73

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Project Gantt Chart for PSM 1	80
В	Project Gantt Chart for PSM 2	82
С	PBPI Building Layout	84
D	Questionnaire Form	88
E	Permission Letter	90

LIST OF ABBEREVATIONS

ASHRAE	American Society of Heating, Refrigerating and Air Conditioning	
	Engineer	
BEAM Plus	Building Environment Assessment Method	
BREEAM	Building Research Establishment Environmental Assessment Methods	
CASBEE	Comprehensive Assessment System Built Environment Efficiency	
DOSH	Department of Occupational Safety and Health	
EER	Energy Efficiency Ratio	
EPA	Environmental Protection Agency	
GBCA	Green Building Council of Australia	
GBI	Green Building Index	
HVAC	Heating, Ventilation and Air Conditioning	
IAQ	Indoor Air Quality	
IEQ	Indoor Environmental Quality	
IGBC	Indian Green Building Council Rating	
IoT	Internet of Things	
ISO	International Organization for Standardization	
LEED	Leadership in Energy and Environmental Design	
MGBC	Malaysia Green Building Confederation	
MS	Malaysia Standard	
NASA	National Aeronautics and Space Administration	
PBPI	Pusat Bahasa dan Pembangunan Insan	
PPM	Parts per million	
SALL	Self-Access Language Laboratories	
USGBC	United State Green Building Council	
UTeM	Universiti Teknikal Malaysia Melaka	
VOC	Volatile Organic Compounds	
WGBC	World Green Building Council	

xiii

LIST OF SYMBOLS

- CO₂ Carbon Dioxide
- °C Degrees Celsius
- m² Square meter
- ppm parts per million
- % Percentage
- \leq Less than or equal to in value
- \geq Greater than or equal to in value
- V Voltage
- Ph Phase
- Hz Hertz
- Ft Feet
- W Watt
- kW kilowatt
- hr Hour
- BTU British thermal unit
- TR Tones Refrigerant

xiv

CHAPTER 1

INTRODUCTION

1.1 Background of study

Public are now talking of how to make their buildings green. They want to have a place like a house or work in the building which has less harmful effect to environment and human health. That is because buildings have a significant and continuously increasing the effect to the environment through carbon dioxide (CO₂) releases. Green building criteria include efficiently using energy, water, other resources and reducing waste to environment. Besides, protecting occupant health and have a good indoor air quality (Ramachanderan, Venkiteswaran and Chuen, 2017).

The human activities such as deforestation, vast use of electricity and burning fossil fuels has made the (CO₂) increase to 409 parts per million (ppm) in year 2018. Recent researches show that global temperature has increase quickly, the year 2016 ranks as the warmest on record. In fact, the risen of global temperature will cause land ice melts, it adds freshwater to the oceans causing sea levels to rise. Besides that, global average sea level has risen nearly 178mm over the past 100 years with rate of change 3.2 ppm (NASA, 2018). The temperature rises will also increase the frequency of severe storms, droughts, floods and climatic changes.

The population of the world in year 2017 has risen to 7378 from 133 countries; representing 16.9 percent of the global population compare to year 2015 has population of 7025 from 99 countries; representing 11 percent of the global population (UN Environment, 2018). Undoubtedly, this growth in population is associated with higher demand for water,

energy and natural resources which in return will overburden the ecosystems and increasingly deteriorates the environment. Besides that, continually uses of natural resources will has ability to affect future generations.

One of the ways to minimize the global warming of the Earth is to conserve the energy uses globally. Research shows that the existing building consumes around 30 percent of the accumulated energy uses in modern countries and will produce almost 30 percent of carbon emissions due to energy use (Eurostat, 2009). As being demonstrated in previous works (Ciulla, Galatioto and Ricciu, 2016) that green retrofit of existing building can improve their energy efficiency, which is essential for the promotion of environmental sustainability (Ma *et al.*, 2012). Research shows that the green building is cheaper than conventional building by save up to 10 percent of energy consumption (Tang, 2018).

1.2 Problem Statement

Powering building can make up to 75 percent of a city's carbon pollution, yet much of that energy is wasted through drafty windows and outdated technology (NRDC, 2018). By research, the existing building have consumed 30 percent of the heap up energy uses in modern countries and may produce almost 30 percent of carbon emission due to energy use (Eurostat, 2009). One of the criteria in green building is efficient use of energy. A green building is essential to achieve an optimal energy efficiency by reducing the energy wastes impact toward academic building. Improving the energy efficiency of the existing building may reduce the carbon emission.

This project aims to conduct comparative analysis on the retrofit design of academic building in Universiti Teknikal Malaysia Melaka (UTeM) and to provide design methodology improvement of the existing building.

2

1.3 Objectives

The objectives of the project are:

- To conduct a comparative analysis on the retrofit design of a sustainable Green Building Office.
- To conduct indoor environment in term of temperature, carbon dioxide and relative humidity measurement as baseline for green retrofit designs.
- To develop and propose the retrofit design with green building elements based on the current existing building.

1.4 Scope of Project

This study will focus on the academic building in Universiti Teknikal Malaysia Melaka (UTeM). The selected building consists of an air conditioning system as where the Indoor Environmental Quality (IEQ) and energy consumption will be observed. In this study, the case study building will be in building of Centre for Languages and Human Development (PBPI).

1.5 General Methodology

The methodology that will be carried out to achieve the objectives in this project are outlined below as shown in **Figure 1.1**.

1. Select the academic building in UTeM

Choose the building that has air conditioning.

- Study the building system and conduct literature review
 Journals, articles, or any materials regarding the project will be reviewed.
- 3. Measure Indoor Environmental Quality

Prepare the measurement equipment then conduct the physical measurement. The measurement will be conducted at the air conditioning area.

4. Choose proper criteria

The data measurement will be analyzed. Solutions will be proposed based on the analysis.

5. Building improvement

Design concept of existing building will be proposed.

Figure 1.1: Project flow chart

1.6 The Importance of The Study

Throughout this research, the prospect of retrofitting the green building design on the current university existing building can be evaluated and determined whether it meets the required design. The measurement data on the indoor environment will also contribute to the evaluation on the current condition in term of healthy environment to the occupants. It is hoped that this study will be a benchmark study for future implementation of green building design in university buildings.

1.7 **Project Outcome**

At the end of this project, analysis of indoor environment and energy consumption as part of green building criteria will be done. The data measurement result of the building will be recorded. Besides that, building retrofit design based on green building criteria for existing building also will be proposed.

5