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ABSTRACT

This study focusses in producing tensile test specimen and method for the determination
on the elastic property of 3D printed ABS single strut specimen. Designs of miniture single
struts include a slender straight design with nominal strut diameter of 1.6 mm, total length of 24
mm, 45 mm, 50 mm, 75 mm and 90 mm. Compliance correction method is applied for single
struts with different gauge lengths of between 8mm to 30 mm. Design of specimen is referred
to ASTM E8/E8M-13a standard specification while tensile test is performed with reference to

ASTM D638 standard procedure by using shimadzhu EZ test (EZ-LX) machine.



ABSTRAK

Kajian ini memberi tumpuan dalam menghasilkan spesimen ujian tarik dan kaedah untuk
menentukan keupayaan elastik untuk spesimen strut tunggal daripada ABS yang dicetak melalui
3D. Reka bentuk miniture strut tunggal termasuk reka bentuk lurus langsing dengan diameter
strut nominal 1.6 mm, panjang keseluruhan 24 mm, 45 mm, 50 mm, 75 mm dan 90 mm. Kaedah
pembetulan pematuhan digunakan untuk struts tunggal dengan panjang tolok yang berbeza
antara 8mm hingga 30 mm. Reka bentuk spesimen dirujuk kepada spesifikasi standard ASTM
E8 / EEM-13a manakala ujian tegangan dilakukan dengan merujuk kepada prosedur standard

ASTM D638 dengan menggunakan mesin shimadzhu EZ (EZ-LX).
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CHAPTER 1

INTRODUCTION

11 BACKGROUND

Lattice structure is a lightweight material. Many studies have done to determine
mechanical properties of this material produced from stainless steel, aluminium, copper and
other metals. Its properties of high stiffness and strength to weight ratio caused it widely to be

used for lightweight structural applications (Doyoyo and Hu, 2006).

Lattice-structure comprises of many struts connected to each other by nodes, in many
architectural arrangements such as body-centred-cubic (BCC), face-centred-cubic (FCC) and
hexagonal close packed (HCP). These availabilities of joint type offer flexibility in assembly
methods of the strut-based lattice structure. Hence, due to flexible configuration, the complex

geometries design would prefer to apply the strut-based lattice structure (Doyoyo and Hu, 2006).

A node is a joint where two or more struts meet, and a strut is a link or member that
connects two nodes. Many feasible options can be considered to define volume for designing
strut-based lattice structures as it has variation number of nodes and struts to be combined.

Figure 1.1.1 shown an example of lattice structure which consist of nodes (n) and struts (p).



Ny (Xy,Y1,21)

Ny (XY Zn)

Figure 1.1.1: A strut-based lattice configuration with nodes n = 9 and struts p = 16.

(Source: Syam et al., 2017)

Certain process is needed in each fabrication method of lattice-structure material. There
are various methods to produce lettice-structure material which are casting, wire bonding
process, sheet metal forming and electron beam melting (EBM) (Rashed et al., 2016). One of
the common method to produce lattice structure is casting method which is using injection
moulding (Rashed et al., 2016). Wire bonding is generally considered the most cost-effective
and flexible interconnect technology which is used to assemble the vast majority of
semiconductor packages. Sheet metal methods is the process where producing lattice structure
by press forming operation from a roll of sheet metal (Rashed et al., 2016). Otherwise in
additive manufacturing (AM) techniques EBM is also one of the most selected method where

the part is produced layer by layer (Rashed et al., 2016).



Additive layer manufacturing (ALM) or additive manufacturing (AM) is a modern
fabrication process that can be use with wide range of materials to create product ranging from
medical implants to parts of an aircraft wing. 3D printing is one of the categories in additive
layer manufacturing available which the printed part is formed layer by layer (Gebhardt, 2003).
The first step in fabricating parts by using this technology is to create the required geometry
layer by layer, using computer aided design (CAD) data. Due to the high process flexibility and
the possibility to produce parts with a high geometric complexity, AM technology is an

advanced method that used widely

1.2 PROBLEM STATEMENT

Mechanical properties especially modulus of elasticity, yield strength and maximum
strength of lattice structure materials can be obtained through stress-strain diagram. In case for
lattice-structure materials arrangement, compression test is one of the simplest methods to
obtain the stress-stress diagram. However, using compression test will not give the failure
strength and failure strain data. Tensile test is preferred to provide the failure data. For micro-
lattice structure as a whole, tensile test experiment will need a specially designed and fabricated
jig to hold the specimen. To simplify this, it is suggested that tensile test on single strut specimen

need to be done.

Stress-stress diagram for single strut can provide some information related to the basic

failure of lattice structure material. For ABS lattice-structure fabricated using 3D printer,



mechanical properties from tensile test has not yet been conducted. Thus, this study is looking

for such data.

1.3 OBJECTIVE

To investigate mechanical properties of 3D printed single strut with selected parameter using

tensile test.

1.4  SCOPE OF PROJECT

The scopes of this project are:

1. Design of single strut for tensile test specimen using Solidworks with selected parameter.

2. Fabrication of single strut tensile test specimen using CubePro 3D printer, from ABS
material.

3. Conduct tensile test experiment for single strut by using Shimadzu table top machine.

4. Analyse mechanical properties of single strut using compliance correction method.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the background of this study will be researched in order to have better
understanding of fundamental knowledge before proceed for further progress. All topics are
which relevant with this study are discussed based on the journal articles and academic book.
Besides that, all materials from previous research which related to this study will be described

as well.

2.2 Lattice-structure and Strut

Struts is the basic units which will be connected to each other to form lattice structure.
The connection between struts are called nodes, the point where struts meet together in the
structure. In a fixed volume, there are various types of configuration where strut-based lattice
structure can be designed with variation of node position. Material used in the lattice-structure

can be saved as it has high stiffness to weight ratio. Hence, the problem of forming in any



complex geometries can be eliminated when the strut-based lattice structure is applied (Doyoyo

and Hu, 20006).

Large number of formations of strut-based lattice structure in a fixed volume can be
deformed when the number of nodes and struts are not fixed. Node position and strut diameter
also can be the variable in a specific volume besides the alteration of number of nodes which
can produce large number of results (Syam et al., 2017). Strut-based lattice structure can be in

numerous form such as cubic truss and octetruss as shown in Figure 2.2.1.

Octetruss Cubic truss

Figure 2.2.1: Octetruss and cubic truss.

(Source: Doyoyo and Hu, 2006)

2.3 Methods in Producing Lattice-structures

Common process to manufacture lattice-structures are through casting, sheet metal
forming or wire bonding process. These regular assemblies are time-consuming and furthermore
limited the complexity of lattice-structure designs. These methods are just used to produce

lattice-structure materials with simple setup on a macroscale (Tang et al.2017).



In casting process, ceramic casting slurry is used to coat a pattern of wax or polymer
lattice-structure. This ceramic is a mold and the wax or polymer is the expelled through the
process of melting. The liquid metal with high fluidity can be utilized to fill in the vacant shape
of the mold to form lattice-structure material. Wide range of shapes of lattice structure can be
formed by using this method as any shape can be produced according to the designed mold.
Through out this process, the produced lattice-structure material had severe porosity and this
method is time consuming and costly. Example of octet-truss lattice structure produced from

casting process is shown in Figure 2.3.1.

10 mm

Figure 2.3.1: Octet-truss lattice structure.

(Source: Rashed et al., 2016)




For sheet metal forming procedure, a roll of sheet metal is experienced perforation punch
to form the shaped holes such as diamond or hexagonal. The annealing process is used to treat
the elongated perforated sheet which can soften the struts before proceed to punching process.
The sheet then being bent with the combination of die and punch. Step in punching process
enables the perforated sheet to be grooved. Subsequently, a simple lattice-structure material can
be fabricated through these procedures from a sheet metal. Figure 2.3.2 demonstrates the

procedures of sheet metal forming method (Rashed et as.,2016).

Figure 2.3.2: Sheet metal forming process.

(Source: Rashed et al., 2016)

In any case, the presentation of additive manufacturing (AM) technologies had reduced
the restrictions in creating lattice-structure materials. AM technologies fabricate a section layer

by layer empowers the design of lattice-structure materials in complex arrangement. Through



this technology, any complex of lattice-structure can be produced easily and also in variation of

geometrical scales such as microscale, mesoscale or macroscale (Reinhart et al., 2012).

2.4  Additive Layer Manufacturing

Commonly, the first step in AM technology is designing the 3D model using a CAD
(Computer-Aided Design) software. The completed 3D model then will be saved into a “STL”
(Standard Tessellation Language) file format which is developed from 3D Systems. This STL
file will be read by computer for data preparation to create slices of the model. The data will be
sent to a program of an AM machine for creating the structured part. For removing the model
from its support structure, a post process is needed to maintain the specification of the designed

model (Kessler et al.,2016).

One of the famous additive layer manufacturing technologies is 3D printing. There are
various types of 3D printing which classified by the use of raw materials such as solid-based,
powder based or liquid based (Gebhardt, 2003). A single strut which is the basic element of
lattice structure can be created by utilizing 3D printing that offered fabricating layer-by-layer

(Kessler et al.,2016).

There was a research on fabricating strut shape of lattice-structure using SLM (selective
Laser Melting) method which is powder-based AM technology (Kessler et al., 2016). The raw
material used in this method is metal powder. In this SLM process, a thin powder layer was
stored, and CO2 (carbon dioxide) laser was lighted to the powder surface progressively until the

final part was produced based on CAD data. It concentrated on few types of cross sectional state



of swaggers and its achieved quality. The analyzed shapes were elliptical, square, circular,
rhombus and triangular. The limitation of SLM process were evaluated during the producing of
these struts. One of the limitation for circular cross section that can be discussed was the nominal
diameter which cannot be build smaller than 0.15 mm (Kessler et al., 2016). The fabricated

struts with different diameters was shown in figure 2.4.1.

Figure 2.4.1: Fabricated struts with different diameters.

(Source: Kessler et al., 2016)

In utilizing the SLM process, there was included the study of stainless-steel micro-lattice
block structure. The diameter in a Body Centered Cubic (BCC) micro-lattice structures which
made by stainless steel in SLM process can be calculated by a derived equation. This equation
literally used for fabricated micro-lattice block structure with different SLM process parameter
to observe its strut diameter as shown in equation 3.1 (Tsopanos et al., 2016). According to the
equation expressed, m,, is the mass of block, py is the density of the used steel, the Ny, N, N5

are the quantity of cells along the width, length and height directions, L is the length of cell.

— mp
d = \/ps 7T .NyX NyX N3.L /3 [3-1]

10




2.5  Polymer 3D Printer

In this analysis, struts arrangement are manufactured by polymer 3D Printer and utilizes
FDM (Fused Deposition Modeling) procedure. Firstly, the plastic material in form of filament
is melted then will be extruded as semi-liquid materials. The expelled material will be cool down
by the environment and solidified to form the designed model. The process took place layer-by-
layer to ensure the exactly desired geometrically. Material strength, layer thickness, envelope
temperature and deposition speed are some parameters that need to be concerned to allow the

performance functionalities of the system operate optimally.

CubePro Printer has been chosen among other 3D printer for being use in this study.
This is because of its suitable features for this study which equipped with ultra-high-resolution
setting of 300 microns, 200 microns and 70 microns print layer thickness. Furthermore, it is also
has good accuracy for print the model in detail form with helped from the build in Z axis
resolution of 0.1mm feature. The maximum operating temperature will be 280°C at the extruder
tip and 15mm per second is the maximum deposition speed. PLA (polylactic acid) or ABS
(acrylonitrile butadiene styrene) were the raw material used for this CubePro Printer (3dsystem,

2018). The actual CubePro Printer is shown in figure 2.5.1.

11



CubePro Dyo

Figure 2.5.1: CubePro 3D printer.

2.6 Fundamental of Tensile Test

Tensile test was set to use in this research to investigate the mechanical properties of
single struts. Information on the strength and ductility of materials under uniaxial tensile stress
can be obtained from this test. It is a simple testing that can be performed quickly to gain the
result. First of all, the tensile test machine needs to be set with the constant load and the gauge
length accordingly to the prepared data. Then, the fabricated single strut was securely held by
top and bottom grips attached to the tensile testing machine. Once the tensile test started, the

grips were moved apart at a constant rate of load which pull the specimen apart as well. A

12



computer which connected to the tensile test machine will continuously recorded and plotted on

a stress-strain curve until failure based on its displacement and force applied (Halil et al,. 2013).

A small bench top servo-hydraulic testing machine (Shimadzhu EZ-LX) was selected to
be used in this study. One of the reasons to choose this type of tensile test machine is because
the test can be run at high-precision load cell that make sure accuracy to within 0.5% of indicated
value over a wide range from 1/500 to 1/1 of the load cell capacity. This feature help to obtain

the accurate value during the test.

Among their model, EZ-LX has the higher tester load capacity which is up to maximum
5 kN and it is suitable to test the single strut properties (Van et al,. 2015). The crosshead speed
range offered by this model is within 0.001 to 1000 mm/min. Total time taken to run the whole
test also can be reduced because of its high return speed which 1500 mm/min. On the other
hand, this Shimadzu model was a very user-friendly machine as the user can run the test by
following the user manual besides equipped with automatic calibration by using calibration
cable. Trapezium X is the software that work together with this machine to interpret the data
from the tensile test (Shimadzhu, 2018). Figure 2.6.1 shows the Shimadzu EZ-LX model that

used to run tensile test for the single struts.

13



Figure 2.6.1 : Shimadzhu EZ-LX tensile test machine

(source : Shimadzhu 2018)

2.7  Conclusion of Chapter 2

In summary, the relevant journal, book and articles help in reviewing the background of
this study. The related knowledge gained are applied through this study such as limitation of
AM process in producing struts and all the equation used for characterize the struts. The
methodology of this study is planned after the background of this scope is understood

completely.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, a workflow is decided and presented for conducting the study. A series
of processes need to be carried out which first of all is to design single struts. After that the
designed structure need to be fabricated according to their geometry. The last process is to test
the single strut under tensile test and analyze the result. Every detail of each process is explained

in this chapter.

3.2 Workflow Chart

Every step and process which need to be done for accomplishing this study are listed as
below. Figure 3.2.1 presents the flow chart of methodology in this study. Initially, all journals,
articles and materials which relevant to the study are gathered and literature studies are
conducted to review 3d printing and single strut. After that, by using computer-aided design
(CAD) which is CATIA, the single strut is designed with 1.6 mm diameter and 35.26° build

angle. The designed single strut then be fabricated by using 3D printer which is the CubePro

15



machine. Next, all the single strut which perfectly fabricated as in the drawing are tested for
tensile test with different gauge length. All the data from the test is evaluated by using
compliance correction method and observed for the test failure by using portable optical
microscope which is Dino-Lite Pro. At the end of this study a report will be written. At the end
of FYP 1 the preliminary results are obtained at the fabrication stage. In this FYP II, all single
struts should be confirmed to be printed successfully based on their designs before proceed to testing

stage.
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[ Literature Review ]

Design Stage

l No
FYP1I

Fabrication
Stage

Test Stage

l Yes No

Analysis
Stage

[ Report Writing ]

Figure 3.2.1: Flow chart of methodology
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3.3  Design Stage

Table 3.3.1 shows all the specimens according to their parameter which is gauge length.

Table 3.3.1: Parameters of single struts

Diameter (mm) 1.6
Built angle
from horizontal 35.26
()
Specimen 24 45 50 75 90
length (mm)
Gauge length 8 15 20 25 30
(mm)
Number of 3 3 3 3 3
specimens
Total number of 15
specimens

The parameters of the single struts are set to have five different gauge lengths which are
8 mm, 15 mm, 20 mm, 25 mm and 30 mm. The gauge length is designed to be one-third of total
specimen length. This is due to common ratio of standard tensile test specimen. Therefore, the
specimen length also varied for all gauge lengths, and becoming one of the parameters to ensure
the specimen is able to be hold perfectly in the tensile test. The diameter of the struts is fixed

with 1.6 mm each as it is a reasonable value to obtain good mechanical properties result. In fact,
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the built angle from vertical is chosen as 35.26° as it represents the angle of the struts to the
surface in BCC structure. Three specimens for each parameter are produced and undergoes

tensile test, so there are 15 specimens in total to be fabricated.

All the single struts are designed and drawn using a CAD software which is CATIA.
Figure 3.3.1 shown an example of a part drawing and Figure 3.3.2 until Figure 3.3.6 shown each
dimension of the single struts. Each single strut drawn with a side support to ensure the strut can
be printed successfully. After the struts are completely designed in 3d modelling, the drawing
is then converted in to “STL” (Standard Tessellation Language) file format in Catia software.
After that, the STL file is then transferred to the software of CubePro to create slices from the

model of single struts for data preparation before producing the single struts.

B far EBNOVIAVEVPM file  Edd Miew  jmet Jooh  Window  Help

NBES, BA0 2 KO BERH WEE3QALBGN0EE B S48 S COLNBRI Z.

Facelyz plane/90 selected JE=E

Figure 3.3.1: The part drawing of single struts in Catia
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Figure 3.3.6: The dimension drawing of 90 mm single strut in Catia.

34 Fabrication Stage

There is a build setting to create slices of the model of single struts once the selected
STL file is opened in the CubePro software for being built layer by layer during later 3D printing
process. Several process parameters can be chosen for printing the designed model from the
build settings. Figure 3.4.1 and 3.4.2 show the build settings and their descriptions of CubePro
software which the bottom supports of single struts are generated automatically during the

fabrication. Figure 3.4.3 show the CubePro software create slicing virtually.
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|
o— Print Mode | Premium

v | Advanced ._e

e——- Layer uw"‘i'f’“/ Print Strength
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70um Hollow

Strong

300um § Almost Sohd

Print Pattermn
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-
[e'e'® |

AOd Honeycomb
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e— Raft and Support
Raft material |N°0¢ X |
Support materiak: |N°"¢ - |
Support type: © pPoints ) Lines
Sidewalk materiak l'i“f_ - - ’/l
[ ok ][ cancl
The software has four modes Raft and Selection of the types of materials
Print Mode including 3 set modes and one Bubport used to create rafts, supports and
custom mode PPO sidewalks.
Layer The detail and smoothness of a Advanced Adjustments to print pattern fill and
Resolution part the creation shell
2 The strength of the inner structure
Print Strength S ety Help Opens the help menu
Print Pattern The design of the inner structure of

a creation

Figure 3.4.1: Build settings of CubePro software.

(Source: 3D Systems Inc.

, 2015)
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Print Mode

Standard *  Layer Resolution: 200um
+  Print Strength: Strong
*  Print Pattern: Diamonds
Premium *  Layer Resolution: 70um
+  Print Strength: Strong
*  Print Pattern: Diamonds
Draft +  Layer Resolution: 300um
*  Print Strength: Strong
+  Print Pattern: Lines
Custom Custom allows the user to customize their print settings
Print Resolution
0.070 +  Great mode for parts requiring smooth surfaces
+  Layer lines are not very visible in these parts
+  Good mode for artistic parts with a smooth flow
*  Not the best mode for fine detail

0.200 +  Best mode for general printing and most compatible mode for a wide range of geometries
+  Fine detail preservation for things like steeples, spires, sharp points, or thin walls
0.300 «  Afast mode with thicker layers

*  Good for large parts with minimal detail

Print Strength

Hollow +  Fastest mode to produce a part
*  Hollow has fewer outer surfaces and larger print pattern spacing
+  Best for parts that will not be stressed

Strong +  Medium amount of outer surfaces and smaller print pattern spacing
+  Best for parts that will have minimal physical abuse

Almost Solid +  The most surfaces and the tightest print pattern spacing
+  The most robust part
+  Best for parts that will be stressed

Print Pattern
Lines *  Fastest print fill pattern
*  Minimal cross bracing
Diamonds +  Strong print pattern with 2-direction cross bracing
Honeycomb «  Strong print pattern with 3-direction cross bracing

Figure 3.4.2: Descriptions on the build settings.

(Source: 3D Systems Inc., 2015)
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Figure 3.4.3: Single struts in CubePro software to create slicing.

Table 3.4.1: Process parameters selected for single struts

Strut length (mm) Layer Resolution Print Strength Print Pattern
(um)
24 200 solid Cross
45 200 solid Cross
50 200 solid Cross
75 200 solid Cross
90 200 solid Cross

(©) universiti Teknikal Malaysia Melaka
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The process parameters are selected as shown in Table 3.4.1 for the formation of the
single struts in this study. Based on the description in Figure 3.4.2, the suitable for wide range
of parameter is 200 pm layer resolution despite the solid is the strongest form to be printed.
Moreover, a preliminary run has been carried out and 200 um resolution with cross print pattern
was give desired result, this is similar to the work that has been done by Yin Cheng (2018).
After the selections of the build settings is completed, the platform of the printing bed must be
ready by applying the Cube Glue. This procedure is to make sure the printed part is fix without

moving from the platform during the printing process.

The printing bed and the nozzle then being heat up to the predetermined temperature.
Next, the printing process is ready to start. The materials are extruded in molten form through
this process, therefore the temperature of the nozzle is just below the melting point of the ABS
material used in this process. Figure 3.4.4 shows three sets of identical single struts which were
being fabricated at once according to their parameters in each process which can reduce the time

taken for printing.
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Single strut
specimens printing

Printing bed

Figure 3.4.4: Fabricated single struts in CubePro 3D printer.

After the 3D printing process is completed, the single strut needs to be separated from
its built supports in preparation for tensile test. As the bottom support is very thin and flimsy
which auto-generated by Cube Pro software, it can be easily detached by hand ss shown in
Figure 3.4.5. For the side support, trimming knife is used to cut off all of it as in Figure 3.4.6.
The single struts then need to be trimmed all the tiny supports left on its surface by using
trimming cutter which clearly shown in Figure 3.4.7. This trimming process must be done
carefully to ensure the single strut is not damaged. Next, all the single struts are labelled by its
length using masking tape and ball pen as shown in Figure 3.4.8 (a) and (b) for easy recognition.

Figure 3.4.9 shows the completed five sets of printed single struts.

27



Figure 3.4.5: Detach the bottom support.

Figure 3.4.6: Cut off the side bottom.
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Figure 3.4.7: Tiny supports are cut.

Figure 3.4.8: Single strut is labelled using (a) masking tape and (b) a ball pen.
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Figure 3.4.9: Five sets of printed single struts.

3.5 Test Stage

After all single struts are completely ready with the desired shape and parameter, Dino-
lite pro will be used in characterization test to observe the appearance of fabricated struts. This
microscopic equipment has variable magnification from 10 times up to 220 times as well with
provided software for computer in order to capture image and for measuring purposes. A single

strut is placed under the microscope as shown in Figure 3.5.1.
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Figure 3.5.1: Single Strut is placed under Dino-Lite Microscope at 45 times

magnification to determine its charachteristic.

The tensile tests for the single struts were conducted on a small bench top servo-
hydraulic testing machine (Shimadzu machine controlled by a computer using Trapezium
software) with 1 kN load cell, due to the small size of the single struts. Loading velocity of 0.1
mm/minute was applied throughout the test, without the application of extensometer for strain
measurement. The load was recorded by a dedicated computer in a graph and table form. The
strain was derived directly from the crosshead displacement whereas, the stress can be
determined by dividing the force over cross-sectional area of the single strut. Then, the

compliance correction method was applied from the calculated data.
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In this study, five different gauge lengths were tested; 8 mm, 15 mm, 20 mm, 25 mm
and 30 mm, with three repeat tests for each gauge length. Figure 3.5.2 shows the arrangement
of the machine for the tensile tests by using Shimadzhu machine. The gauge length
measurements were set by using a ruler and for repetition tests, the setting measurements at the
machine were used. This mean that for each gauge length, a same measurement length was used
in all repetitions. Both specimens end were manually tightened at jaw grippers. From the
preliminary test that have been done before, the result show that there were no slippery problem

with the jaw grippers and the test can be done effieciently.

Single strut Jaw grippers

specimen

Figure 3.5.2: Tensile tests of the single struts with loading velocity of 0.1 mm/minute by

using Shimadzu machine.
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3.6  Analysis Stage

In the analysis stage, all data from tensile test are analyzed for each gauge length. The
test is repeated 3 times to ensure the accuracy. A table is constructed by the Trapezium software
to show the raw data which is load distributed over time for each gauge length. The strain is
derived directly from the crosshead displacement and stress can be calculated from force
distributed over cross-sectional area of the specimen. Figure 3.6.1 shows the collected and
calculated data. Then the stress-strain curve was plotted for each specimen tested. The young’s
modulus can be obtained from the curve by calculating the gradient using riseover run as shown

in Figure 3.6.2.
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Figure 3.6.1: Table of calculated value from a given raw data using Microsoft Excel.
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Figure 3.6.2: Young’s modulus can be calculated from the stress-strain gradient.

Every specimens data are used to plot the stress-strain curve so as a result three young’s
modulus for each gauge length are obtained. The average of young’s modulus is calculated by
using standard deviation to meet the tolerance. From data force, F and total elongation, &1
another graph was plotted for each gauge length to define the apparent compliance, C,. Figure

3.6.3 shows the method of finding C, from force versus elongation plot.

Breaking

— Plastic Region oint

Foree, F

Eeoion

b a/b=C,

Elongation, ﬁ[,

Figure 3.6.3: Extraction of C, from force versus elongation plotted
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Thus, every gauge length has its own C, and the average values are calculated including
the standard deviation. Diameter, D of each specimens after undergoes tensile test were
observed by using Dino-lite Pro device. Eight point are observed under the device to find the
average of diameter for each specimen. The average diameter of each gauge length then
recorded. Plot of C, versus L/ D? are tabulated based on the previous data calculated. Figure
3.6.4 shows the magnification scale of 45x under Dino-lite Pro to measure single struts and

Figure 3.6.5 shows the example of plot C, versus L/ D2,

DLO
L=1.575 mm
=

. Figure 3.6.4: The magnification scale of 45 times under Dino-lite Pro to measured single

struts.
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Figure 3.6.5: The example of plot C, versus L/ D?.

(source: Hasan, 2013)

Next, compliance correction method is applied to get the accurate result by defining the

corrected young’s modulus. The fundamental concept behind this method is based on the

assumption that the specimen and testing fixture can be modelled as a system with two spring

in series. The total measured displacement can be taken as the sum of the displacement in the

specimen and the loading system when it is subjected to an equal applied load F. Equation 3.6.1

represents the following assumption.

6T:6S+6C

(Eq3.6.1)
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&7 is the total measured displacement and &5 is the specimen deformation, while &, is
the displacement in the loading system or known as the machine compliance factor. The
apparent compliance factor, C, can be shown as (C, = §1/F) if both specimen and the loading
system are assumed as linear springs which related to the machine compliance factor, C,, (=

6c/F) as given in Equation 3.6.2

C,=C,n + (1/EAL (Eq3.6.2)

A is the cross-sectional area, L is the length specimen and E is the elastic modulus of the
tested specimen. From the ASTM standard, C,, is the zero gauge length intercept on a plotted
of C, versus L for a given material where the corrected young’s modulus E of the material can
be obtained from the slope of this plot or calculated from Equation 3.6.4. E,, is the uncorrected
elastic modulus of the tested material from Equation 3.6.3 which is initially defined from

formula of deformation, (§ = PL/EA).

=T E= E,C, (Eq 3.6.3)

(Eq 3.6.4)
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Based on the equation 3.6.5 which is modified from Equation 3.6.2, the accurate version

of compliance correction method can be obtained. C,, is the zero gauge length intercept on a

2
plot of C, versus L/D? where D is the diameter of the specimen from the area, A (Z% ) (Li

and Langley, 1985).

C, = Cp, + (4/ITE)L/D?) (Eq 3.6.5)

The average corrected of young’s modulus, E is calculated from equation 3.6.4 where
the C,,, can be determined by the best line of y-axis intercept on C, versus L/D? plot. When all
the data are collected completely, a table of corrected elastic modulus values for different gauge
lengths of tensile test result for the single strut are constructed. Example of the table from other

study 1s shown in Figure 3.6.6.

Gauge Average Average apparent Average‘ Average
length diameter [mm] | compliance for | uncorrected E corrected E
[mm] test [ImnyN] value [GPa] value [GPa]

30 0.374+0.007 | 0.0107 £ 0.0008 27+19 44+52

22 0.379+0.002 | 0.0089 +0.0001 24+03 45+0.9

10 0.375+0.001 | 0.0064 + 0.0006 1717 50+12

8 0.371+0.003 | 0.0062 + 0.00006 14+0.06 43+1.7

5 0.374 £0.002 | 0.0055 £ 0.0006 10£1.9 45+21

0.375 £0.004 Ave. E from all 45+9.9

gauge lengths

Figure 3.6.6: The example of corrected elastic modulus values for different gauge lengths of

(source: Hasan, 2013)

tensile test result for the single struts table
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3.7 Conclusion of Chapter 3

The purpose of creating methodology is to plan all activities in order to accomplish this
study. A well-prepared strategy is arranged to conduct all activities efficiently. All result from

this chapter will be discussed in detail on the next chapter.
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CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

In this chapter, all the result and data obtained from the study will be discussed. The

basic theoretical in calculating the result is explained clearly to lead this study complete.

4.2  Characterization of single strut

For the characterization of single strut, Figure 4.2.1 (a), (b) and (c) shows a single strut
1s placed under microscope which is Dino-Lite Pro to measure its post test diameter. The

diameter have been calculated as an average 1.6 mm.
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Figure 4.2.1: Determination of diameter on single struts using Dino-Lite Pro at 45 times

magnification.

4.3 Elastic modulus, E

From the raw data given by the tensile test, stress-strain curve is constructed for each
specimens. The modulus of elasticity was determined by calculating the gradient of the best line
on each graph. All are shown in Table 4.3.1 until Table 4.3.5. The Figure 4.3.1 show the elastic

modulus, E at several gauge length, between 0.03 m to 0.003 m.
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Elastic Modulus, E (MPa)
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Figure 4.3.1: Plot of elastic modulus versus gauge length.
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The elastic modulus, E for 30 mm gauge length specimens.

Table 4.3.1
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The elastic modulus, E for 25 mm gauge length specimens.

Table 4.3.2
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Table 4.3.3:

The elastic modulus, E for 20 mm gauge length specimens.

Gauge
length= 20
mm

Stress versus Strain

Elastic modulus , E

(MPa)

Specimen 1

5000000

0.0501

574.713

Specimen 2

35000000

657.354

i
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dulus. E for 15 mm gauge length spec
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Table 4.3.4
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mens.

The elastic modulus, E for 8§ mm gauge length speci
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4.4  Apparent compliance factor, C,.

From force versus elongation curve, the apparent compliance for each specimens are

extracted as shown in table 4.4.1 until table 4.4.5.

Table 4.4.1: The apparent compliance, Ca for 30 mm gauge length specimens.

Gauge Force versus elongation Apparent
length= 30 compliance, €C,(m/N)
mm
Specimen 1 1.779%x1075
Specimen 2 1.885x107°
Specimen 3 1.963x107>
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1mens.

, C, for 25 mm gauge length spec

1ance

The apparent compli
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, C, for 15 mm gauge length spec
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mens.

, C, for 8 mm gauge length spec

1ance

The apparent compli

Table 4.4.5
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45  Machine compliance factor, C,,

A scatter chart is plotted which is apparent compliance, C, versus length, | over square
of diameter, D. A trendline was constructed on this scatter plot and the machine compliance
factor, C,,, are extracted from the y-intercept which is 6x107°. The graph and the linear

equation of the trendline are shown in Figure 4.5.1.

Ca m/N
2.50E-05
y = 1E-09x + 6E-06
R?=0.8637

= 2.00E-05
S K]
£ ° .
- "_—' .
S ° s
@ 1.50E-05 L]
=
3 ® Cam/N
3 o
S 1.00e-05 o . e Linear (Ca m/N)
E e e Linear (Ca m/N)
[}
o
o
< 5.00E-06

0.00E+00

0 2000 4000 6000 8000 10000 12000 14000

Gauge Length, L/ Square of Diameter,DA2 (m/m~2)

Figure 4.5.1: Graph of apparent compliance, C, versus length, | over square of diameter, D

with the linear equation of the trendline.
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4.6 Calculated result

After all the data have been calculated, a table is constructed to shown the final result.

The gauge length, average diameter, average compliance factor, average uncorrected and

uncorrected modulus of elasticity was recorded as shown in Table 4.6.1.

Table 4.6.1: List of corrected elastic modulus values for different gauge lengths of tensile test

result for the ABS single-struts (The + values are from standard deviation values of each

repetition)
Gauge length, | Average Average Average Average
(mm) diameter, D compliance, C, uncorrected corrected
(m) for test (m/N) modulus of modulus of
elasticity, E elasticity, E
(MPa) (MPa)
30 0.0016 1.875x107> + 749.329 + 1120.636 +
9.235x1077 48.104 74.880
25 0.0016 1.743x107° £ 684.197 + 1049.097 +
1.050x107° 36.361 87.632
20 0.0016 1.466x107° + 625.310 + 1082.113 +
2.140x107° 44.334 185.019
15 0.0016 1.288x107° + 545.457 + 1058.107 +
2.171x107° 57.319 234.252
8 0.0016 9.008x107° + 315.567 + 1045.925 +
1.238x107° 56.433 405.792
Average modulus of elasticity, E from all gauge length 1071.176 +
31.072
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Calculation for 30 mm gauge length specimens

Specimen 1
E, =798.669 MPa, C, = 1.779 x10~°> m/N, C,,, =6 x 107
From Equation 3.6.4

E_ @ _ FuCa

 Ca-Cm  Ca—Cm

E = (798.669 MPa x 1.779 x10~% m/N) / (1.779 x10~5 m/N - 6 x 107%) = 1204.411 MPa

Specimen 2

E, =746.733 MPa, C, = 1.885 x10~5 m/N, C,, = 6 x 10~°

L
E— @ _ EuCa
Ca—Cm  Cq-Cm

E = (746.733 MPa x 1.885 x107° m/N) / (1.885 x10™> m/N - 6 x 107%) = 1097.276 MPa

Specimen 3

E, =702.576 MPa, C, = 1.779 x10~5 m/N, C,, = 6 x 1076

L
E— @ _ EuCa
Ca—Cm  Cq—Cm

E =(702.576 MPa x 1.779 x107> m/N) / (1.779 x107°> m/N - 6 x 107%) = 1060.221 MPa

Average E

X =(1204.411 MPa + 1097.276 MPa + 1060.221 MPa) /3 = 1120.636 MPa

with standard deviation, o = + 74.880
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Calculation for 25 mm gauge length specimens

Specimen 1
E, =719.942 MPa, C, = 1.638 x10™> m/N, C,,, =6 x 107
From Equation 3.6.4

E_ @ _ FuCa

 Ca-Cm  Ca—Cm

E =(719.942 MPa x 1.638 x107> m/N) / (1.638 x10™°> m/N - 6 x 107%) = 1136.802 MPa

Specimen 2

E, = 685.400 MPa, C, = 1.744 10~ m/N, C,, = 6 x 10~°

L
E— @ _ EuCa
Ca—Cm  Cq-Cm

E = (685.400 MPa x 1.744 x10~5 m/N) / (1.744 x10~5 m/N - 6 x 107°) = 1048.951 MPa

Specimen 3

E, = 647.249 MPa, C, = 1.848 x10~5 m/N, C,, = 6 x 1076

L
E— @ _ EuCa
Ca—Cm  Cq—Cm

E = (647.249 MPa x 1.848 x107> m/N) / 1.848 107> m/N - 6 x 107°) =961.538 MPa

Average E

x =(1136.802 MPa + 1048.951 MPa + 961.538 MPa) / 3 = 1049.097 MPa

with standard deviation, o = + 87.632
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Calculation for 20 mm gauge length specimens

Specimen 1
E, =574.713 MPa, C, = 1.679 x10~°> m/N, C,,, =6 x 107
From Equation 3.6.4

E_ @ _ FuCa

 Ca-Cm  Ca—Cm

E =(574.713 MPa x 1.679 x107° m/N) / (1.679 x107° m/N - 6 x 107°) = 894.254 MPa

Specimen 2

E, = 657.354 MPa, C, = 1.250 105 m/N, C,, = 6 x 10~°

L
E— @ _ EuCa
Ca—Cm  Cq-Cm

E = (657.354 MPa x 1.250 x10™° m/N) / (1.250 x10™> m/N - 6 x 1076) = 1264.154 MPa

Specimen 3

E, = 643.863 MPa, C, = 1.470 x10~> m/N, C,,, =6 x 107°

L
E— @ _ EuCa
Ca—Cm  Cq—Cm

E = (643.863 MPa x 1.470 x10™>m/N) / 1.470 107> m/N - 6 x 107®) = 1087.931 MPa

Average E

X =(894.254 MPa + 1264.154 MPa + 1087.931 MPa) /3 = 1082.113 MPa

with standard deviation, o =+ 185.019
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Calculation for 15 mm gauge length specimens

Specimen 1
E, =560.486 MPa, C, = 1.161 x10™> m/N, C,, =6 x 107
From Equation 3.6.4

E_ @ _ FuCa

 Ca-Cm  Ca—Cm

E =(560.486 MPa x 1.161 x107> m/N) / (1.161 x10™°> m/N - 6 x 107%) = 1159.893 MPa

Specimen 2

E, =593.765 MPa, C, = 1.165 10~ m/N, C,, = 6 x 10~°

L
E— @ _ EuCa
Ca—Cm  Cq-Cm

E =(593.765 MPa x 1.165 x10~% m/N) / (1.165 x10~5 m/N - 6 x 107°) = 1224.248 MPa

Specimen 3

E, =482.121 MPa, C, = 1.539 x10~> m/N, C,,, =6 x 107°

L
E— @ _ EuCa
Ca—Cm  Cq—Cm

E = (482.121 MPa x 1.539 x1075m/N) / 1.539 x10™> m/N - 6 x 107¢) = 790.181 MPa

Average E

X =(1159.893 MPa + 1224.248 MPa + 790.181 MPa) / 3 = 1058.107 MPa

with standard deviation, o = + 234.252
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Calculation for 8 mm gauge length specimens

Specimen 1
E, =324.544 MPa, C, =7.775 10~ m/N, C,, = 6 x 107
From Equation 3.6.4

L
E— @ _ EuCa
Ca—Cm  Cq-Cm

E = (324.544 MPa x 7.775 106 m/N) / (7.775 x10~® m/N - 6 x 107°) = 1421.408 MPa

Specimen 2

E, =255.183 MPa, C, = 1.025 x10~°> m/N, C,, =6 x 107

L
E— @ _ EuCa
Ca—Cm Cq—Cm

E =(255.183 MPa x 1.025 x107> m/N) / (1.025 x10™° m/N - 6 x 107%) = 615.435 MPa

Specimen 3

E, =366.973 MPa, C, = 9.000 x10~¢ m/N, C,, =6 x 1076

E_ @ _ FuCa

 Ca-Cm  Ca—Cm

E = (366.973 MPa x 9.000 x10~6m/N) / (9.000 x10~6 m/N - 6 x 106) = 1100.933 MPa

Average E

X =(1421.408 MPa + 615.435 MPa + 1100.933 MPa) / 3 = 1045.925 MPa

with standard deviation, o =+ 405.792
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Based on the result obtained, the slope from the graph shown that the tensile test on
single strut ran in correct method alike to the other study related, (Hasan,2013). The failure point
on all single struts are still in between the gauge length. As compared the stress-strain plot
between all gauge length, its shows the shorter the gauge length so the higher the distribution of
force needed in the tensile test. Young’s modulus directly calculated from gradient of stress-
strain plot as the corrected young’s modulus need to be defined to accomplish this study. The
apparent compliance, C, can be determine from graph force versus elongation which the method
are shown in previous section. After the tensile test have been done, the post test diameter of
single strut need to be determine for the further calculation. C,, was determined from the y-
intercept of graph of apparent compliance, C, versus length, | over square of diameter, D. The
corrected elastic modulus was calculated from Equation 3.6.4. All the data were calculated as

an average value by using standard deviation method and recorded on the Table 4.6.1.

For all gauge length that have been tested, the curve of strain versus stress and force
versus elongation were calculated without any error except for the specimen with 8§ mm gauge
length. Refer to Table 4.3.5 and Table 4.4.5 for 8 mm gauge length, there is uneven curve
produced which is cause by slippery of specimens with the jaw gripper of the tensile machine.
This slippery happened on the 8 mm specimens only because of the part of the specimens which
the jaw gripper hold during the testing was the shortest among the others specimens which is 8
mm on the top and above the gauge length. Accordingly to the case, the resistance force to hold
the specimens were unsufficient while the jaw gripper pull the specimens in parallel. However
the data collected from the graph which is the young modulus and apparent compliance, C, are

calculated before the slippery occur to make sure the precision of final data.
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Table 4.6.1 is constructed to show the final data produced. Every specimens with
different gauge length have different values of uncorrected elastic modulus and this proved that
high dependency of elastic modulus for single strut on the gauge length. Compliance correction
method is applied in order to produce the corrected elastic modulus by removing the machine

compliance factor, C,, from the whole system.

Corrected elastic modulus, the values collected are within small variation and the range
is from 1045.925 MPa to 1120.636 MPa which produce the average value of 1071.176 MPa.
All the values calculated for each gauge length were between the standard value of ABS elastic

modulus as shown in figure 4.6.1 which is from 1.0 GPa to 2.65 GPa.
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m|

Mechanical Properties Metric English Comments
Hardness, Rockwell R 68.0 - 113 68.0 - 113 Average value: 101 Grade Count:63
Ball Indentation Hardness 65.0 - 110 MPa 9430 - 16000 psi Average value: 93.2 MPa Grade Count:11
Tensile Strength, Ultimate 22.1-49.0 MPa 3210 - 7110 psi Average value: 36.4 MPa Grade Count:31
Tensile Strength, Yield 13.0 - 65.0 MPa 1890 - 9430 psi Average value: 40.5 MPa Grade Count:117
22 1 59.3 MF'a 3210 8600 pSI Average value: 40.7 MPa Grade Count:1

Elongation at Break 3 U[] 150 % 3 00 - 15[] % Average value: 34.2 % Grade Count:71
Flongation at Yield 0.620 - 30.0 % 0.620 - 30.0 % Average value: 5.57 % Grade Count:49
IModqus of Elasticity 1.00 - 2.65 GPa 145 - 384 ksi Average value: 2.07 GPa Grade Count:57)

218 - 37? ksl Average value: 2.05 GPa Grade Count:

Flexural Yield Strength
M|

Flexural Modulus

m|

lzod Impact, Notched

(]
(]

lzod Impact, Unnotched m|

lzod Impact, Notched (ISO)
w

My

Charpy Impact Unnotched

Charpy Impact, Motched
I

1.50 - 2.60 GF'a

rature -18.0 - 71.0 °C

U 379 - 593 MPa
49 6 113 8 MF‘a

[] 2[][] 5 5[] GPa
1 90 2.80 GF'a

0.380 -10.3 Jfem
0.450 -4 0[]425 fcm

11.0 Jiem?® - NB
1.00 .Ja’cm NB

30,0 °C

0.700 - 5 [][] Jiem?®
0.500 - 50 Ji

2

24.4 - 5[]2J

rature -0.400 - 160 °F
55.0 - 86000 psi
?19[] 16510 pSI

29 [] 798 k5|

[] ?12 19.3 ft-Ibfin
0.843-7. 50150 ﬂ Ibl’in

02091 3 12322 fi- Ih-’ln

ess 0.126 - 0.252 in
3.81 - 20.0 ft-lb/in®
3 33 10 5 ft-Ibi

3. 33 3 33 ﬂ Ibl“ln2

52 4 ft- Ib«’ln2 NB
4 TE ft-lbfin® - NB

40.0--220°

333 238ﬂ|bf|n
238 11.9 fi-Ib/i

180 3T0ﬂlb
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Figure 4.7.1: Standard material properties of acrylonitrile butadiene styrene, ABS

retrieved from www.metwab.com

The value in the range of elastic modulus as shown may affected during the fabrication
and testing stage. Single strut was extruded by the 3d printer which various variables were
concern in order to find the modulus elasticity of specimen such as the speed of extrusion,
temperature on the 3d printer nozzle and pattern selection. For the testing stage, the tensile

machine need to be precise with minimum value of errors. The single strut also need to be
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installed on the jaw gripper properly to avoid sliding during the testing. Every single details as

mentioned may affected the result in this experiment.

4.7  Summary of chapter 4

In conclusion, all specimens with different gauge length were succesfully printed by
using CubePro. In order to produce identical properties of single struts, all settings used were
permanent for every extrusion of CubePro. Next, the single strus are tested on a tensile test
machine using shimadzhu and result obatined are tabulated. Compliance correction method is
applied to produced the corrected elastic modulus for each specimens and will be compared

with the standard value of ABS.
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CHAPTER 5

CONCLUSION AND RECOMMENDATION

51 Conclusion

This study is conducted to investigate mechanical properties of 3D printed single strut
with different gauge length using Shimadzhu tensile test. The choosen diamaters of single struts
are 1.6 mm and the build angle are set 35.26° as it represents the angle of the struts to the surface
in BCC structure. For the selected parameter in this study, gauge length of single struts have
been designed as 8 mm, 15 mm, 20 mm, 25 mm, and 30 mm which one third of the total length
of specimen. The background of this study is reviewed to gain the relevent knowledge and
scientific theories of the fabricated single struts. The previous researches are studied to analyse
layer by layer formation of fabricated single strut using fused deposition modelling (FDM)

machine several parameters.

In methodology, CAD software which is CATIA is used to designed single struts. Next
the designed single struts are fabricated using CubePro 3D printer. Dino-Lite Pro is used to
determine their diameter before being tested on Shimadzhu table top tensile test. All the raw
data are calculated by using compliance correction method to define the final result. By

following workflow chart, the results are obtained and discussed in this study.

64



Five sets of single struts with different length are fabricated using CubePro 3D printer
successfully. For the diameter analysis, 1.6 mm is the average diameter obtained through Dino-
Lite Pro. The stress versus strain and force versus elongation plot are constructed from the raw
data obtained on the tensile test. Corrected elastic modulus is calculated by using compliance
correction method which have value between 1045.925 MPa to 1120.636 MPa and the average
value is 1071.176 MPa. All the corrected values obtained is between the range of standard value
of ABS elastic modulus which is from 1.0 GPa to 2.65 GPa. This conclude that the study is
succesfully done and the data obtained is valid between the range of theoretical value. The
corrected elastic modulus is choosen as the mechanical properties of the single struts because
the values are all within small variations unlike to the uncorrected values which depending on

the gauge length.

5.2 Recommendation

Through the parameters of gauge length that have undergoes tensile test, all the standard
deviations were low which suggesting that data was consistent and that the testing procedure
was valid and repeatable. In technically, the single struts not slippered form jaws grip of the
Shimadzhu tensile test machine but for the shorter gauge length which is at 8 mm gauge length
there is some error occured. This is because, the shorter the gauge length of specimen, the higher

the force that need to distribute in the tensile test and this cause the specimen slipped form the

jaw grip.
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One of the opinion to solved this error is to put a double sided tape or the highest grid
sand paper on the jaws grip to avoid slippery of specimens during the test. During the fabrication
stage, the printed single struts need to separate from its support intensively. A defect on surface
of the struts will effect the data on tensile test as the diemeter is not constant throughout the
body. For the future study, factor on fabrication and design method on mechanical properties of
single struts can be conducted. Hence, a comparison can be made between both result to define

the variables that affect the mechanical properties for the single struts.
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Figure A2: The raw data obtained from tensile test for 30 mm gauge length specimen one.
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Figure AS: The raw data obtained from tensile test for 25 mm gauge length specimen one.
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Figure A6: The raw data obtained from tensile test for 25 mm gauge length specimen two.
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Figure A7: The raw data obtained from tensile test for 25 mm gauge length specimen three.
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Figure A9: The raw data obtained from tensile test for 20 mm gauge length specimen two.
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Figure A10: The raw data obtained from tensile test for 20 mm gauge length specimen three.
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Figure A11: The raw data obtained from tensile test for 15 mm gauge length specimen one.
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Figure A14: The raw data obtained from tensile test for 8 mm gauge length specimen one.
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Figure A15: The raw data obtained from tensile test for 8 mm gauge length specimen two.
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