INVESTIGATION ON MECHANICAL PROPERTIES OF 3D-PRINTED SINGLE STRUT

MUHAMMAD FAKHRUR IQBAL BIN MUSLIM

A thesis submitted in fulfillment of the requirements for the degree of Bachelor of Mechanical Engineering (with Honours)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this project report entitled "Investigation on mechanical properties of 3Dprinted single strut" is the result of my own work except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	·
Name	:
Date	:

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the Bachelor of Mechanical Engineering (with Honours).

Signature	:
Name of Supervisor	:
Date	:

DEDICATION

I dedicate this thesis to my beloved mother and father, Muslim bin Md Said and Jamiah binti Chek who have always been giving me spiritual support while they are living at hometown, Alor Gajah, Melaka. I am truly appreciate their loves and patients when educating me from time to time. I also dedicate this thesis to all my siblings (Razi, Ikram, Maizatul Anis) for being part of my life. My family has inspired me always and made me to be a better person in the future. Apart from that, I dedicate this thesis to my course mates and friends as they are willing to help whenever I have troubles in my life. They are rational to correct my mistakes and also give me some valuable advices.

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my deep appreciation to my supervisor Dr. Rafidah binti Hasan, from the Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka (UTeM) for guiding me very well throughout this project. Under her supervision, I had gained her guidance and inspiration that enable me to complete this final year project successfully.

Moreover, I would like to express my greatest gratitude Dr Mohd Basri bin Ali as my panel seminar and also second report examiner. Next, I would like to express my deepest gratitude to Dr. Mohd Azli bin Salim as my second panel seminar. All of them are helpful and gave a great cooperation to ease my journey during accomplishing this study.

Furthermore, I would like to thank to Universiti Teknikal Malaysia Melaka (UTeM) especially the Faculty of Mechanical Engineering (FKM) for giving a fully support by allowing me to use their equipments and facilities during conducting my project.

In addition, I would like to express my sincere thanks to my friends and course mates for giving me their supports and advices in this project. Next, special thanks to my parents and my siblings for giving me their loves, supports and encouragements throughout this project.

ABSTRACT

This study focusses in producing tensile test specimen and method for the determination on the elastic property of 3D printed ABS single strut specimen. Designs of miniture single struts include a slender straight design with nominal strut diameter of 1.6 mm, total length of 24 mm, 45 mm, 50 mm, 75 mm and 90 mm. Compliance correction method is applied for single struts with different gauge lengths of between 8mm to 30 mm. Design of specimen is referred to ASTM E8/E8M-13a standard specification while tensile test is performed with reference to ASTM D638 standard procedure by using shimadzhu EZ test (EZ-LX) machine.

ABSTRAK

Kajian ini memberi tumpuan dalam menghasilkan spesimen ujian tarik dan kaedah untuk menentukan keupayaan elastik untuk spesimen strut tunggal daripada ABS yang dicetak melalui 3D. Reka bentuk miniture strut tunggal termasuk reka bentuk lurus langsing dengan diameter strut nominal 1.6 mm, panjang keseluruhan 24 mm, 45 mm, 50 mm, 75 mm dan 90 mm. Kaedah pembetulan pematuhan digunakan untuk struts tunggal dengan panjang tolok yang berbeza antara 8mm hingga 30 mm. Reka bentuk spesimen dirujuk kepada spesifikasi standard ASTM E8 / E8M-13a manakala ujian tegangan dilakukan dengan merujuk kepada prosedur standard ASTM D638 dengan menggunakan mesin shimadzhu EZ (EZ-LX).

TABLE OF CONTENT

DECLAR	RATION	i
APPROV	/AL	ii
DEDICA	TION	iii
ACKNO	WLEDGEMENT	iv
ABSTRA	ACT	v
ABSTRA	К	vi
TABLE (OF CONTENT	vii
LIST OF	FIGURES	ix
LIST OF	FIGURES FOR APPENDICES	xii
LIST OF	TABLES	xiv
LIST OF	ABBEREVATIONS	XV
LIST OF	SYMBOL	xvi
CHAPTE	ER 1	1
INTRO	DDUCTION	1
1.1	BACKGROUND	1
1.2	PROBLEM STATEMENT	3
1.3	OBJECTIVE	4
1.4	SCOPE OF PROJECT	4
CHAPTE	ER 2	5
LITER	ATURE REVIEW	5
2.1	Introduction	5
2.2	Lattice-structure and Strut	5
2.3	Methods in Producing Lattice-structures	6
2.4	Additive Layer Manufacturing	9
2.5	Polymer 3D Printer	11
2.6	Fundamental of Tensile Test	
2.7	Conclusion of Chapter 2	14
CHAPTE	ER 3	15
METH	ODOLOGY	

3.1	Introduction	15
3.2	Workflow Chart	15
3.3	Design Stage	
3.4	Fabrication Stage	
3.5	Test Stage	
3.6	Analysis Stage	
3.7	Conclusion of Chapter 3	
CHAPTE	ξ 4	40
RESUL	T AND DISCUSSION	40
4.1	Introduction	40
4.2	Characterization of single strut	40
4.3	Elastic modulus, <i>E</i>	41
4.4	Apparent compliance factor, <i>Ca</i>	48
4.5	Machine compliance factor, <i>Cm</i>	53
4.6	Calculated result	54
4.7	Summary of chapter 4	63
CHAPTE	3 5	64
CONCI	USION AND RECOMMENDATION	64
5.1	Conclusion	64
5.2	Recommendation	65
REFEREN	ICES	67
APPEND	CES	70

LIST OF FIGURES

FIGURE	TITLE				
1.1.1	A strut-based lattice configuration with nodes $n = 9$ and struts $p = 16$.	2			
2.2.1	Octet-truss and cubic truss.	6			
2.3.1	Octet-truss lattice structure.	7			
2.3.2	Sheet metal forming process.	8			
2.4.1	Fabricated struts with different diameters.	10			
2.5.1	CubePro 3D printer.	12			
2.6.1	Shimadzhu EZ-LX tensile test machine	14			
3.2.1	Flow chart of methodology	17			
3.3.1	The part drawing of single struts in Catia	19			
3.3.2	The dimension drawing of 24 mm single strut in Catia.	20			
3.3.3	The dimension drawing of 45 mm single strut in Catia.	20			
3.3.4	The dimension drawing of 50 mm single strut in Catia.	21			
3.3.5	The dimension drawing of 75 mm single strut in Catia.	21			
3.3.6	The dimension drawing of 90 mm single strut in Catia.	22			

3.4.1	Build settings of CubePro software.	23
3.4.2	Descriptions on the build settings.	24
3.4.3	Single struts in CubePro software to create slicing.	25
3.4.4	Fabricated single struts in CubePro 3D printer.	27
3.4.5	Detach the bottom support.	28
3.4.6	Cut off the side bottom.	28
3.4.7	Tiny supports are cut.	29
3.4.8	Single strut is labelled using (a) masking tape and (b) a ball pen.	29
3.4.9	Five sets of printed single struts	30
3.5.1	Single Strut is placed under Dino-Lite Microscope at 45 times magnification to determine its charachteristic.	31
3.5.2	Tensile tests of the single struts by using Shimadzu machine.	32
3.6.1	Table of calculated value from a given raw data using Microsoft Excel.	33
3.6.2	Young's modulus can be calculated from the stress-strain gradient.	32
3.6.3	Extraction of C_a from force versus elongation plotted	34
3.6.4	The magnification scale of 45x under Dino-lite Pro to measured single struts	35
3.6.5	The example of plot C_a versus L/ D^2 .	36
3.6.6	The example of corrected elastic modulus values for different gauge lengths of tensile test result for the single struts table	38

4.2.1	Determination of diameter on single struts using Dino-Lite Pro at	41
	45 times magnification.	
4.3.1	Plot of elastic modulus versus gauge length.	42
4.5.1	Graph of apparent compliance, C_a versus length, <i>l</i> over square of diameter, <i>D</i> with the linear equation of the trendline.	53
4.7.1	Standard material properties of acrylonitrile butadiene styrene, ABS.	61

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES FOR APPENDICES

FIGURE	TITLE	PAGE
A1	The setup of Shimadzhu EZ-LX tensile test by using Trapezium software.	69
A2	The raw data obtained from tensile test for 30 mm gauge length specimen one.	69
A3	The raw data obtained from tensile test for 30 mm gauge length specimen two.	70
A4	The raw data obtained from tensile test for 30 mm gauge length specimen three.	70
A5	The raw data obtained from tensile test for 25 mm gauge length specimen one.	71
A6	The raw data obtained from tensile test for 25 mm gauge length specimen two.	71
A7	The raw data obtained from tensile test for 25 mm gauge length specimen three.	72
A8	The raw data obtained from tensile test for 20 mm gauge length specimen one.	72

A9	The raw data obtained from tensile test for 20 mm gauge length specimen two.	73
A10	The raw data obtained from tensile test for 20 mm gauge length specimen three.	73
A11	The raw data obtained from tensile test for 15 mm gauge length specimen one.	74
A12	The raw data obtained from tensile test for 15 mm gauge length specimen two.	74
A13	The raw data obtained from tensile test for 15 mm gauge length specimen three.	75
A14	The raw data obtained from tensile test for 8 mm gauge length specimen one.	75
A15	The raw data obtained from tensile test for 8 mm gauge length specimen two.	76
A16	The raw data obtained from tensile test for 8 mm gauge length specimen three.	76

LIST OF TABLES

 18 25 43 44 45
25 43 44 45
43 44 45
44 45
45
10
46
47
48
49
50
51
52
54

LIST OF ABBEREVATIONS

ABS Acrylonitrile Butadiene Styrene AM Additive Manufacturing BCC Body Centered Cubic CAD Computer-Aided Design Computer Aided Three-dimensional Interactive Application CATIA **Electron Beam Melting** EBM FDM Fused Deposition Modelling PLA PolyLactic Acid Scanning Electron Microscope SEM SLM Selective Laser Melting STL Standard Tessellation Language

LIST OF SYMBOL

n	=	Nodes
р	=	Struts
m_b	=	Mass of block
$ ho_s$	=	Density of the steel
L	=	Length of cell
d	=	Strut diameter
X	=	Reading of measured diameter
Ν	=	Number of readings in a single strut
σ	=	Standard deviation
\bar{x}	=	Mean (average data)
%	=	Percentage difference
l	=	Evaluation length
E_u	=	Uncorrected modulus of elasticity
Ε	=	Modulus of elasticity
C _a	=	Apparent compliance factor
C _m	=	Machine compliance factor
δ_T	=	Total elongation

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Lattice structure is a lightweight material. Many studies have done to determine mechanical properties of this material produced from stainless steel, aluminium, copper and other metals. Its properties of high stiffness and strength to weight ratio caused it widely to be used for lightweight structural applications (Doyoyo and Hu, 2006).

Lattice-structure comprises of many struts connected to each other by nodes, in many architectural arrangements such as body-centred-cubic (BCC), face-centred-cubic (FCC) and hexagonal close packed (HCP). These availabilities of joint type offer flexibility in assembly methods of the strut-based lattice structure. Hence, due to flexible configuration, the complex geometries design would prefer to apply the strut-based lattice structure (Doyoyo and Hu, 2006).

A node is a joint where two or more struts meet, and a strut is a link or member that connects two nodes. Many feasible options can be considered to define volume for designing strut-based lattice structures as it has variation number of nodes and struts to be combined. Figure 1.1.1 shown an example of lattice structure which consist of nodes (n) and struts (p).

Figure 1.1.1: A strut-based lattice configuration with nodes n = 9 and struts p = 16.

(Source: Syam et al., 2017)

Certain process is needed in each fabrication method of lattice-structure material. There are various methods to produce lettice-structure material which are casting, wire bonding process, sheet metal forming and electron beam melting (EBM) (Rashed et al., 2016). One of the common method to produce lattice structure is casting method which is using injection moulding (Rashed et al., 2016). Wire bonding is generally considered the most cost-effective and flexible interconnect technology which is used to assemble the vast majority of semiconductor packages. Sheet metal methods is the process where producing lattice structure by press forming operation from a roll of sheet metal (Rashed et al., 2016). Otherwise in additive manufacturing (AM) techniques EBM is also one of the most selected method where the part is produced layer by layer (Rashed et al., 2016).

Additive layer manufacturing (ALM) or additive manufacturing (AM) is a modern fabrication process that can be use with wide range of materials to create product ranging from medical implants to parts of an aircraft wing. 3D printing is one of the categories in additive layer manufacturing available which the printed part is formed layer by layer (Gebhardt, 2003). The first step in fabricating parts by using this technology is to create the required geometry layer by layer, using computer aided design (CAD) data. Due to the high process flexibility and the possibility to produce parts with a high geometric complexity, AM technology is an advanced method that used widely

1.2 PROBLEM STATEMENT

Mechanical properties especially modulus of elasticity, yield strength and maximum strength of lattice structure materials can be obtained through stress-strain diagram. In case for lattice-structure materials arrangement, compression test is one of the simplest methods to obtain the stress-stress diagram. However, using compression test will not give the failure strength and failure strain data. Tensile test is preferred to provide the failure data. For microlattice structure as a whole, tensile test experiment will need a specially designed and fabricated jig to hold the specimen. To simplify this, it is suggested that tensile test on single strut specimen need to be done.

Stress-stress diagram for single strut can provide some information related to the basic failure of lattice structure material. For ABS lattice-structure fabricated using 3D printer,

mechanical properties from tensile test has not yet been conducted. Thus, this study is looking for such data.

1.3 OBJECTIVE

To investigate mechanical properties of 3D printed single strut with selected parameter using tensile test.

1.4 SCOPE OF PROJECT

The scopes of this project are:

- 1. Design of single strut for tensile test specimen using Solidworks with selected parameter.
- 2. Fabrication of single strut tensile test specimen using CubePro 3D printer, from ABS material.
- 3. Conduct tensile test experiment for single strut by using Shimadzu table top machine.
- 4. Analyse mechanical properties of single strut using compliance correction method.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the background of this study will be researched in order to have better understanding of fundamental knowledge before proceed for further progress. All topics are which relevant with this study are discussed based on the journal articles and academic book. Besides that, all materials from previous research which related to this study will be described as well.

2.2 Lattice-structure and Strut

Struts is the basic units which will be connected to each other to form lattice structure. The connection between struts are called nodes, the point where struts meet together in the structure. In a fixed volume, there are various types of configuration where strut-based lattice structure can be designed with variation of node position. Material used in the lattice-structure can be saved as it has high stiffness to weight ratio. Hence, the problem of forming in any complex geometries can be eliminated when the strut-based lattice structure is applied (Doyoyo and Hu, 2006).

Large number of formations of strut-based lattice structure in a fixed volume can be deformed when the number of nodes and struts are not fixed. Node position and strut diameter also can be the variable in a specific volume besides the alteration of number of nodes which can produce large number of results (Syam et al., 2017). Strut-based lattice structure can be in numerous form such as cubic truss and octetruss as shown in Figure 2.2.1.

Figure 2.2.1: Octetruss and cubic truss.

(Source: Doyoyo and Hu, 2006)

2.3 Methods in Producing Lattice-structures

Common process to manufacture lattice-structures are through casting, sheet metal forming or wire bonding process. These regular assemblies are time-consuming and furthermore limited the complexity of lattice-structure designs. These methods are just used to produce lattice-structure materials with simple setup on a macroscale (Tang et al.2017).

In casting process, ceramic casting slurry is used to coat a pattern of wax or polymer lattice-structure. This ceramic is a mold and the wax or polymer is the expelled through the process of melting. The liquid metal with high fluidity can be utilized to fill in the vacant shape of the mold to form lattice-structure material. Wide range of shapes of lattice structure can be formed by using this method as any shape can be produced according to the designed mold. Through out this process, the produced lattice-structure material had severe porosity and this method is time consuming and costly. Example of octet-truss lattice structure produced from casting process is shown in Figure 2.3.1.

Figure 2.3.1: Octet-truss lattice structure.

(Source: Rashed et al., 2016)

For sheet metal forming procedure, a roll of sheet metal is experienced perforation punch to form the shaped holes such as diamond or hexagonal. The annealing process is used to treat the elongated perforated sheet which can soften the struts before proceed to punching process. The sheet then being bent with the combination of die and punch. Step in punching process enables the perforated sheet to be grooved. Subsequently, a simple lattice-structure material can be fabricated through these procedures from a sheet metal. Figure 2.3.2 demonstrates the procedures of sheet metal forming method (Rashed et as.,2016).

Figure 2.3.2: Sheet metal forming process.

(Source: Rashed et al., 2016)

In any case, the presentation of additive manufacturing (AM) technologies had reduced the restrictions in creating lattice-structure materials. AM technologies fabricate a section layer by layer empowers the design of lattice-structure materials in complex arrangement. Through this technology, any complex of lattice-structure can be produced easily and also in variation of geometrical scales such as microscale, mesoscale or macroscale (Reinhart et al., 2012).

2.4 Additive Layer Manufacturing

Commonly, the first step in AM technology is designing the 3D model using a CAD (Computer-Aided Design) software. The completed 3D model then will be saved into a "STL" (Standard Tessellation Language) file format which is developed from 3D Systems. This STL file will be read by computer for data preparation to create slices of the model. The data will be sent to a program of an AM machine for creating the structured part. For removing the model from its support structure, a post process is needed to maintain the specification of the designed model (Kessler et al., 2016).

One of the famous additive layer manufacturing technologies is 3D printing. There are various types of 3D printing which classified by the use of raw materials such as solid-based, powder based or liquid based (Gebhardt, 2003). A single strut which is the basic element of lattice structure can be created by utilizing 3D printing that offered fabricating layer-by-layer (Kessler et al., 2016).

There was a research on fabricating strut shape of lattice-structure using SLM (selective Laser Melting) method which is powder-based AM technology (Kessler et al., 2016). The raw material used in this method is metal powder. In this SLM process, a thin powder layer was stored, and CO2 (carbon dioxide) laser was lighted to the powder surface progressively until the final part was produced based on CAD data. It concentrated on few types of cross sectional state

of swaggers and its achieved quality. The analyzed shapes were elliptical, square, circular, rhombus and triangular. The limitation of SLM process were evaluated during the producing of these struts. One of the limitation for circular cross section that can be discussed was the nominal diameter which cannot be build smaller than 0.15 mm (Kessler et al., 2016). The fabricated struts with different diameters was shown in figure 2.4.1.

Figure 2.4.1: Fabricated struts with different diameters.

(Source: Kessler et al., 2016)

In utilizing the SLM process, there was included the study of stainless-steel micro-lattice block structure. The diameter in a Body Centered Cubic (BCC) micro-lattice structures which made by stainless steel in SLM process can be calculated by a derived equation. This equation literally used for fabricated micro-lattice block structure with different SLM process parameter to observe its strut diameter as shown in equation 3.1 (Tsopanos et al., 2016). According to the equation expressed, m_b is the mass of block, ρ_s is the density of the used steel, the N_1, N_2, N_3 are the quantity of cells along the width, length and height directions, L is the length of cell.

$$d = \sqrt{\frac{m_b}{\rho_s \cdot \pi \cdot N_1 \times N_2 \times N_3 \cdot L \cdot \sqrt{3}}}$$

$$[3.1]$$

2.5 Polymer 3D Printer

In this analysis, struts arrangement are manufactured by polymer 3D Printer and utilizes FDM (Fused Deposition Modeling) procedure. Firstly, the plastic material in form of filament is melted then will be extruded as semi-liquid materials. The expelled material will be cool down by the environment and solidified to form the designed model. The process took place layer-by-layer to ensure the exactly desired geometrically. Material strength, layer thickness, envelope temperature and deposition speed are some parameters that need to be concerned to allow the performance functionalities of the system operate optimally.

CubePro Printer has been chosen among other 3D printer for being use in this study. This is because of its suitable features for this study which equipped with ultra-high-resolution setting of 300 microns, 200 microns and 70 microns print layer thickness. Furthermore, it is also has good accuracy for print the model in detail form with helped from the build in Z axis resolution of 0.1mm feature. The maximum operating temperature will be 280°C at the extruder tip and 15mm per second is the maximum deposition speed. PLA (polylactic acid) or ABS (acrylonitrile butadiene styrene) were the raw material used for this CubePro Printer (3dsystem, 2018). The actual CubePro Printer is shown in figure 2.5.1.

Figure 2.5.1: CubePro 3D printer.

2.6 Fundamental of Tensile Test

Tensile test was set to use in this research to investigate the mechanical properties of single struts. Information on the strength and ductility of materials under uniaxial tensile stress can be obtained from this test. It is a simple testing that can be performed quickly to gain the result. First of all, the tensile test machine needs to be set with the constant load and the gauge length accordingly to the prepared data. Then, the fabricated single strut was securely held by top and bottom grips attached to the tensile testing machine. Once the tensile test started, the grips were moved apart at a constant rate of load which pull the specimen apart as well. A

computer which connected to the tensile test machine will continuously recorded and plotted on a stress-strain curve until failure based on its displacement and force applied (Halil et al., 2013).

A small bench top servo-hydraulic testing machine (Shimadzhu EZ-LX) was selected to be used in this study. One of the reasons to choose this type of tensile test machine is because the test can be run at high-precision load cell that make sure accuracy to within 0.5% of indicated value over a wide range from 1/500 to 1/1 of the load cell capacity. This feature help to obtain the accurate value during the test.

Among their model, EZ-LX has the higher tester load capacity which is up to maximum 5 kN and it is suitable to test the single strut properties (Van et al., 2015). The crosshead speed range offered by this model is within 0.001 to 1000 mm/min. Total time taken to run the whole test also can be reduced because of its high return speed which 1500 mm/min. On the other hand, this Shimadzu model was a very user-friendly machine as the user can run the test by following the user manual besides equipped with automatic calibration by using calibration cable. Trapezium X is the software that work together with this machine to interpret the data from the tensile test (Shimadzhu, 2018). Figure 2.6.1 shows the Shimadzu EZ-LX model that used to run tensile test for the single struts.

Figure 2.6.1 : Shimadzhu EZ-LX tensile test machine

(source : Shimadzhu 2018)

2.7 Conclusion of Chapter 2

In summary, the relevant journal, book and articles help in reviewing the background of this study. The related knowledge gained are applied through this study such as limitation of AM process in producing struts and all the equation used for characterize the struts. The methodology of this study is planned after the background of this scope is understood completely.

CHAPTER 3

METHODOLOGY

3.1 Introduction

In this chapter, a workflow is decided and presented for conducting the study. A series of processes need to be carried out which first of all is to design single struts. After that the designed structure need to be fabricated according to their geometry. The last process is to test the single strut under tensile test and analyze the result. Every detail of each process is explained in this chapter.

3.2 Workflow Chart

Every step and process which need to be done for accomplishing this study are listed as below. Figure 3.2.1 presents the flow chart of methodology in this study. Initially, all journals, articles and materials which relevant to the study are gathered and literature studies are conducted to review 3d printing and single strut. After that, by using computer-aided design (CAD) which is CATIA, the single strut is designed with 1.6 mm diameter and 35.26° build angle. The designed single strut then be fabricated by using 3D printer which is the CubePro machine. Next, all the single strut which perfectly fabricated as in the drawing are tested for tensile test with different gauge length. All the data from the test is evaluated by using compliance correction method and observed for the test failure by using portable optical microscope which is Dino-Lite Pro. At the end of this study a report will be written. At the end of FYP 1 the preliminary results are obtained at the fabrication stage. In this FYP II, all single struts should be confirmed to be printed successfully based on their designs before proceed to testing stage.

Figure 3.2.1: Flow chart of methodology

3.3 Design Stage

Table 3.3.1 shows all the specimens according to their parameter which is gauge length.

Diameter (mm)	1.6				
Built angle from horizontal (°)	35.26				
Specimen length (mm)	24	45	50	75	90
Gauge length (mm)	8	15	20	25	30
Number of specimens	3	3	3	3	3
Total number of specimens			15		

Table 3.3.1: Parameters of single struts

The parameters of the single struts are set to have five different gauge lengths which are 8 mm, 15 mm, 20 mm, 25 mm and 30 mm. The gauge length is designed to be one-third of total specimen length. This is due to common ratio of standard tensile test specimen. Therefore, the specimen length also varied for all gauge lengths, and becoming one of the parameters to ensure the specimen is able to be hold perfectly in the tensile test. The diameter of the struts is fixed with 1.6 mm each as it is a reasonable value to obtain good mechanical properties result. In fact,

the built angle from vertical is chosen as 35.26° as it represents the angle of the struts to the surface in BCC structure. Three specimens for each parameter are produced and undergoes tensile test, so there are 15 specimens in total to be fabricated.

All the single struts are designed and drawn using a CAD software which is CATIA. Figure 3.3.1 shown an example of a part drawing and Figure 3.3.2 until Figure 3.3.6 shown each dimension of the single struts. Each single strut drawn with a side support to ensure the strut can be printed successfully. After the struts are completely designed in 3d modelling, the drawing is then converted in to "STL" (Standard Tessellation Language) file format in Catia software. After that, the STL file is then transferred to the software of CubePro to create slices from the model of single struts for data preparation before producing the single struts.

Figure 3.3.1: The part drawing of single struts in Catia

Figure 3.3.2: The dimension drawing of 24 mm single strut in Catia.

Figure 3.3.3: The dimension drawing of 45 mm single strut in Catia.

Figure 3.3.4: The dimension drawing of 50 mm single strut in Catia.

Figure 3.3.5: The dimension drawing of 75 mm single strut in Catia.

Figure 3.3.6: The dimension drawing of 90 mm single strut in Catia.

3.4 Fabrication Stage

There is a build setting to create slices of the model of single struts once the selected STL file is opened in the CubePro software for being built layer by layer during later 3D printing process. Several process parameters can be chosen for printing the designed model from the build settings. Figure 3.4.1 and 3.4.2 show the build settings and their descriptions of CubePro software which the bottom supports of single struts are generated automatically during the fabrication. Figure 3.4.3 show the CubePro software create slicing virtually.

÷			E		
	Print Quality		T		•
A	Print Mode Premium		Advanced	G	G
B	Layer Resolution	Print Strengt	th Print Pa	ttern	
0	70um	-Ft.		Lines	
D	200um	St St	trong	Diamonds	
	300um		most Solid	Honeycomb	
			888	honeycomo	
ß	- Raft and Support				
	Raft material:	None	•		
	Support material:	None	•		
	Support type:	Points O Li	nes		
	Sidewalk material:	None	•		
	The eathering has fee	OK	Cancel	Coloring of the b	and of moderials
Print Mode	including 3 set modes custom mode	and one	B Raft and Support	used to create raf sidewalks.	ts, supports and
Layer Resolution	The detail and smooth part	nness of a	Advanced	Adjustments to pr the creation shell	int pattern fill and
Print Strength	The strength of the in of a creation	ner structure	G Help	Opens the help m	enu
Print Pattern	The design of the inne	er structure of			

(Source: 3D Systems Inc., 2015)

Print Mode		
	Standard	Layer Resolution: 200um
		Print Strength: Strong
		Print Pattern: Diamonds
	Premium	Layer Resolution: 70um
		Print Strength: Strong
		Print Pattern: Diamonds
	Draft	Layer Resolution: 300um
		Print Strength: Strong
		Print Pattern: Lines
	Custom	Custom allows the user to customize their print settings
Print Resolut	tion	
	0.070	Great mode for parts requiring smooth surfaces
		Layer lines are not very visible in these parts
		Good mode for artistic parts with a smooth flow
		Not the best mode for fine detail
	0.200	Best mode for general printing and most compatible mode for a wide range of geometries
		· Fine detail preservation for things like steeples, spires, sharp points, or thin walls
	0.300	A fast mode with thicker layers
		Good for large parts with minimal detail
Print Strength		
	Hollow	Fastest mode to produce a part
		Hollow has fewer outer surfaces and larger print pattern spacing
		Best for parts that will not be stressed
	Strong	 Medium amount of outer surfaces and smaller print pattern spacing
		Best for parts that will have minimal physical abuse
	Almost Solid	The most surfaces and the tightest print pattern spacing
		The most robust part
		Best for parts that will be stressed
Print Pattern		
	Lines	Fastest print fill pattern
		Minimal cross bracing
	Diamonds	Strong print pattern with 2-direction cross bracing
	Honeycomb	Strong print pattern with 3-direction cross bracing

Figure 3.4.2: Descriptions on the build settings.

(Source: 3D Systems Inc., 2015)

Figure 3.4.3: Single struts in CubePro software to create slicing.

Table 3.4.1: Process parameters selection	ected for single struts
---	-------------------------

Strut length (mm)	Layer Resolution	Print Strength	Print Pattern
	(µm)		
24	200	solid	Cross
45	200	solid	Cross
50	200	solid	Cross
75	200	solid	Cross
90	200	solid	Cross

The process parameters are selected as shown in Table 3.4.1 for the formation of the single struts in this study. Based on the description in Figure 3.4.2, the suitable for wide range of parameter is 200 μ m layer resolution despite the solid is the strongest form to be printed. Moreover, a preliminary run has been carried out and 200 μ m resolution with cross print pattern was give desired result, this is similar to the work that has been done by Yin Cheng (2018). After the selections of the build settings is completed, the platform of the printing bed must be ready by applying the Cube Glue. This procedure is to make sure the printed part is fix without moving from the platform during the printing process.

The printing bed and the nozzle then being heat up to the predetermined temperature. Next, the printing process is ready to start. The materials are extruded in molten form through this process, therefore the temperature of the nozzle is just below the melting point of the ABS material used in this process. Figure 3.4.4 shows three sets of identical single struts which were being fabricated at once according to their parameters in each process which can reduce the time taken for printing.

Figure 3.4.4: Fabricated single struts in CubePro 3D printer.

After the 3D printing process is completed, the single strut needs to be separated from its built supports in preparation for tensile test. As the bottom support is very thin and flimsy which auto-generated by Cube Pro software, it can be easily detached by hand ss shown in Figure 3.4.5. For the side support, trimming knife is used to cut off all of it as in Figure 3.4.6. The single struts then need to be trimmed all the tiny supports left on its surface by using trimming cutter which clearly shown in Figure 3.4.7. This trimming process must be done carefully to ensure the single strut is not damaged. Next, all the single struts are labelled by its length using masking tape and ball pen as shown in Figure 3.4.8 (a) and (b) for easy recognition. Figure 3.4.9 shows the completed five sets of printed single struts.

Figure 3.4.5: Detach the bottom support.

Figure 3.4.6: Cut off the side bottom.

Figure 3.4.7: Tiny supports are cut.

Figure 3.4.8: Single strut is labelled using (a) masking tape and (b) a ball pen.

Figure 3.4.9: Five sets of printed single struts.

3.5 Test Stage

After all single struts are completely ready with the desired shape and parameter, Dinolite pro will be used in characterization test to observe the appearance of fabricated struts. This microscopic equipment has variable magnification from 10 times up to 220 times as well with provided software for computer in order to capture image and for measuring purposes. A single strut is placed under the microscope as shown in Figure 3.5.1.

Figure 3.5.1: Single Strut is placed under Dino-Lite Microscope at 45 times magnification to determine its charachteristic.

The tensile tests for the single struts were conducted on a small bench top servohydraulic testing machine (Shimadzu machine controlled by a computer using Trapezium software) with 1 kN load cell, due to the small size of the single struts. Loading velocity of 0.1 mm/minute was applied throughout the test, without the application of extensometer for strain measurement. The load was recorded by a dedicated computer in a graph and table form. The strain was derived directly from the crosshead displacement whereas, the stress can be determined by dividing the force over cross-sectional area of the single strut. Then, the compliance correction method was applied from the calculated data. In this study, five different gauge lengths were tested; 8 mm, 15 mm, 20 mm, 25 mm and 30 mm, with three repeat tests for each gauge length. Figure 3.5.2 shows the arrangement of the machine for the tensile tests by using Shimadzhu machine. The gauge length measurements were set by using a ruler and for repetition tests, the setting measurements at the machine were used. This mean that for each gauge length, a same measurement length was used in all repetitions. Both specimens end were manually tightened at jaw grippers. From the preliminary test that have been done before, the result show that there were no slippery problem with the jaw grippers and the test can be done efficiently.

Figure 3.5.2: Tensile tests of the single struts with loading velocity of 0.1 mm/minute by using Shimadzu machine.

3.6 Analysis Stage

In the analysis stage, all data from tensile test are analyzed for each gauge length. The test is repeated 3 times to ensure the accuracy. A table is constructed by the Trapezium software to show the raw data which is load distributed over time for each gauge length. The strain is derived directly from the crosshead displacement and stress can be calculated from force distributed over cross-sectional area of the specimen. Figure 3.6.1 shows the collected and calculated data. Then the stress-strain curve was plotted for each specimen tested. The young's modulus can be obtained from the curve by calculating the gradient using riseover run as shown in Figure 3.6.2.

File Paste	Hoi	me Ins	ert Page	Layout	Exemular																
Paste	Cut				ronnois	Data	Review	View I	lelp 🖓	Tell me	vhat you want	to do								R	Share
	💕 For Clipboar	oy + mat Painte	Calibri B J	⊻ - ⊡ Font	11 · A	≡		Nignment	Wrap Text Merge & C	enter -	General \$ - % - Numb	• • • •	Condition Formattin	al Format a g - Table - Styles	as Cell Styles -	Insert D	Pelete Format	∑ Aut ↓ Fill Cle	ar• f Editin	Arr P	k Ť
U1		•	× v	fx																	
4	A	B	с	D	E	F	G	н	1	J	к	L	м	N	0	p	Q	R	\$	т	U
1 30 2 Tu	_3 me	Force	Stroke	Stress	Strain																
3 50	c	N	mm	Pa																	
4	0	0.013665	0	6798.567	0																
5	0.01	0.00572	0	2845.912	0																
6	0.02	-0.00588	0	-2924.96	0																
7	0.03	-0.01224	0	-6087.09	0																
8	0.04	-0.00668	0	-3320.23	0																
9	0.05	0.008424	L 0	4189.815	0																
0	0.06	0.023208	6 0	11541.76	0																
1	0.07	0.02765	0	13755.24	0																
2	0.08	0.020822	. 0	10355.96	0																
3	0.09	0.010173	0	5059.401	0																
4	0.1	0.005723	0	2845.912	0																
5	0.11	0.01208	1 0	6008.034	0																
6	0.12	0.027339	0	13597.13	0																
7	0.13	0.043233	0	21502.44	0																
8	0.14	0.050386	0.000125	25059.84	4.17E-06																
9	0.15	0.044983	0.000125	22372.03	4.17E-06																
0	0.16	0.03242	0.000125	16126.84	4.17E-06																
11	0.17	0.021770	0.000125	10830.28	4.17E-06																
12	0.18	0.022411	0.000125	11146.49	4.17E-06																
13	0.19	0.03322	25(2)	16522.1	4.17E-06 30(1) 30(2) 300	3) ((+)					- 14								
Ready		1	i codet					<u> </u>									EE	面口	- I		+ 100
courty	-							-		1.000	_	-					- 203	une C		1257 41	

Figure 3.6.1: Table of calculated value from a given raw data using Microsoft Excel.

Figure 3.6.2: Young's modulus can be calculated from the stress-strain gradient.

Every specimens data are used to plot the stress-strain curve so as a result three young's modulus for each gauge length are obtained. The average of young's modulus is calculated by using standard deviation to meet the tolerance. From data force, F and total elongation, δ_T another graph was plotted for each gauge length to define the apparent compliance, C_a . Figure 3.6.3 shows the method of finding C_a from force versus elongation plot.

Figure 3.6.3: Extraction of C_a from force versus elongation plotted

Thus, every gauge length has its own C_a and the average values are calculated including the standard deviation. Diameter, D of each specimens after undergoes tensile test were observed by using Dino-lite Pro device. Eight point are observed under the device to find the average of diameter for each specimen. The average diameter of each gauge length then recorded. Plot of C_a versus L/ D^2 are tabulated based on the previous data calculated. Figure 3.6.4 shows the magnification scale of 45x under Dino-lite Pro to measure single struts and Figure 3.6.5 shows the example of plot C_a versus L/ D^2 .

. Figure 3.6.4: The magnification scale of 45 times under Dino-lite Pro to measured single

struts.

Figure 3.6.5: The example of plot C_a versus L/ D^2 .

(source: Hasan, 2013)

Next, compliance correction method is applied to get the accurate result by defining the corrected young's modulus. The fundamental concept behind this method is based on the assumption that the specimen and testing fixture can be modelled as a system with two spring in series. The total measured displacement can be taken as the sum of the displacement in the specimen and the loading system when it is subjected to an equal applied load *F*. Equation 3.6.1 represents the following assumption.

$$\delta_T = \delta_S + \delta_C \tag{Eq 3.6.1}$$

 δ_T is the total measured displacement and δ_S is the specimen deformation, while δ_C is the displacement in the loading system or known as the machine compliance factor. The apparent compliance factor, C_a can be shown as $(C_a = \delta_T / F)$ if both specimen and the loading system are assumed as linear springs which related to the machine compliance factor, C_m (= δ_C / F) as given in Equation 3.6.2

$$C_a = C_m + (1/EA)L$$
 (Eq 3.6.2)

A is the cross-sectional area, L is the length specimen and E is the elastic modulus of the tested specimen. From the ASTM standard, C_m is the zero gauge length intercept on a plotted of C_a versus L for a given material where the corrected young's modulus E of the material can be obtained from the slope of this plot or calculated from Equation 3.6.4. E_u is the uncorrected elastic modulus of the tested material from Equation 3.6.3 which is initially defined from formula of deformation, ($\delta = PL/EA$).

$$\frac{L}{A} = \frac{\delta_T}{F} E = E_u C_a \tag{Eq 3.6.3}$$

$$E = \frac{\binom{L}{A}}{c_{a-}c_{m}} = \frac{E_{u}c_{a}}{c_{a-}c_{m}}$$
(Eq 3.6.4)

Based on the equation 3.6.5 which is modified from Equation 3.6.2, the accurate version of compliance correction method can be obtained. C_m is the zero gauge length intercept on a plot of C_a versus L/D^2 where D is the diameter of the specimen from the area, $A \left(=\frac{\pi D^2}{4}\right)$ (Li and Langley, 1985).

$$C_a = C_m + (4/\pi E)(L/D^2)$$
 (Eq 3.6.5)

The average corrected of young's modulus, E is calculated from equation 3.6.4 where the C_m can be determined by the best line of y-axis intercept on C_a versus L/D^2 plot. When all the data are collected completely, a table of corrected elastic modulus values for different gauge lengths of tensile test result for the single strut are constructed. Example of the table from other study is shown in Figure 3.6.6.

Gauge	Average	Average apparent	Average	Average
length	diameter [mm]	compliance for	uncorrected E	corrected E
[mm]		test [mm/N]	value [GPa]	value [GPa]
30	0.374 ± 0.007	0.0107 ± 0.0008	27 ± 1.9	44 ± 5.2
22	0.379 ± 0.002	0.0089 ± 0.0001	24 ± 0.3	45 ± 0.9
10	0.375 ± 0.001	0.0064 ± 0.0006	17 ± 1.7	50 ± 12
8	0.371 ± 0.003	0.0062 ± 0.00006	14 ± 0.6	43 ± 1.7
5	0.374 ± 0.002	0.0055 ± 0.0006	10 ± 1.9	45 ± 21
	0.375 ± 0.004		Ave. E from all gauge lengths	45 ± 9.9

Figure 3.6.6: The example of corrected elastic modulus values for different gauge lengths of

tensile test result for the single struts table

(source: Hasan, 2013)

3.7 Conclusion of Chapter 3

The purpose of creating methodology is to plan all activities in order to accomplish this study. A well-prepared strategy is arranged to conduct all activities efficiently. All result from this chapter will be discussed in detail on the next chapter.

CHAPTER 4

RESULT AND DISCUSSION

4.1 Introduction

In this chapter, all the result and data obtained from the study will be discussed. The basic theoretical in calculating the result is explained clearly to lead this study complete.

4.2 Characterization of single strut

For the characterization of single strut, Figure 4.2.1 (a), (b) and (c) shows a single strut is placed under microscope which is Dino-Lite Pro to measure its post test diameter. The diameter have been calculated as an average 1.6 mm.

Figure 4.2.1: Determination of diameter on single struts using Dino-Lite Pro at 45 times magnification.

4.3 Elastic modulus, *E*

From the raw data given by the tensile test, stress-strain curve is constructed for each specimens. The modulus of elasticity was determined by calculating the gradient of the best line on each graph. All are shown in Table 4.3.1 until Table 4.3.5. The Figure 4.3.1 show the elastic modulus, E at several gauge length, between 0.03 m to 0.003 m.

Figure 4.3.1: Plot of elastic modulus versus gauge length.

Table 4.3.1: The elastic modulus, E for 30 mm gauge length specimens.

Table 4.3.2: The elastic modulus, E for 25 mm gauge length specimens.

Table 4.3.3: The elastic modulus, E for 20 mm gauge length specimens.

Table 4.3.4: The elastic modulus. E for 15 mm gauge length specimens.

Table 4.3.5: The elastic modulus, E for 8 mm gauge length specimens.

4.4 Apparent compliance factor, C_a .

From force versus elongation curve, the apparent compliance for each specimens are extracted as shown in table 4.4.1 until table 4.4.5.

Table 4.4.1: The apparent compliance, Ca for 30 mm gauge length specimens.

Table 4.4.2: The apparent compliance, C_a for 25 mm gauge length specimens.

Table 4.4.3: The apparent compliance, C_a for 20 mm gauge length specimens.

Table 4.4.3: The apparent compliance, C_a for 15 mm gauge length specimens.

Table 4.4.5: The apparent compliance, C_a for 8 mm gauge length specimens.

4.5 Machine compliance factor, C_m

A scatter chart is plotted which is apparent compliance, C_a versus length, l over square of diameter, D. A trendline was constructed on this scatter plot and the machine compliance factor, C_m are extracted from the y-intercept which is 6×10^{-6} . The graph and the linear equation of the trendline are shown in Figure 4.5.1.

Figure 4.5.1: Graph of apparent compliance, C_a versus length, l over square of diameter, D with the linear equation of the trendline.

4.6 Calculated result

After all the data have been calculated, a table is constructed to shown the final result. The gauge length, average diameter, average compliance factor, average uncorrected and uncorrected modulus of elasticity was recorded as shown in Table 4.6.1.

Table 4.6.1: List of corrected elastic modulus values for different gauge lengths of tensile test result for the ABS single-struts (The \pm values are from standard deviation values of each

Gauge length, <i>l</i> (mm)	Average diameter, D (m)	Average compliance, <i>C_a</i> for test (m/N)	Average uncorrected modulus of elasticity, E	Average corrected modulus of elasticity, E			
			(MPa)	(MPa)			
30	0.0016	$1.875 \times 10^{-5} \pm$	$749.329 \pm$	1120.636 ±			
		9.235×10 ⁻⁷	48.104	74.880			
25	0.0016	$1.743 \times 10^{-5} \pm$	684.197 ±	$1049.097 \pm$			
		1.050×10^{-6}	36.361	87.632			
20	0.0016	$1.466 \times 10^{-5} \pm$	625.310 ±	1082.113 ±			
		2.140×10^{-6}	44.334	185.019			
15	0.0016	$1.288 \times 10^{-5} \pm$	545.457 ±	$1058.107 \pm$			
		2.171×10 ⁻⁶	57.319	234.252			
8	0.0016	$9.008 \times 10^{-6} \pm$	$315.567 \pm$	$1045.925 \pm$			
		1.238×10 ⁻⁶	56.433	405.792			
Average	Average modulus of elasticity, E from all gauge length						
				31.072			

repetition)

Calculation for 30 mm gauge length specimens

Specimen 1

$$E_u = 798.669$$
 MPa, $C_a = 1.779 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

From Equation 3.6.4

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (798.669 \text{ MPa} \times 1.779 \times 10^{-5} \text{ m/N}) / (1.779 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1204.411 \text{ MPa}$

Specimen 2

$$E_u = 746.733$$
 MPa, $C_a = 1.885 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-}C_{m}} = \frac{E_{u}C_{a}}{C_{a-}C_{m}}$$

 $E = (746.733 \text{ MPa} \times 1.885 \times 10^{-5} \text{ m/N}) / (1.885 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1097.276 \text{ MPa}$

Specimen 3

 $E_u = 702.576$ MPa, $C_a = 1.779 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (702.576 \text{ MPa} \times 1.779 \times 10^{-5} \text{ m/N}) / (1.779 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1060.221 \text{ MPa}$

Average E

 $\bar{x} = (1204.411 \text{ MPa} + 1097.276 \text{ MPa} + 1060.221 \text{ MPa}) / 3 = 1120.636 \text{ MPa}$

with standard deviation, $\sigma = \pm 74.880$
Calculation for 25 mm gauge length specimens

Specimen 1

$$E_u = 719.942$$
 MPa, $C_a = 1.638 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

From Equation 3.6.4

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (719.942 \text{ MPa} \times 1.638 \times 10^{-5} \text{ m/N}) / (1.638 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1136.802 \text{ MPa}$

Specimen 2

$$E_u = 685.400$$
 MPa, $C_a = 1.744 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-}C_{m}} = \frac{E_{u}C_{a}}{C_{a-}C_{m}}$$

 $E = (685.400 \text{ MPa} \times 1.744 \times 10^{-5} \text{ m/N}) / (1.744 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1048.951 \text{ MPa}$

Specimen 3

$$E_u = 647.249$$
 MPa, $C_a = 1.848 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (647.249 \text{ MPa} \times 1.848 \times 10^{-5} \text{ m/N}) / 1.848 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 961.538 \text{ MPa}$

Average E

 $\bar{x} = (1136.802 \text{ MPa} + 1048.951 \text{ MPa} + 961.538 \text{ MPa}) / 3 = 1049.097 \text{ MPa}$

with standard deviation, $\sigma = \pm 87.632$

Calculation for 20 mm gauge length specimens

Specimen 1

$$E_u = 574.713$$
 MPa, $C_a = 1.679 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

From Equation 3.6.4

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

$$E = (574.713 \text{ MPa} \times 1.679 \times 10^{-5} \text{ m/N}) / (1.679 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 894.254 \text{ MPa}$$

Specimen 2

$$E_u = 657.354$$
 MPa, $C_a = 1.250 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-}C_{m}} = \frac{E_{u}C_{a}}{C_{a-}C_{m}}$$

 $E = (657.354 \text{ MPa} \times 1.250 \times 10^{-5} \text{ m/N}) / (1.250 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1264.154 \text{ MPa}$

Specimen 3

 $E_u = 643.863$ MPa, $C_a = 1.470 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (643.863 \text{ MPa} \times 1.470 \times 10^{-5} \text{ m/N}) / 1.470 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1087.931 \text{ MPa}$

Average E

 $\bar{x} = (894.254 \text{ MPa} + 1264.154 \text{ MPa} + 1087.931 \text{ MPa}) / 3 = 1082.113 \text{ MPa}$

with standard deviation, $\sigma = \pm 185.019$

Calculation for 15 mm gauge length specimens

Specimen 1

$$E_u = 560.486$$
 MPa, $C_a = 1.161 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

From Equation 3.6.4

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (560.486 \text{ MPa} \times 1.161 \times 10^{-5} \text{ m/N}) / (1.161 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1159.893 \text{ MPa}$

Specimen 2

$$E_u = 593.765$$
 MPa, $C_a = 1.165 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-}C_{m}} = \frac{E_{u}C_{a}}{C_{a-}C_{m}}$$

 $E = (593.765 \text{ MPa} \times 1.165 \times 10^{-5} \text{ m/N}) / (1.165 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 1224.248 \text{ MPa}$

Specimen 3

 $E_u = 482.121$ MPa, $C_a = 1.539 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\binom{L}{A}}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (482.121 \text{ MPa} \times 1.539 \times 10^{-5} \text{ m/N}) / 1.539 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 790.181 \text{ MPa}$

Average E

 $\bar{x} = (1159.893 \text{ MPa} + 1224.248 \text{ MPa} + 790.181 \text{ MPa}) / 3 = 1058.107 \text{ MPa}$

with standard deviation, $\sigma = \pm 234.252$

Calculation for 8 mm gauge length specimens

Specimen 1

$$E_u = 324.544$$
 MPa, $C_a = 7.775 \times 10^{-6}$ m/N, $C_m = 6 \times 10^{-6}$

From Equation 3.6.4

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-} C_m} = \frac{E_u C_a}{C_{a-} C_m}$$

 $E = (324.544 \text{ MPa} \times 7.775 \times 10^{-6} \text{ m/N}) / (7.775 \times 10^{-6} \text{ m/N} - 6 \times 10^{-6}) = 1421.408 \text{ MPa}$

Specimen 2

$$E_u = 255.183$$
 MPa, $C_a = 1.025 \times 10^{-5}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\left(\frac{L}{A}\right)}{C_{a-}C_{m}} = \frac{E_{u}C_{a}}{C_{a-}C_{m}}$$

 $E = (255.183 \text{ MPa} \times 1.025 \times 10^{-5} \text{ m/N}) / (1.025 \times 10^{-5} \text{ m/N} - 6 \times 10^{-6}) = 615.435 \text{ MPa}$

Specimen 3

 $E_u = 366.973$ MPa, $C_a = 9.000 \times 10^{-6}$ m/N, $C_m = 6 \times 10^{-6}$

$$E = \frac{\binom{L}{A}}{C_{a-}C_m} = \frac{E_u C_a}{C_{a-}C_m}$$

 $E = (366.973 \text{ MPa} \times 9.000 \times 10^{-6} \text{ m/N}) / (9.000 \times 10^{-6} \text{ m/N} - 6 \times 10^{-6}) = 1100.933 \text{ MPa}$

Average E

 $\bar{x} = (1421.408 \text{ MPa} + 615.435 \text{ MPa} + 1100.933 \text{ MPa}) / 3 = 1045.925 \text{ MPa}$

with standard deviation, $\sigma = \pm 405.792$

Based on the result obtained, the slope from the graph shown that the tensile test on single strut ran in correct method alike to the other study related, (Hasan,2013). The failure point on all single struts are still in between the gauge length. As compared the stress-strain plot between all gauge length, its shows the shorter the gauge length so the higher the distribution of force needed in the tensile test. Young's modulus directly calculated from gradient of stress-strain plot as the corrected young's modulus need to be defined to accomplish this study. The apparent compliance, C_a can be determine from graph force versus elongation which the method are shown in previous section. After the tensile test have been done, the post test diameter of single strut need to be determine for the further calculation. C_m was determined from the y-intercept of graph of apparent compliance, C_a versus length, l over square of diameter, D. The corrected elastic modulus was calculated from Equation 3.6.4. All the data were calculated as an average value by using standard deviation method and recorded on the Table 4.6.1.

For all gauge length that have been tested, the curve of strain versus stress and force versus elongation were calculated without any error except for the specimen with 8 mm gauge length. Refer to Table 4.3.5 and Table 4.4.5 for 8 mm gauge length, there is uneven curve produced which is cause by slippery of specimens with the jaw gripper of the tensile machine. This slippery happened on the 8 mm specimens only because of the part of the specimens which the jaw gripper hold during the testing was the shortest among the others specimens which is 8 mm on the top and above the gauge length. Accordingly to the case, the resistance force to hold the specimens were unsufficient while the jaw gripper pull the specimens in parallel. However the data collected from the graph which is the young modulus and apparent compliance, C_a are calculated before the slippery occur to make sure the precision of final data.

Table 4.6.1 is constructed to show the final data produced. Every specimens with different gauge length have different values of uncorrected elastic modulus and this proved that high dependency of elastic modulus for single strut on the gauge length. Compliance correction method is applied in order to produce the corrected elastic modulus by removing the machine compliance factor, C_m from the whole system.

Corrected elastic modulus, the values collected are within small variation and the range is from 1045.925 MPa to 1120.636 MPa which produce the average value of 1071.176 MPa. All the values calculated for each gauge length were between the standard value of ABS elastic modulus as shown in figure 4.6.1 which is from 1.0 GPa to 2.65 GPa.

Mechanical Properties	Metric	English	Comments
Hardness, Rockwell R	68.0 - 113	68.0 - 113	Average value: 101 Grade Count:63
Ball Indentation Hardness	65.0 - 110 MPa	9430 - 16000 psi	Average value: 93.2 MPa Grade Count:11
Tensile Strength, Ultimate	22.1 - 49.0 MPa	3210 - 7110 psi	Average value: 36.4 MPa Grade Count:31
Tensile Strength, Yield	13.0 - 65.0 MPa	1890 - 9430 psi	Average value: 40.5 MPa Grade Count: 117
1	22 1 - 59 3 MPa	3210 - 8600 psi	Average value: 40 7 MPa Grade Count:1
	@Temperature -18.0 - 71.0 °C	@Temperature -0.400 - 160 °F	, torago talao. Tor, till a orado ocali. T
Elongation at Break	3.00 - 150 %	3.00 - 150 %	Average value: 34.2 % Grade Count:71
Elongation at Yield	0.620 - 30.0 %	0.620 - 30.0 %	Average value: 5.57 % Grade Count:49
Modulus of Elasticity	1.00 - 2.65 GPa	145 - 384 ksi	Average value: 2.07 GPa Grade Count:57
	1.50 - 2.60 GPa	218 - 377 ksi	Average value: 2.05 GPa Grade Count:1
	@Temperature -18.0 - 71.0 °C	@Temperature -0.400 - 160 °F	5
Flexural Yield Strength	0.379 - 593 MPa	55.0 - 86000 psi	Average value: 69.2 MPa Grade Count:78
ul.	49.6 - 113.8 MPa	7190 - 16510 psi	Average value: 81.7 MPa Grade Count:1
	@Temperature -40.0 - 71.0 °C	@Temperature -40.0 - 160 °F	
Flexural Modulus	0.200 - 5.50 GPa	29.0 - 798 ksi	Average value: 2.20 GPa Grade Count:105
ul.	1.90 - 2.80 GPa	276 - 406 ksi	Average value: 2.35 GPa Grade Count:1
	@ lemperature -40.0 - 71.0 °C	@ lemperature -40.0 - 160 °F	A 1 200 K 0 1 0 100
Izod Impact, Notched	0.380 - 10.3 J/cm	0.712 - 19.3 π-ID/In	Average value: 3.22 J/cm Grade Count:88
Life and the second sec	0.450 - 4.00425 J/cm	0.843 - 7.50160 ft-lb/in	Average value: 1.34 J/cm Grade Count:21
T.	0.480 - 4.00 l/cm	0 899 - 7 49 ft-lb/in	Average value: 1.34 I/cm Grade Count:12
	@Temperature -40.0 - 0.000 °C	@Temperature -40.0 - 32.0 °F	Average value. 1.54 0/cm Grade Count. 12
	0.480 - 4.00 J/cm	0.899 - 7.49 ft-lb/in	Average value: 1.34 J/cm Grade Count:12
	@Thickness 3.17 - 6.40 mm	@Thickness 0.125 - 0.252 in	ç
Izod Impact, Unnotched 🌆	1.07873 - 1.66713 J/cm	2.02091 - 3.12322 ft-lb/in	Average value: 1.37 J/cm Grade Count:2
	@Temperature -20.020.0 °C	@Temperature -4.004.00 °F	
	1.07873 - 1.66713 J/cm	2.02091 - 3.12322 ft-lb/in	Average value: 1.37 J/cm Grade Count:2
Ized Impact Natched (ISO)	8 00 42 0 k l/m ²	3 81 20 0 ft lb/in2	Average value: 26.4 k l/m² Grade Count:24
at	7.00 22.0 kJ/m²	2 22 10 5 # lb/in2	Average value: 20.4 ko/m Grade Count:24
	@Temperature -30.020.0 °C	@Temperature -22.04.00 °F	Average value: 15.0 Komin Grade Count: 15
1.	7.00 - 7.00 kJ/m ²	3.33 - 3.33 ft-lb/in ²	Average value: 13.0 kJ/m ² Grade Count:1
	@Temperature -40.040.0 °C	@Temperature -40.040.0 °F	
	7.00 - 7.00 kJ/m ²	3.33 - 3.33 ft-lb/in ²	Average value: 13.0 kJ/m ² Grade Count:1
	@Thickness 4.00 - 4.00 mm	@Thickness 0.157 - 0.157 in	
Charpy Impact Unnotched	11.0 J/cm² - NB	52.4 ft-lb/in ² - NB	Average value: 15.4 J/cm ² Grade Count:19
ul.	1.00 J/cm² - NB	4.76 ft-lb/in ² - NB	Average value: 8.56 J/cm ² Grade Count:20
	@Temperature -40.030.0 °C	@Temperature -40.022.0 *F	
Charpy Impact, Notched	0.700 - 5.00 J/cm ²	3.33 - 23.8 Tt-ID/In*	Average value: 2.46 J/cm² Grade Count:29
lik.	0.500 - 2.50 J/cm ²	2.38 - 11.9 ft-lb/in ²	Average value: 1.43 J/cm ² Grade Count:18
Dart Drop, Total Energy	24 4 50.2 L	18.0 37.0 A Ib	Average value: 31.9.1 Grade Count:5
Falling Dat Impact	24.4 - 30.2 J 10.0 EC0.1	14.0 420 8 16	Average value: 185 Crade Count:2
I aming Datt Impact	13.0 - 309 J	10.2 25.0 8 16	Average value: 105 5 Grade Count.5
Instrumented Impact Total Energy	14.0 - 47.5 J	10.3 - 35.0 π-ID	Average value: 24.1 J Grade Count:4
Instrumented Impact Energy at	11.0 - 33.9 J	8.11 - 25.0 ft-lb	Average value: 18.8 J Grade Count:3

Figure 4.7.1: Standard material properties of acrylonitrile butadiene styrene, ABS

retrieved from <u>www.metwab.com</u>

The value in the range of elastic modulus as shown may affected during the fabrication and testing stage. Single strut was extruded by the 3d printer which various variables were concern in order to find the modulus elasticity of specimen such as the speed of extrusion, temperature on the 3d printer nozzle and pattern selection. For the testing stage, the tensile machine need to be precise with minimum value of errors. The single strut also need to be installed on the jaw gripper properly to avoid sliding during the testing. Every single details as mentioned may affected the result in this experiment.

4.7 Summary of chapter 4

In conclusion, all specimens with different gauge length were succesfully printed by using CubePro. In order to produce identical properties of single struts, all settings used were permanent for every extrusion of CubePro. Next, the single strus are tested on a tensile test machine using shimadzhu and result obatined are tabulated. Compliance correction method is applied to produced the corrected elastic modulus for each specimens and will be compared with the standard value of ABS.

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This study is conducted to investigate mechanical properties of 3D printed single strut with different gauge length using Shimadzhu tensile test. The choosen diamaters of single struts are 1.6 mm and the build angle are set 35.26° as it represents the angle of the struts to the surface in BCC structure. For the selected parameter in this study, gauge length of single struts have been designed as 8 mm, 15 mm, 20 mm, 25 mm, and 30 mm which one third of the total length of specimen. The background of this study is reviewed to gain the relevent knowledge and scientific theories of the fabricated single struts. The previous researches are studied to analyse layer by layer formation of fabricated single strut using fused deposition modelling (FDM) machine several parameters.

In methodology, CAD software which is CATIA is used to designed single struts. Next the designed single struts are fabricated using CubePro 3D printer. Dino-Lite Pro is used to determine their diameter before being tested on Shimadzhu table top tensile test. All the raw data are calculated by using compliance correction method to define the final result. By following workflow chart, the results are obtained and discussed in this study. Five sets of single struts with different length are fabricated using CubePro 3D printer successfully. For the diameter analysis, 1.6 mm is the average diameter obtained through Dino-Lite Pro. The stress versus strain and force versus elongation plot are constructed from the raw data obtained on the tensile test. Corrected elastic modulus is calculated by using compliance correction method which have value between 1045.925 MPa to 1120.636 MPa and the average value is 1071.176 MPa. All the corrected values obtained is between the range of standard value of ABS elastic modulus which is from 1.0 GPa to 2.65 GPa. This conclude that the study is succesfully done and the data obtained is valid between the range of theoretical value. The corrected elastic modulus is choosen as the mechanical properties of the single struts because the values are all within small variations unlike to the uncorrected values which depending on the gauge length.

5.2 Recommendation

Through the parameters of gauge length that have undergoes tensile test, all the standard deviations were low which suggesting that data was consistent and that the testing procedure was valid and repeatable. In technically, the single struts not slippered form jaws grip of the Shimadzhu tensile test machine but for the shorter gauge length which is at 8 mm gauge length there is some error occured. This is because, the shorter the gauge length of specimen, the higher the force that need to distribute in the tensile test and this cause the specimen slipped form the jaw grip.

One of the opinion to solved this error is to put a double sided tape or the highest grid sand paper on the jaws grip to avoid slippery of specimens during the test. During the fabrication stage, the printed single struts need to separate from its support intensively. A defect on surface of the struts will effect the data on tensile test as the diemeter is not constant throughout the body. For the future study, factor on fabrication and design method on mechanical properties of single struts can be conducted. Hence, a comparison can be made between both result to define the variables that affect the mechanical properties for the single struts.

REFERENCES

3dsystems.com. (2018). CubePro 3D Printer - Technical Specifications - 3D Systems. https://www.3dsystems.com/shop/cubepro/techspecs [Accessed 25 Oct. 2018].

Doyoyo, M. and Hu, J. (2006). Multi-axial failure of metallic strut-lattice materials composed of short and slender struts. *International Journal of Solids and Structures*, 43(20), pp.6115-6139.

Gebhardt, A. (2003). Rapid prototyping. Munich: Hanser Publishers.

Halil Ibrahin Kurt and Ramazan Samur. (2013). Study on microstructure, Tensile Test and Hardness 304 Stainless Steel Jointed by TIG Welding. *International Journal of Science and Technology Volume 2 No. 2.*

Kessler, J., Bâlc, N., Gebhardt, A., & Abbas, K. (2016). Basic Research on Lattice Structures Focused on the strut shape and welding beads. *Physics Procedia*, 83, 833–838.

Rafidah Hassan (2013). Progressive Collapse of Titanium Alloy Micro-Lattice Structures Manufactured Using Selective Laser Melting. Rashed, M., Ashraf, M., Mines, R. and Hazell, P. (2016). Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. *Materials & Design*, 95, pp.518-533.

Reinhart, G., Teufelhart, S., & Riss, F. (2012). Investigation of the Geometry-dependent Anisotropic Material Behavior of Filigree Struts in ALM-produced Lattice Structures. *Physics Procedia*, 39, 471–479.

Shimadzhu (2018). Universal test - Ez Test - Specification

https://www.shimadzu.com/an/test/universal/eztest.html (Accessed 20 november 2018)

Syam, W., Jianwei, W., Zhao, B., Maskery, I., Elmadih, W. and Leach, R. (2017). Design and analysis of strut-based lattice structures for vibration isolation. *Precision Engineering*, 24, 510-523.

Tang, Y., Dong, G., Zhou, Q., & Zhao, Y. (2017). Lattice Structure Design and Optimization With Additive Manufacturing Constraints. *IEEE Transactions On Automation Science And Engineering*, 1-17.

Tsopanos, S., Mines, R.A.W., McKown, S., Shen, Y., Cantwell, W. J., Brooks, W., & Sutcliffe, C. J. (2010). The influence of processing parameters on the mechanical properties of selectively

laser melted stainless steel microlatticestructures. *Journal of Manufacturing Science and Engineering*, 132: 041011-1 - 140111-12.

Van Der Klift, F., Koga, Y., Todoroki, A., Ueda, M., Hirano, Y., & Matsuzaki, R. (2015). 3D printing of continuous carbon fibre reinforced thermo-plastic (CFRTP) tensile test specimens. *Open Journal of Composite Materials*, *6*(01), 18.

APPENDICES

Figure A1: The setup of Shimadzhu EZ-LX tensile test by using Trapezium software.

File Paste	Hor Cut Cop Forr Clipboar	ne Inse y - nat Painter	rt Page	Layout Body) -	Formulas	Data	Review	Ve																	
Paste	Clipboar	y - nat Painter	Celibri	Bedy) -					w n	elp Di	esign	Format		ell me wi	at you wi	int to do									A Share
		5	G B I	L - E	- 10 - A		1 1	107 - 1511 -	ignment	Wrap Text Merge &	Certer -	Gener S -	al 16 3 Number	•2.23	Cand	iional For tional For tting ≈ T Styl	mat as atole *	Cell Styles	nsert ∗	Delete Fo	ernat *	∑ AutoS ↓ Fill - Ø Clear	Lim r Editir	A Z Son & Fi Filter - Se	P nd & lect *
cnart	2	- 10	8 V -	fx																					
i.	A	в	с	D	E	F	G		н	E.	1		ĸ	L	м	N		0	Р	Q		R	\$	т	U
30	1						0					0					0	1							
Tir	ne	Force	Stroke	Stroke	Stress	Strain											+								
se	c .	N	mm	m	Pa												1	2000000							
1	0	0.009696	0	0	4822.24	0	5	40					-1. M. 1	_	100		1	1800000	ě ——			-	-	~	
	0.01	0.012398	0	0	6166.145	0	2	30				1	_					1600000	8			/		1	
	0.02	0.011762	0	0	5849.929	0		2 25			1						D-1,	1000000	0		/				
8	0.03	0.010014	0	0	4980.346	0	1	5 20			/							800000	0	/	-				
	0.04	0.007788	0	0	3873.603	0	• •	10 IS		/						1	¢ *	400000	0	/					
8	0.05	0.006994	0	0	3478.337	0	5	5	1									200000	/					1	
a	0.06	0.006835	0	0	3399.284	0	1	0	/					1101012						10000	0000	0000	668	380	
1	0.07	0.006994	0	0	3478.337	0	5		202-1	375	875	925 925 925 925	1155	926	225				5885	19161	541	19161	791	0000	
2	0.08	0.007312	0	0	3636.443	0	5		0.45	20016	2005	1000	1000	1000	1010				100	25065	ELTO BETO	1916 2206 2225 2225	1220	0000	
3	0.09	0.007788	0	0	3873.603	0	b)		8 8	8880	8888	8888	2088	8 8	88				Chart A	2000	0000	000	8° 8		
6	0.1	0.008424	0	0	4189.815	0	P		-			Elongatio	on (m)									strain			
5	0.11	0.008901	0	0	4426.974	0	0				1	0				(0								
5	0.12	0.010173	0	0	5059.401	0	1																		
7	0.13	0.01208	0.000125	1.25E-07	6008.034	4.17E-06	i																		
3	0.14	0.012557	0.000125	1.25E-07	6245.195	4.17E-06	i																		
3	0.15	0.011285	0.000125	1.25E-07	5612.773	4.17E-06	6																		
0	0.16	0.009219	0.000125	1.25E-07	4585.081	4.17E-06	5																		
1	0.17	0.008424	0.000125	1.25E-07	4189.815	4.17E-06	5																		
2	0.18	0.008424	0.000125	1.25E-07	4189.815	4.17E-06																			
3	0.19	0.008901	0.000125	1.25E-07	4426.974	4.17E-06			1000000						_	_	_						_	-	
		30(1)	30(2)	30(3)	25(1) 23	5(2) 25(3) 2	0(1)	20(2)	20(3)	15(1)	15(2)	15(3	🕀	4										
																				10	III (I	四 四	-	- 1	+ 1

Figure A2: The raw data obtained from tensile test for 30 mm gauge length specimen one.

1		5.0	t - •			Full res	ult - Excel	Í			Chart	Tools						_		Sign in	œ		a x
1		Hor	me Inse	ert Page	Layout	Formulas	Data	Review	v View	Help	Design	Format	V Tel	I me who	at you want t	o do							A Share
Pa	aste	🔏 Cut 🗟 Cop 💣 Forr	ny - mat Painter d	Calibri B I	(Body) • Ll • Ll Font	10 · A	= ▲ =	83	- ≫ - = ±= ±= Alignm	환 Wrap Tr E Merge (ent	ut k Center	- <u>Gener</u> - \$ -	al 96 + 1 Number	* *1 43	Condition	al Format y- Table Styles	cel Styles*	B a a a a a a a a a a a a a	Delete Form		utoSum + 1 - lear • Edit	ZT Sort & Fit	D sd & lect *
CP	hart 1		•	8 92	fa																		v
4		A	в	c	D	E	F		н	(1 - i)			κ	L	м	N	0	р	Q	R	s	т	U -
1	30_3	2						0-	2. 7.5		0	,	×		0			1.1			10		
2	Tim	e i	Force	Stroke	Stroke	Stress	Strain	1								+							
3	sec	-	N	mm	m	Pa			3000000							40						-	
4		0	-0.0418	0	0	-20791)	0	1000000				-	7	1	30				/	-		
5		0.01	-0.03338	0	0	-16601.2		0	15000000			/	-			P 25			/				
6		0.02	-0.02384	0	0	-11858	1	0			1			1		20 -		1					
7		0.03	-0.0186	0	0	-9249.21	1	0	10000000		/				_	8 15		/					
8		0.04	-0.01955	0	0	-9723.53	1. 11		8	1					6	- 10	/						
9	L	0.05	-0.02575	0	0	-12806.6	8 (J	0	5 5000000	/						0 /							
10		0.06	-0.03227	0	0	-16047.8		0		/						-5	99638	6666	84566	136633	12288	25	
11		0.07	-0.03433	0	0	-17075.5		0	-	26287	18886	122223	63666	68			355 190	2250	041 460 9000 585 585	753	878	00010	
12		0.08	-0.02877	0	0	-14308.6	- 3	0	-5000000	1512	1583	1013	2000 000 000 000 000 000 000 000 000 00	1640			**************************************	00000	88008	88888	00000	0 10	
13		0.09	-0.01828	0	0	-9091.11	1 3	0		000 000	100 100	1000	10.0	03.41			00	00	- a a	0-00	0 00	0	
14		0.1	-0.00779	0	0	-3873.6		0		0 0	0 0	Strain	0 0	00					Elonga	tion, (mm)			
15		0.11	-0.0035	0	0	-1739.17	1 2																
16		0.12	-0.00636	0	0	-3162.12		0							0								
17	-	0.13	-0,01256	0	0	-0245.2		0															
18		0.14	-0.01701	0.000125	1.25E-07	-8458.68	4.17E-0	0															
19		0.15	-0.01748	0.000125	1.25E-07	-8095.84	4.17E-0	0															
20		0.10	-0.01637	0.000125	1.255-07	-0142.47	4.172-0	6															
21		0.17	-0.01828	0.000125	1.256-07	-9091.11	4.172-0	6															
23	-	0.10	-0.02410	0.000125	1.256-07	-16047.8	4.175-0	6															
~			30(1)	30(2)	30(3)	25(1) 21	5(2) 25	an la	20(1) 20/	2) 20/3	1 15/1	15(2)	15/2		E-141								
			1		aa(a) .	ww.r/ . 65	(m)	(e) [:	ea(1) = ea(e) eo(o	2 J 1961	o l'inites	inter-						1000	000	m		1000
	-							-	_	-		-		-			_	_	18	100			+ 100%
		0	Type here	to search			0	Ħ	е.		×		W	7						R ^R ~	983 💰	40) 5/22/2	2019

Figure A3: The raw data obtained from tensile test for 30 mm gauge length specimen two.

E	3 5-	e - •				Full res	ult - Excel				c	hart Tools									Sign in	œ	275	٥	×
	le	Home	Insert	Page Lay	out	Formulas	Data	Review	View	Help	Desig	n Form	et Ç	7 Tell me	what you	want to	odo							R. 91	here
Pa	ste Clipb	Cut Copy - Format Pai oard	ter ra	alibri (Bor	ly) - - III Font	10 - A	• [*] = ▲ • =	(= 11 (12 - 3)	⊕- 111 111 Aligni	the Wra Marinent	ip Test ge & Cent	ter v	eneral 5 - % Num	+ *3	A Co for	indition matting	al Format 1- Table Styles	e 🕎 as Cel • Styles •	Insert	Delete Form Cells	t D Aut	tarium + + sar + Edit	Arr Sort BL Fi Filter - Se	P ind & elect -	
Ch	art 2		×	~ fe																					~
A	A	B	4	5	D	E	F	G	н	8.1	1	1	K	ι		N	N	0	P	Q	R	S	T	6.11	U ^
2	Time	Force	Strok	te St	roke	Stress	Strain									<	<u> </u>			C	<u>k</u>			_	-4:
3	sec	N	mm	m		Pa																			
4		0 0.013	207	0	0	0/98,30/		0	5000000								45								
6	0.	0.000	122	0	0	-2924.96		0	0000000						_	_	40						-	-	 I
7	0.	0.00	224	0	0	-6087.09		0					1	_			35				/				
8	0.	0.00	568	0	0	+3320.23		5 0	5000000			/	-				£ 25			/					
9	0.	05 0.008	124	0	0	4189.815		0 11	0000000		/						8 20		/						
10	0.	06 0.023	206	0	0	11541.76	1	Stre 0	5000000	-	/					- 1	10	-	/						- 9
11	0.	07 0.027	557	0	0	13755.24		0		/							5	/							
12	0.	08 0.020	322	0	0	10355.96	- Q	0	0	1020	EBR	25251	8 2 6 2	1888	2222	2	-5	888	8988	88885	2223	<u> </u>	RRR	888	1
13	0.	0.010	173	0	0	5059.401		0	5000000	1881 1881 1881	075 668 136	583 541 541 541 541 541 541 541 541 541 541	161	1251	0.0	10.00		048 25E-1	019 903 388	435 435 841 851 053 053	2593 278 778 778	231 716 000	111	162	
14	0	.1 0.005	722	0	0	2845.912		0		0.00	0.0	0151	0000	303	8280	916		00.6	000000	0000000	00000	00000	0100	000	
15	0.	11 0.01	805	0	0	6008.034		0		0 0		00 00	000	0000	6 6	ä		0-0	00	00 ö	0000	00	0001	0.0	
16	0.	12 0.027	339	0	0	13597.13	1 0	0					LI WILL							Lion	pacion (mm)				
17	0.	13 0.043	233	0	0	21502.44		0								6	,			0	1				- 6
18	0.	14 0.050	886 0.00	0125 1	.25E-07	25059.84	4.17E-0	6																	
19	0.	15 0.044	382 0.00	0125 1	.25E-07	22372.03	4.17E-0	6																	
20	0.	16 0.032	125 0.00	0125 1	.25E-07	16126.84	4.17E-0	6																	
21	0.	17 0.021	776 0.00	0125 1	.25E-07	10830.28	4.17E-0	6																	-
22	0.	18 0.022	11 0.00	0125 1	.25E-07	11146.49	4.17E-0	6																	
23	0.	19 0.03	522 0.00	0125 1	,25E-07	10522.1	4.17E-0	0																	
24.1		.2 0.045	10 0.00	2) 3/	(3)	25/11 24	4.17E-0	(3) 2/	101 1 20	V21 3	L aryo	15/11 1	5/21	15/1	A :	121									
	9 - P.	1.99	1 1 100			1. F. F.	uel l'és	(e) [6)		net 1 a	and I	Sect 1.3	area .	tala m	0.1	9				10 mar	100 0	m			1000
_										-			-	-	-					100	E	-			1.0%
H	C) Type h	ere to se	arch			4	Ξi	e 1	-			W	٦,							R ~	980 💰	(40) 5/22/	/2019	50

Figure A4: The raw data obtained from tensile test for 30 mm gauge length specimen three.

	a •5•	$\mathcal{O} \leftarrow \bullet$.			Full res	ult - Excel				Chart Tools								Sign in	•	-	ø	×
F	de He	ome In	ert Page	Layout	Formulas	Data	Review	View	Help Desi	gn Format		Tell me wha	et you want t	to do							Q Sh	are
P	te Clipbol	it ipy + imat Painte ird	G Calibri	(Body) U • 11 Font	10 • A	• ▲ • = = = = = = = = = = = = = = = = =	*=	왕· 년 린 편 문	9 Wrap Text 3 Morge & Ce 4	nter + \$	eral % + Number	+ 12 12 2	Condition Formattin	nal Format e g = Table = Styles	Cel Styles	Insert D	elete Form Cells] ∑ Auto ∰ Fill + ♦ Clea	iSum 1 r* Edi	AT Sort Ik Filter - S	P Find & ielect *	
C	ert 3	*	×	f _x																		
A	A	8	c	D	E	F	G	н	1	J	к	L	м	N	0	P	Q	R	s	T		U
2	Time	Force	Stroke	Stroke	Stress	Strain								95000	000			0		1		2
3	sec	N	mm	m	Pa									-				-	-			
4	0	-0.0193	9 (0	-9644.48		50							20000	000			/				
2	0.01	-0.0225	/ (0	-11225.5		40				-	>		15000	000		/					
0	0.02	-0.0233			-11620.8		35			/		1		<u>n</u>		1						
1	0.03	-0.0211			-10514.1		2 30 Z 35		/					19000	000	/						H
0	0.04	-0.0154			-0755	-	2 20		/					\$000	000	/			_			
10	0.05	-0.0142			-7000.13		² 15		/					-	/	- N					(5
11	0.03	+0.0147			.7351.94		10	/						Ť	0		-	유로보았니지서	the second			F
12	0.05	-0.0158	9 0		-7905.31		0 0	/						-5000	000 200	x024 x072 x072 x072 x072 x072 x072 x072 x072	016 1992 1992 1992 1992	7500558	200			
13	0.05	+0.0166	9 (-8300.58		-5	0.025	075 0275 0275 0275 0275 0275 0275 0275 0	1111112233	1999	825		-	00	000000	0000	1422	1001			
14	0.1	-0.017	B C	0	-8853.95		D	800110 800110	280003800380003800038000380003800038000	19000	1900 180	000						000	00			
15	0.11	-0.0187	6 0	0	-9328.27		0	8 883	880888	88.8885	00000	°8										
16	0.12	-0.0190	7 0.000125	1.25E-07	-9486.38	0.00000	5	0 0	00 00	00 00 1	0 00						Photos					
17	0.13	-0.0179	5 0.000125	1.25E-07	-8933	0.00000	5			Dongation	m)						Scrain					
18	0.14	-0.0163	7 0.000125	1.25E-07	-8142.47	0.00000	5							0			-	0				ò
19	0.15	-0.0154	2 0.000125	1.25E-07	-7668.15	0.00000	5															
20	0.16	-0.0147	8 0.000125	1.25E-07	-7351.94	0.00000	5															
21	0.17	-0.0139	9 0.000125	1.25E-07	-6956.67	0.00000	5															
22	0.18	-0.0130	3 0.000125	1.25E-07	-6482.36	0.00000	5															
23	0.19	-0.0125	6 0.00025	2.5E-07	-6245.2	0.0000	1															
24	0.2	-0.0125	6 0.00025	2.5E-07	-6245.2	0.0000	1			Concernant of the Party of the											_	
		30(1)	30(2)	30(3)	25(1) 2	5(2) 25	(3) 20	(1) 20(2)	20(3)	15(1) 15(2	2) 15(: ÷	4									•
																	III	(m) (m)		-	+	100%
1	0	Type her	e to search			8	Ht .	е н	Ê.	x 🐽	w	7						R ⁴ ^1	940 📷	41) 5:02	AM	
	· ·	1511				1996				100	and the second second									2/22	10019	0

Figure A5: The raw data obtained from tensile test for 25 mm gauge length specimen one.

	5-				Full res	ult - Excel													Sign in		- d	
File	Ho	me Ins	ert Page	Layout	Formulas	Data	Revi	ew 1	View H	elp Des	ign Form	at 🖓	Tell me w	hat you war	nt to do							Q Sha
Paste	Cut Cop For Clipboa	t py = mat Painter rd	Calibn (B I	Body) + L + E Font	10 × A	▲ • = =		= 8 = 1	ン・ 営 王王 同 Alignment	Wrap Test Merge & Ce	enter +	eneral 5 - % Num	* *22 2] ber	Condit Format	ional Forma ting * Table Styles	tas Cell • Styles•	insert	Delete Form	∑ Au i Fill	toSum = = ar = Editi	Arr C Sort & Find Filter - Select ng) R t -
Char	t 2	• P.	X V	f _x																		
4	Α	B	с	D	E	F	1	G	н	E .	J	К	L	M	N	0	P	Q	R	S	T	
TI	me	Force	Stroke	Stroke	Strain	Stress	9				0				+							
Se	c	N	mm	m		Pa																
ł	0	0.03163	0	0	0	13731.5		40						-	2000	0000					_	_
+	0.01	0.034908	0	0	0	1/391.05	2	35			/				1500	0000			/	2007	1000	1
ŀ	0.02	0.034809	0	0	0	17312.61		- 25		/					Y			/				
	0.03	0.030518	0	0	0	15178 3		2 20		/					Å 1000	0000	1	/				-
	0.05	0.02718	0	0	0	13518.00	0	2 15 2 10	1	/				0	8 500	0000	/					
	0.06	0.026544	0	0	0	13201.8	, [- 10	/					T-	5	/						
t	0.07	0.02861	0	0	0	14229.56	5	0	/					-		0			0.00.00.00.00	-		
	0.08	0.030518	0	0	0	15178.2	2	-5	116	1375	581 581 639 639	325	875 875 104 104	825	-500	trait 021	854	192	2962 2000	8888	276 044 470 4911	212
	0.09	0.029723	0	0	0	14782.93	3		0001	5000 5000 5000	000	1180	1001	0122			00.00	0.0	20.02 20.0 0.0 702	4216358488848	100000	20
	0.1	0.027339	0	0	0	13597.13	8		00,00	00000		00000	00000	0.0					0 0	0.000		
	0.11	0.025272	0	0	0	12569.45	5				Elongation	(m)							Strain			
	0.12	0.02416	0	0	0	12016.07	10	_			-0	1.0.1										
	0.13	0.024796	0	0	0	12332.28	в															
	0.14	0.026862	0	0	0	13359.98	8															
	0.15	0.030835	0	0	0	15336.3	3															
	0.16	0.033696	0	0	0	16759.26	5															
	0.17	0.034014	0.000125	1.25E-07	0.000005	16917.37	7															
	0.18	0.031789	0.000125	1.25E-07	0.000005	15810.62	2															
	0.19	0.030041	0.000125	1.25E-07	0.000005	14941.04	1															
		0.029723	0.000125	1.25E-07	0.000005	14782.93	3															
	0.2	UTUL JILD			10000000																	

Figure A6: The raw data obtained from tensile test for 25 mm gauge length specimen two.

日	ئ ر ج	⇒			Full resu	lt - Excel				Chart To	ols							Sign in	æ	— () X
File	Hor	ne Inse	rt Page	Layout	Formulas	Data	Review	View H	Help De	esign f	ormat	💡 Tell me	what you wa	ant to do							♀ Share
Past	Clipboar	ny v mat Painter d	Calibri (B I	(Body) ▼ U ▼ □ Font	10 - A		= = {	≫ - e!	9 Wrap Text Merge & (t	Center 👻	General \$ - 9	% ° 5.8 . Iumber	Cond Forma	≠ itional Forma itting + Tabl Styles	t as Cell • Styles •	€ Insert ▼	Delete Forma	t Quet	oSum * * ar * Editir	Sort & Find Filter * Selecting) & :t*
Char	t 2	• = 2	× v	$f_{\mathcal{K}}$																	~
2 Ti 3 se 4 5 6 7 8 9 10 11	A me c 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07	B Force N -0.02193 -0.02273 -0.02543 -0.02556 -0.03386 -0.03783 -0.04053 -0.0426	C Stroke mm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D Stroke m 0 0 0 0 0 0 0 0 0 0 0 0	E Strain 0 0 0 0 0 0 0 0 0 0 0 0	F Stress Pa -10909.3 -11304.6 -12648.5 -14703.9 -16838.3 -18814.6 -20158.5 -21186.2	G 200 151 (Ba) 51 51 51	H 000000	1	1	* 9 7 9		M	N 40 35 30 25 (N) 20 92 15 0 25 10 5 0	0	P	Q	R	S	T	
12 13 14 15 16 17	0.08 0.09 0.1 0.11 0.12 0.13	-0.04387 -0.04514 -0.04657 -0.04705 -0.04546 -0.04196	0 0 0.000125 0.000125 0.000125	0 0 1.25E-07 1.25E-07 1.25E-07	0 0 0.000005 0.000005 0.000005	-21818.7 -22451.1 -23162.6 -23399.7 -22609.2 -20870	-5	Strain Strain	0.00468 0.00700 0.00937 0.00937	01010 01010 01010 01010 0120 00120 00120 00120 00120	0.02578 0.02578 0.02813000 0.03047	0.03216500 0.03516500 0.0375 0.03985 0.0422	0.0454	-5 -10	0.000045375 9.1E-05 0.000136625 0.000182125	0.00022/735 0.0002735 0.000318875 0.0003645	0.00055525 0.0005615525 0.000564875 0.000592375 0.0005375 0.0005375	a 0.000683625 0.000729125 3 0.00077475 0.000820375	0.0009115 0.000957125 0.001002625	0.001093875 0.001139375 0.001185	0
18	0.14	-0.03735	0.000125	1.25E-07	0.000005	-18577.5															
19 20 21 22	0.15 0.16 0.17 0.18	-0.03147 -0.02575 -0.02066 -0.01669	0.000125 0.000125 0.000125 0.00025	1.25E-07 1.25E-07 1.25E-07 2.5E-07	0.000005 0.000005 0.000005 0.00001	-15652.5 -12806.6 -10276.9 -8300.58															
23	0.19	-0.01335	0.00025	2.5E-07	0.00001	-6640.46															
1	•	30(1)	30(2)	30(3) 2	25(1) 25	(2) 25(3	3) 20(1) 20(2)	20(3)	15(1)	15(2)	15(3	+ : •								•
																	=]	-	+ 100%
	0	Type here	to search			Ū.	Hi 🤅) 📒		×	P	w 📕						к ^я ^	9x) 🂰 c	5/22/20	и 19 🖣

Figure A7: The raw data obtained from tensile test for 25 mm gauge length specimen three.

	. 5-	ð- :	Ŧ							Full	result - Exc	el						Sign in	⊡	-	0 X
F	ile H	lome	Insert Page	Layout	Formulas	Data	Review	View H	elp 🖓	Tell me w	hat you wan	to do									A Share
p.	Clipbo	ut opy * ormat Pa ard	Calibri B I rs	 □ Font	- 11 - ▲ Ă		= = 0	ې بې گې کړ کې کې کې Alignment	Wrap Text Merge & C	Center +	General \$ ~ % Num	v 9 €.0 .00 0.€ 00.	Condition Formattin	nal Format g • Table • Styles	as Cell Styles •	insert	Delete For Cells	mat √ C	utoSum * II * lear * Editi	Arr & Fir Sort & Fir Filter - Sel	ld & ect ▼
0	17	*	× 🗸	f _x																	~
	А	В	с	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R	S	Т	U 🔺
1	20_1																				
2	Time		Stroke	Stroke	Force	Strain	Stress														
з	sec		mm	m	N		Pa														
4		0	C	0	0.017643	C	8774.893	- 70 60								35000000					
5	0.0	1	C	0	0.020981	C	10435.01	50				-				25000000			-		
6	0.0	2	C	0	0.021776	C	10830.28	월 40			-				S (Pa	20000000					
7	0.0	3	C	0	0.020027	0	9960.692	은 30		-					res	15000000					
8	0.0	4	C	0	0.017643	C	8774.893	20							5	10000000	-				
9	0.0	5	C	0	0.015736	C	7826.26	0	/							5000000					
10	0.0	6	C	0	0.015418	0	7668.155		oke 125 375	875 875 375 375 625	875 875 375 375 625	875 125 375 625 875	375 375 625 875	125 375 625		Ŭ.	an 525 525	222222	22 23 26 26	222	15
11	0.0	7	C	0	0.016848	C	8379.632		Str 065 0130	1260 1326 1326 1391	521 587 587 587 587 587 587	0782 0848 0913 0978 0978	109 174 239 239	1370 1435 1500			5tr 1129 0823 2356	4718 3296	2000 2000 2453 9443	5768 1806 0655	416
12	0.0	8	C	0	0.017643	0	8774.893		00.00	000000	00000	000000000000000000000000000000000000000	000000	100.00			0.0	0.02	041	0.0	20.07
13	0.0	9	C	0	0.016212	C	8063.416		000	00000	Flonga	tion (m)	,	000		C	hart Area			0 0	
14	0.	1	0.000125	1.25E-07	0.013987	6.25E-06	6956.673				8	()				_		3	rain		
15	0.1	1	0.000125	1.25E-07	0.013192	6.25E-06	6561.406														
16	0.1	2	0.000125	1.25E-07	0.015/36	0.25E-06	/826.26									-					
1/	0.1	2 A	0.000125	1.25E-07	0.021299	6.25E-00	12510.00									4					
10	0.1	5	0.000125	1.255.07	0.02/18	6.255.06	15170 3														
20	0.1	6	0.000125	1.25E-07	0.030041	6 25E-00	14941 04														
21	0.1	7	0.000125	1.25E-07	0.028133	6 25E-06	13992.4														
22	0.1	8	0.000375	3.75E-07	0.027657	1.88E-05	13755.24														
23	0.1	9	0.00025	2.5E-07	0.028451	1.25E-05	14150.51														
	< •	30	(1) 30(2)	30(3)	25(1) 25	i(2) 25(3) 20(1)	20(2)	20(3)	15(1)	15(2)	5(3 (+) : (Þ
Edi	t					1		_									E				+ 100%
	0	Type h	nere to search			Ļ	Ħ 🤅			x	i) 🛛	ـگر						x ^p ^	9x) 🌾	ない) 5:04 A ない) 5/22/2	им 019 🖣

Figure A8: The raw data obtained from tensile test for 20 mm gauge length specimen one.

File										Fui	result - E	.cei									· ^
The	Hon	ne Inse	rt Page	Layout	Formulas	Data	Review \	/iew H	elp 🖓	Tell me w	hat you wa	nt to do									2 Share
Paste	Cut Cop Form Clipboard	y 👻 nat Painter d	Calibri B I	u - I ⊞ Font	- 11 → A [*]		= _ % = = •	ې ج ⊉ Alignment	Wrap Text Merge & C	ienter 👻	General \$ - % Nur	9 €.0 .00 .00 →.0	Condition Formatting	al Format Table Styles	as Cell • Styles •	€ Insert I	Cells	at ✓ Cla	toSum * * ear * Editi	Sort & Find Filter * Selec) & t+
L17		• = =	×	f_{x}																	~
	A	в	С	D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R	S	т	U 🔺
1 20_3	2																				
2 Tim	e		Stroke	Stroke	Force	Strain	Stress														
3 sec			mm	m	N		Pa	70							35000000						
4	0		0	0	0.201066	0	100002.2	60							3000000				_		
5	0.01		0	0	0.198841	0	98895.45	2 50			-				g 2500000			-			
6	0.02		0	0	0.197887	0	98421.12	0 40 8 30		/					2000000		/				
7	0.03		0	0	0.19757	0	98263.01	P 20							3 10000000						
8	0.04		0	0	0.19757	0	98263.01	10							500000	/	·				
9	0.05		0	0	0.196775	0	97867.76	0	4 10 10 10 H	0 10 10 10 1				0	C	5 11 10		00000	10 10 10 1		0
10	0.06		0	0	0.195821	0	97393.43		trok 862 137 062 062	387 387 262 481	912 912 787 662	825 942 312 187 062	382 382 712 587 462	213		trail 250 312	937 062 312 022(687	312 033 875 437	062 875 737	027 027 437 437 157	437.
11	0.07		0	0	0.195026	0	96998.17		000 000	00341	200 061 0068 0075	00080008	01201130	00		376	0.112	0.01766	052 052 052	0.06	0753
12	0.08		0	0	0.195026	0	96998.17		0.0	0.0	0.00	0.0000	0,0,0,0,0	0		0.0	0.000	0.0	0.00	0.0	0
13	0.09		0	0	0.194709	0	96840.06				Elongati	on (m)						Strair	1		
14	0.1		0.000125	1.25E-07	0.194232	6.25E-06	96602.92														
15	0.11		0.000125	1.25E-07	0.194232	6.25E-06	96602.92														
16	0.12		0.000125	1.25E-07	0.194709	6.25E-06	96840.06														
17	0.13		0.000125	1.25E-07	0.195503	6.25E-06	97235.31														
18	0.14		0.000125	1.25E-07	0.196298	6.25E-06	97630.62														
19	0.15		0.000125	1.25E-07	0.198046	6.25E-06	98500.2														
20	0.16		0.000125	1.25E-07	0.201225	6.25E-06	100081.3														
21	0.17		0.000125	1.25E-07	0.20504	6.25E-06	101978.5														
22	0.18		0.00025	2.5E-07	0.207424	1.25E-05	103164.3														
23	0.19		0.00025	2.5E-07	0.208219	1.25E-05	103559.6				_										•
4	•	30(1)	30(2)	30(3)	25(1) 25	(2) 25(3) 20(1)	20(2)	20(3)	15(1)	15(2)	15(3 (+) : 4								Þ
Edit																	Ħ			-	+ 100%
	0	ype here	to search			Ļ	i e			×	1	<mark>الر</mark>						я ⁹ ^	9x) 💰	(小) 6:33 AM 5/22/201	, F

Figure A9: The raw data obtained from tensile test for 20 mm gauge length specimen two.

E	- ک ا	<i>∂</i> ∓								F	ull result -	Excel							S	ign in	团	-	٥	×
F	ile H	ome In	sert Page	Layout	Formulas	Data	Review	View	Help (🖓 Tell m	e what you	want to do											R₄ s	hare
Pa	Ste Clipbo	ut opy * ormat Painte ard	Calibri B I	 → ⊡ Font	11 • A		= = *	> i ⊒ ⊇⊒ i Alignme	∯ Wrap Te ≣ Merge 8 nt	xt 2 Center 👻	Genera \$ -	l % > %	▼ 0 .00 0 ⇒.0	⊄ Conditiona Formatting	I Format a Table - Styles	is Cell Styles v	€ Insert v	Delete I Cells	Format	∑ Auto ↓ Fill + ¢ Clea	oSum * , ir* Edit	A Sort & I Filter * S	P řind & šelect *	~
K2	0	•	× 🗸	f_{x}																				~
	А	В	с	D	E	F	G	н	1	J		<	L	м	N	0	Р	0	2	R	s	Т		U 🔺
1	20_3																							
2	Time		Stroke	Stroke	Force	Strain	Stress																	
3	sec		mm	m	N		Ра	7	0							3500000	0							
4)	0	0	0.052134	0	25929.42	6	0				-		ר <u>ר</u>	3000000	0			_				_
5	0.0		0	0	0.052929	0	26324.69	= 2	0		-					2500000	0		_					_
6	0.0	2	0	0	0.051181	0	25455.1	e D S	0						_	§ 1500000	o							
-	0.0	5	0	0	0.048955	0	24348.30	£	.0							\$ 1000000	0							_
°	0.0	•	0	0	0.046790	0	24209.31	- 1	.0							500000								
10	0.0	5	0	0	0.049591	0	24004.37		00		0000					(0	0 10 10 1	0 10 10 10	10.10.10	10.10.10	10,10,10	10.10	-
11	0.0	7	0	0	0.053565	0	26640.9		trok 5E-0. 962	224 937 742 912	387 987 362 748	337 982 312 104	977 262	347 237 972 212 212 687			trair 0043	062 212	582 312 317	375.	562 562 262	687 887 812	812	
12	0.0	2	0	0	0.055949	0	27826.7		S 7.47 0014	0003	0052 0067 0067	0.00	0112	0142 0142 0014 0157 0157			0.0	0129	0.02 0.02 0301	3873 1304 0.0	0516 0559 060	0.06 0.06 0731	081	
13	0.0	•	0	0	0.055631	0	27668.59		0.0	0.0	0.0	0.0	0.0	0.0.00			č	0.00	0.0	0.0	0.0	0.0	0.0	
14	0.	L	0.000125	1.25E-07	0.052929	6.25E-06	26324.69				Elon	ation (m)								Strain				
15	0.1	L	0.000125	1.25E-07	0.050068	6.25E-06	24901.73																	
16	0.1	2	0.000125	1.25E-07	0.048955	6.25E-06	24348.36																	
17	0.1	3	0.000125	1.25E-07	0.050863	6.25E-06	25297																	
18	0.14	1	0.000125	1.25E-07	0.054518	6.25E-06	27115.22																	
19	0.1	5	0.000125	1.25E-07	0.05722	6.25E-06	28459.12																	
20	0.1	5	0.000125	1.25E-07	0.056426	6.25E-06	28063.86																	
21	0.1	7	0.000125	1.25E-07	0.054359	6.25E-06	27036.17																	
22	0.1	3	0.00025	2.5E-07	0.054042	1.25E-05	26878.06																	
23	0.1		0.00025	2.5E-07	0.057697	1.25E-05	28696.28		_		_		-											
	• •	30(1)	30(2)	30(3)	25(1) 25	5(2) 25(3) 20(1)	20(2) 20(3)	15(1)	15(2)	15(3	. 🕀	•										Þ
Edit																			#]	-	+	100%
E	0	Type her	e to search			Ļ	H C			×	P	w .	٤						Ŕ	R ^	•x 🥳	(⊅») (⊅») 5/22	5 AM 2/2019	-

Figure A10: The raw data obtained from tensile test for 20 mm gauge length specimen three.

E	- 5- (∂- ∓								Fu	ıll result -	Excel							Sign in	Ē	-	٥	×
F	ile Ho	me Ins	ert Page	Layout	Formulas	Data	Review	View H	Help 🖓	Tell me	what you	want to d	o									, Рт г	hare
Pa	Ste Clipboar	t py ~ mat Painter rd	Calibri B I		11 • A		= = *	> - a I → E Alignmen	8 Wrap Text Merge & C t	Center 👻	Genera \$ -	Number	▼ €.0 .00 .00 ÷.0	Condition Formattin	nal Format g = Table Styles	as Cell Styles *	insert	Delete Forr Cells	nat ► Ai ► Fi ← Ci	utoSum ~ ear ~ Edi	Sort & Filter •	P Find & Select *	~
N1	18	*	×	f_X																			~
	А	В	с	D	E	F	G	н	1	J		<	L	м	N	0	P	Q	R	S	1	r	U 🔺
1	15_1																						
2	Time		Stroke	Stroke	Force	Strain	Stress																
3	sec		mm	m	N		Ра	. 70								35	000000						
4	0		0	0	0.112534	0	55969.62	60			/	-				30	000000						
5	0.01		0	0	0.114123	0	56760.12	2 ⁵⁰		/						(P) 25	000000						·
6	0.02		0	0	0.112534	0	55969.62	0 40								- 20 S 10	000000 -						·
/	0.03		0	0	0.109514	(54467.6	E 20					-			21 Stre	000000 -						
8	0.04		0	0	0.106812		53123.68	10								5	000000	/					
9	0.05		0	0	0.100017		52728.43	0	/								о 🖊						
11	0.00		0	0	0.107125		5/200 /0		roke 1025 1005 1875	125 625 602 602	903 903	1375 204 1375	4/5 125 055	065 875 875	075		rain	667 667 667 667	507 507 676 676	845 295 014	1333 1333 1333 1333	1333 1333 1333	-
12	0.07		0	0	0.110/167		54941 93		St 2010 2002 3300	0040	000	100.	1505 1505 0016	1806 2006 2006	2307		St	8441 6891 5341 5341	0.0 9150 0.0 0.0	0.0	9858 8308 6758	2108	-
13	0.00		0	0	0.109673		54546.63		0.0	0.0	00.0	0.0	0.0	00.000	0.00			0.001	0.05		0.10	0.14	-
14	0.1		0	0	0.107129		53281.79			-	Elo	ngation (I	m)		-				St	rain			-
15	0.11		0	0	0.104109		51779.77																
16	0.12		0.000125	1.25E-07	0.10252	8.33E-06	50989.26																
17	0.13		0.000125	1.25E-07	0.10252	8.33E-06	50989.26																
18	0.14		0.000125	1.25E-07	0.104109	8.33E-06	51779.77									1							
19	0.15		0.000125	1.25E-07	0.106812	8.33E-06	53123.68																
20	0.16		0.000125	1.25E-07	0.109514	8.33E-06	54467.6																
21	0.17		0.000125	1.25E-07	0.110785	8.33E-06	55100.04																
22	0.18		0.000125	1.25E-07	0.111262	8.33E-06	55337.18																
23	0.19		0.00025	2.5E-07	0.112375	1.67E-05	55890.54												_				
	< •	30(1)	30(2)	30(3)	25(1) 25	(2) 25(3) 20(1)	20(2)	20(3)	15(1)	15(2)	15(3	(+)	4									Þ
Edit	t																	E		U	-	+	100%
1	0	Type here	to search			Ū.	e e			×	•	w	لحر						к ^е ^	• • × •	∮3) ^{6:3} 5/2	6 AM 2/2019	5

Figure A11: The raw data obtained from tensile test for 15 mm gauge length specimen one.

E	<u>م</u> ا	ð- =								F	ull result	- Excel							Sign in	A	-	o x
Fi	le Ho	me Ins	ert Page	Layout	Formulas	Data	Review	View H	lelp 🖓	Tell me	what yo	ou want t	o do									♀ Share
Pa	ste Clipboa	t py ~ mat Painter rd	Calibri B I	 □ ⊡ Font	11 • A		= = *	ې ب ¢ ≣ ع≣ (≣ Alignment	Wrap Text Merge & C	enter -	Gene	eral · % · Numbe	+ •.0 .00 r 5	Conditic Formatti	onal Forma ng = Table Styles	t as Cell • Styles •	€ Insert v	Delete Forma	t ✓ Cle	ar - F	Sort & Find Filter * Sele	J& ct *
N2	1	•	× ✓	f _x																		~
	А	В	с	D	E	F	G	н	1.1	J		к	L	м	N	0	Р	Q	R	S	Т	U 🔺
1	15 2																					
2	Time		Stroke	Stroke	Force	Strain	Strace															_
3	sec		mm	m																		
4	0		0																			
5	0.01		0		70					_	_				35000000							
6	0.02		0		60			-							30000000			-				
7	0.03		0		2 40		-							(ed	25000000							
8	0.04		0		9 30) ss	15000000							
9	0.05		0		د 20 —									Stre	10000000							
10	0.06		0		10 -										5000000							
11	0.07		0		0 🧹	·									0							
12	0.08		0		oke 05.7	125 125 375 855	625 975 875 514	125 825 375 425	625 675 914 125	375	279 275 275	525				rain 041 667 325 667	055 667 333 667	333 667 334 334 007 834	333 334 658 667	025 667 225 667	333 667 333	
13	0.09		0		Sti	0114 0114 0017 002	0342 0039 0456 000)571 062 0685 0685	2800 2800 000.000 1790	2011	1195 0125 1313 1313	100. 1428 0148				St 0.0 216 012 441	0.02 666 783 891	008 116 523 523 345	583 168 0.0	.074 141 0.08 366	483 591 708	
14	0.1		0		c	000000000000000000000000000000000000000	000.0	0.0	000.0	0.0	0.0	0.00				0.008	028	0.041 0.041 0.049 0.049 0.057	0.069	0.078	090.094	
15	0.11		0			0 0	0 0	Flongat	ion (m)	0	5 0	0				0 0	000	oo o Strai	0 0	0 0	000	
16	0.12		0					Liongue	1011 (111)									Strai				
17	0.13		0	0	0.201066	0	100002.2															
18	0.14		0.000125	1.25E-07	0.201861	8.33E-06	100397.5															
19	0.15		0.000125	1.25E-07	0.202338	8.33E-06	100634.6															
20	0.16		0.000125	1.25E-07	0.203133	8.33E-06	101029.9															
21	0.17		0.000125	1.25E-07	0.206629	8.33E-06	102769															
22	0.18		0.000125	1.25E-07	0.212034	8.33E-06	105456.9															
23	0.19		0.000125	1.25E-07	0.216325	8.33E-06	107591.3															_
	· →	. 25(1)	25(2)	25(3) 2	20(1) 20	0(2) 20(3	3) 15(1)	15(2)	15(3)	8(1)	8(2)	8(3)	+									Þ
Rea	dy																			. – –	- 1	+ 100%
	0	Type here	e to search			Ļ	Hi 🤆			x	P	w	×						я ^р ^	🕅 í	5:06 A 5/22/20	M 019 🖣

Figure A12: The raw data obtained from tensile test for 15 mm gauge length specimen two.

☐ 5 - ∂ - ∓ Full result - Excel Sign in ©														- 0	×						
F	ile Ho	ome Inse	ert Page	Layout	Formulas	Data	Review	View ⊢	lelp 🖓	Tell me	what you w	ant to do								Я	Share
Pa	Clipboz	t py * rmat Painter ird	Calibri B I	<u>⊔</u> - ⊞ Font	• 11 • A		= = ð	איין פֿי איין איין פֿי Alignment	? Wrap Text] Merge & (t	Center 👻	General \$ - 9 N	• • €.0 .00 • • €.0 .00 • • 0 mber r	⊊ Condition Formatting	al Format g - Table Styles	as Cell Styles *	€ Insert I	Cells	t ∑ Aut	ar* Fditin	Arr & Find & Find & Find & Filter & Select &	
K20 * : X fx																		~			
	А	В	с	D	E	F	G	н	1	J	K	L	м	N	0	р	Q	R	S	т	U 🔺
1	15_3																				
2	Time		Stroke	Stroke	Force	Strain	Stress														
3	sec		mm	m	N		Pa								250000						
4	0		0	(0.50513	0	251230.8		0						200000	0					
5	0.01		0		0.506878	0	252100.4	- 5	n						- 250000	10			-		
6	0.02		0	0	0.507673	0	252495.6	2 4	D						200000	10		/			
7	0.03		0		0.50656	0	251942.3	- 2 3	D						ະຍິ 150000	00					_
8	0.04		0	(0.504494	0	250914.6	²	D	/					\$ 100000						_
9	0.05		0		0.502427	0	249886.9	1	0						50000	0					_
10	0.06		0	(0.501951	0	249649.7									0					
11	0.07		0	(0.504335	0	250835.5		5125 0375	3075 5075 3326 9125	45.65 2.175 058.7 058.7 058.7 058.7	78757875	887 912 392 304	262		train 1455	3333 5667 5667 5667 5333 3333	1667 1667 1667 1667 1667 1667	1675	3333 3333 3333 3333 3333 3333 3333 3333 3333	2
12	0.08		0	(0.507673	0	252495.6		St 006: 013(0026	0002	071 078 084 091 097	117-117-0012	0136		0.00 9105	3658 8216 0.022 7333	1891 6441 0 4555 45555	378:5	22908 7458 22008	[60]
13	0.09		0	0	0.50958	0	253444.3		0.0	0.0	0.0		8 8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0		00	10.0	0.03	0 0 8 8	70.0	
14	0.1		0.000125	1.25E-07	0.509739	8.33E-06	253523.3		000		Elong	tion (m)	,					Strai	n Ol	,0000	
15	0.11		0.000125	1.25E-07	0.508944	8.33E-06	253128.1														
16	0.12		0.000125	1.25E-07	0.508785	8.33E-06	253049														
17	0.13		0.000125	1.25E-07	0.509739	8.33E-06	253523.3														
18	0.14		0.000125	1.25E-07	0.513554	8.33E-06	255420.6														_
19	0.15		0.000125	1.25E-07	0.517527	8.33E-06	257397														_
20	0.16		0.000125	1.25E-07	0.519594	8.33E-06	258424.6														_
21	0.17		0.000125	1.25E-07	0.519276	8.33E-06	258266.5														_
22	0.18		0.00025	2.5E-07	0.518004	1.67E-05	257634.1														_
23	0.19		0.00025	2.5E-07	0.516097	1.67E-05	256685.5														Ψ.
	• • •	. 30(2)	30(3)	25(1)	25(2) 25	(3) 20(1) 20(2)	20(3)	15(1)	15(2)	15(3)	8(1) (+	÷ •								Þ
Edi	t																Ħ				+ 100%
1	0	Type here	to search			Ļ	i e			x		<mark>الر</mark>						я ⁸ ^	¶x) 💰 ⊄	») 6:38 AM 5/22/2019	5

Figure A13: The raw data obtained from tensile test for 15 mm gauge length specimen three.

	H 5-	⊘∓							Fu	ll result - Ex	cel						Sign in	æ	-		×	
	File H	lome Ins	ert Page Layout	Formulas	Data	Review	View H	elp Q	Tell me	what you wa	nt to do									,Q₄ Share		
p	aste Clipbo	ut opy × ormat Painte eard	Calibri B I U +	• 11 • ₽ □ • <u>></u> •	▲ → ▲ ■ □	= _ \$	Alignment	Wrap Text Merge & (center +	General \$ ~ % Nur	• • • • • • • • • • •	Condition Formattin	nal Format as 19 * Table * Styles	s Cell Styles +	€ Insert	Cells	The second seco	oSum + - ar+ Editi	AT Sort & Fir Filter * Sel	O nd & ect *	^	
11	7	• : [$X \checkmark f_X$																		۷	
	A	В	C D	E	F	G	н	1	J	к	L	м	N	0	Р	Q	R	s	Т	U		
1	8_1																					
2	Time		Stroke Stroke	Force	Strain	Stress																
3	sec		mm m	N		Ра	50						_	2500	0000						-	
4	-	0	0	0 0.05563	1 (27668.59	40				-			2000	0000			-				
5	0.0	1	0	0 0.05372	4 (26719.95	9.95 € 35													- 1 H		
0	0.0	2	0	0 0.05292		20324.09	8 25 2 20		/					55	/							
0	0.0	5 Л	0	0 0.05350		20040.5	L 15	£ 10000000														
9	0.0	4 5	0	0 0.05435	, () (27036.17	26.17 5 5000000														-	
10	0.0	6	0	0 0.05356	5 0	26640.9	- 0	មួយសូស	ບບບ	មមម	0 1 1 1 00	<u>ខ្មែរម្ម</u> ស្រ	5 5		0						-	
11	0.0	7	0	0 0.0527	7 0	26245.63		Strok 0452 0907 3637	8187 2737 7287 1837	6387 0937 0045 0045 0500	0063	1912 6462 1012 9557	4662		train	4375 4375 3125 3125 1875 0625	9375 8125 6875 5625	43/5 3125 1875 1875 0625	9375 8125 6875	4375	1	
12	0.0	8	0	0 0.05324	7 0	26482.79		000	001 002 002 003 003	0.00		8000	010		S	0/1 143 143 1215 1287 1287 1359	1430 1502 1574 1646	502 0574 0574 0770 0934 0934 005 007 005 149 077 1221 1293				
13	0.0	9	0	0 0.05483	5 C	27273.32		0 0 0	0.0.0.0	0.0		0.0.0	0.0		6	0.0 0.0	0.0 0.0 0	0.0	0.10	010		
14	0	1	0	0 0.05658	5 0	28142.91				Elonga	tion (m)						Strai	in				
15	0.1	1	0	0 0.058493	2 (29091.54																
16	0.1	2	0	0.06008	1 0	29882.08																
17	0.1	3	0	0 0.06198	э с	30830.71			_													
18	0.1	4	0	0 0.06373	7 (31700.3																
19	0.1	5	0	0 0.06532	7 (32490.83																
20	0.1	6	0.000125 1.25E	07 0.06691	5 1.56E-05	33281.36																
21	0.1	7	0.000125 1.25E	07 0.06834	7 1.56E-05	33992.84															-	
22	0.1	8	0.000125 1.25E	07 0.06834	7 1.56E-05	33992.84															_	
23	0.1	9	0.000125 1.25E	07 0.06755	2 1.56E-05	33597.57	15(0)	15(2)	0(1)	0(2) 0	» (1								-		
		25(1)	20(2) 20(3)	20(1) 2	.0(2) 20(.5) 15(1)	15(2)	15(3)	0(1)	0(2) 8	5) (†	: 4						-		•	<u>.</u>	
Edi	rt															#	e L		-	+ 10	J0%	
E	0	Type here	e to search		Ļ	Hi C			x	P 🖬	×						~ ⁹ x	9 x) 💰	(小) 5/22/2 (小) 5/22/2	M 2019		

Figure A14: The raw data obtained from tensile test for 8 mm gauge length specimen one.

Full result - Excel														•	-	٥	×								
F		Home	Inse	ert Page	e Layout	Formulas	Data	Review	View	н	±lp ♀	Tell m	e what yo	ou want t	o do									, Я s	hare
Pi	aste Cli	K Cut Copy → Format F ipboard	Painter	Calibri B I	U + E	• 11 • A			≫∽- ≪≣ ਭ≣ Alignr	eb iii ment	Wrap Text Merge & C	Center +	Gene	eral - % * Numbe	~ €0 00 n	Conditio Formattir	nal Form ng • Tab Styles	at as Cell le * Styles	insert	Delete Form	hat ► Cle	toSum ។ ear ។ Edi	Sort & Filter •	Find & Select *	
0.	10			~ ¥																					
	A	L	В	С	D	E	F	G	н		1	J		К	L	M	N	0	P	Q	R	S		r	U 🔺
1	8_2 Time			Stroke	Ctroke	Ferre	Chaolin	Chenne																	
2	Time			Stroke	Stroke	Force	Strain	Stress																	
3	sec	0		mm	m v v	IN 0.242528		Pa 0 170250		50								2500000	0						
4		0.01				0 242328		0 170535		45 40		_						2000000			\frown				
6		0.01				0.343402		0 170596	.0 6 2	35				$\mathbf{\langle}$				(m) 4500000	-						
7		0.02				0.343500		0 170359	5 0	25	- /							2 1200000							
8		0.04				0 342528		0 170359	5	- 15	1							1000000	° —/						
9		0.05		,		0.34221		0 170201	.3	10	1					-	- 1	500000						-	_
10		0.06) (0.34221		0 170201	.3	ō	1.10.10.10	10.10.10			0 10 10 10										
11		0.07		, i		0.342687		0 170438	.5		roke 5375 0875 6375	4175 2725 1275	3375 5925	5475	112 662 212 212 762	312 862 862 1624 7095 7095			1126 1126 1126	375 375 125 125	175 875 875 875 875 875 625 625	1375 1125 1875	625 1375 1125	875 625 625 875	
12		0.08		() (0.343482		0 170833	.8		St 008 017 025	003	005	008	111 119 128 136	145 153 000 001			St 0203 0421	7153	0.08 9196 2187 2187 2265 2265	2855 3078 3296	3515	41/1 0440 1640 1640	647
13		0.09		() (0.344594		0 171387	.1		0.0	0.0	0.0	0.000	0.0000	0.0			0.010	0.000	0.0	0.13	0.16	0.20	5
14		0.1		0.000125	5 1.25E-0	7 0.345866	1.56E-0	5 172019	.6				Elon	gation (m)				000		000	5 0			
15		0.11		0.000125	5 1.25E-0	7 0.347296	1.56E-0	5 172731	.1																
16		0.12		0.00012	5 1.25E-0	7 0.348886	1.56E-0	5 173521	.6																
17	1	0.13		0.000125	5 1.25E-0	0.351429	1.56E-0	5 174786	.4																
18		0.14		0.000125	5 1.25E-0	7 0.355721	1.56E-0	5 176920	.9																
19		0.15		0.000125	5 1.25E-0	7 0.360489	1.56E-0	5 179292	.5										-						
20		0.16		0.000125	5 1.25E-0	7 0.362555	1.56E-0	5 180320	.2																
21		0.17		0.000125	5 1.25E-0	0.361761	1.56E-0	5 179924	.9																
22		0.18		0.00025	5 2.5E-0	7 0.360489	3.13E-0	5 179292	.5																
23	1	0.19		0.00025	5 2.5E-0	7 0.359058	3.13E-0	5 1785	81				_												-
	• →	2	25(1)	25(2)	25(3)	20(1) 20)(2) 20	(3) 15	(1) 15	5(2)	15(3)	8(1)	8(2)	8(3)	(+) : (Þ
Edi	t													-						III		ŋ		+	100%
		О Туре	e here	to search	ı		Ļ	Ħ,	e I			×	•	w	٤						x ^e ^	9x) 💰		40 AM 22/2019	1

Figure A15: The raw data obtained from tensile test for 8 mm gauge length specimen two.

G Sr → Full result - Excel														ign in	雨	- 0	×							
F		Hom	e Ins	ert Page	Layout	Formulas	Data	Review	View H	lelp 🖓	Tell m	ie what yo	ou want t	o do									Ŗ	Share
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										9 Wrap Text] Merge & (t	Center 👻	Gene S	ral % * Numbe		Conditiona Formatting	al Form Tab Styles	at as Cell le * Styles *	insert	Delete Cells	Format	∑ Auto ↓ Fill + ◆ Clear	Sum *	ort & Find & Find & Select	k .
0	19	$9 \mathbf{v} : \mathbf{X} \mathbf{v} \mathbf{f}_{\mathbf{x}}$																			~			
	4	A	в	с	D	E	F	G	н	1.1	J		к	L	м	N	0	Р	0	Q	R	S	т	U 🔺
1	8_3								_															
2	Time			Stroke	Stroke	Force	Strain	Stress																
3	sec			mm	m	N		Pa	50								2500000	0						
4		0		0	(0.086466	(43004.89	45			-					2000000	0						
5		0.01		0	(0.068347	(33992.84	2 35 2 30		_			1			1500000	0				1		
6		0.02		0	1 255 0	0.064373	1.555.00	32016.51	e 25	-/							1000000	0						_
/		0.03		0.000125	1.25E-0	0.082016	1.56E-05	40/91.41	<u>e</u> 15	-/-							1000000					1		
8		0.04		0.000125	1.25E-0	0.113964	1.50E-03	71700.00	10	/							500000	"						
10		0.05		0.000125	1.25E-0	0.144323	1.50E-03	70211.22	0	ຍ ເວຍ ທ ເ	n in in r	- 10 10 10	տ՝ տ՝ տ՝	4 10 10 10	տ Խ տ տ տ			0 ເ	50 50 50	5 10 10 10	0 10 10 10	5 15 19 19 18	59999	-
11		0.00		0.000125	1.255.0	0.157674	1.565.05	79420.66		trok 5E-0 0170 587	1112 2637 5117 5117	8220 8822 1767 8287	3812 2337 2337 0862	0119 2792 1364 1497	\$512 2037 2562 0562 0179 8762			5trai 7187 3437	0312 0312 5837	7187 9062	1167 1167 2187 2187	7812 5312 7512 7512	4687 1562 2812 2812	
12		0.07		0.000125	1.25E-0	7 0.137074	1.565-05	7/151 92	,	8.52	0042	000 in 1000	0102010	0.0010000000000000000000000000000000000	0153 0162 0170 0170 0018			116	035(467(0.0)	700 081 933	0.00	151 634 0.1 867	198 210: 218: 0	
12		0.00		0.000125	1.25E-0	0.145051	1.56E-05	73440.36	,	0.0	0.0	0 0	0.0	000	0.0			0.0	0.0	0.0	0.1	0.1.0	0.0.0	
14		0.05		0.000125	1.25E-0	0 162443	1.565-05	80792.27	,			Elon	gation (r	n)							Strain			
15		0.11		0.00025	2.5E-0	0.188033	3.13E-05	93519.84	· · · · ·															
16		0.12		0.00025	2.5E-0	0.209967	3.13E-05	104429.2	2															
17		0.13		0.00025	2.5E-0	0.216325	3.13E-05	107591.3	3															
18		0.14		0.00025	2.5E-0	0.207106	3.13E-05	103006.2	2															
19		0.15		0.00025	2.5E-0	0.190258	3.13E-05	94626.57	7									1						
20		0.16		0.00025	2.5E-0	0.176748	3.13E-05	87907.04	L .									1						
21		0.17		0.00025	2.5E-0	0.17484	3.13E-05	86958.43	3															
22		0.18		0.0005	5E-0	0.184854	6.25E-05	91938.79)															
23		0.19		0.000375	3.75E-0	0.196457	4.69E-05	97709.65	5															-
	۰.		25(1)	25(2)	25(3)	20(1) 20	(2) 20	3) 15(1)) 15(2)	15(3)	8(1)	8(2)	8(3)	+										Þ
Edi	t																			=			1	+ 100%
		Оту	pe here	to search			Ļ	Ħ 🤇	. 🚍		x	•	w	×						Ŕ	⁸ ^ 1	ka 🥳 d	6:41 AM 5/22/2019	5

Figure A16: The raw data obtained from tensile test for 8 mm gauge length specimen three.