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ABSTRACT 

 

 

The aim of this project is to investigate the aerodynamic force on NACA airfoils by 

using Computational Fluid Dynamic simulation. ANSYS FLUENT 16 was used as the 

software for the CFD simulation of NACA 4412 and NACA 4418 in two different turbulence 

models which are Spalart-Allmaras (S-A) and Transition Shear Stress Transport (SST). The 

CFD simulation were done in three different air velocities of 10 m/s, 20 m/s and 30 m/s. The 

angle of attack of the airfoil also varied from 0° to 50° with increment of 5°. These two 

airfoils were chosen because both different maximum thickness but have the same mean 

camber line and maximum camber. The airfoil was designed in Solidworks with chord length 

of 100 mm. A rectangular domain of 300 mm x 300 mm x 450 mm was chosen as the fluid 

domain to mimic the experiment in wind tunnel with the same dimension of test section.  

The results for simulated aerodynamic forces between the two airfoils with two different 

turbulence models were analysed and discussed. Besides, results for the three different air 

velocity also analysed and the best angle of attack for the airfoils were determine. From the 

results, the stall angle for both NACA 4412 and NACA 4418 is at 45° for air velocity of 20 

m/s and 30 m/s while the stall angle for both airfoils is 40° at 10 m/s. The effect of thickness 

of the airfoil on aerodynamic forces was also studied where NACA 4418 generate more lift 

force at its best angle of attack compare to NACA 4412. The performance for NACA 4418 

is better than NACA 4412.  
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ABSTRAK 

 

 

Tujuan projek ini dijalankan adalah untuk menyiasat daya aerodinamik pada 

aerofoil NACA dengan menggunakan simulasi “Computational Fluid Dynamic”. ANSYS 

FLUENT 16 digunakan sebagai perisian untuk simulasi CFD pada NACA 4412 dan NACA 

4418 dalam dua model pergolakan yang berbeza iaitu Spalart-Allmaras (S-A) dan 

Transition Shear Stress Transport (SST). Simulasi CFD dilakukan dalam tiga kelajuan 

udara yang berbeza iaitu 10 m/s, 20 m/s dan 30 m/s. Sudut serangan airfoil juga diubah dari 

0 ° hingga 50° dengan kenaikan 5°. Kedua-dua airfoil ini dipilih kerana kedua-dua 

ketebalan maksimum yang berbeza tetapi mempunyai purata garis camber yang sama dan 

camber maksimum. Aerofoil ini direka bentuk dalam Solidworks dengan panjang kord 

100mm. Domain segi empat tepat 300 mm x 300 mm x 450 mm dipilih sebagai domain 

bendalir untuk meniru percubaan ekperimentasi dalam terowong angin dengan dimensi 

yang sama pada bahagian ujian. Keputusan untuk daya aerodinamik yang disimulasi antara 

kedua-dua airfoil dengan dua model pergolakan yang berbeza dianalisis dan dibincangkan. 

Selain itu, keputusan untuk tiga halaju udara yang berbeza juga dianalisis dan sudut 

serangan yang terbaik untuk airfoil ditentukan pada setiap kelajuan. Hasil dari simulasi, 

sudut serangan kritikal untuk NACA 4412 dan NACA 4418 adalah pada 45° pada kelajuan 

udara di 20 m/s dan 30 m/s manakala sudut serangan kritikal untuk kedua-dua airfoil berada 

pada 40 ° pada kelajuan 10 m/s. Kesan ketebalan aerofoil terhadap daya aerodinamik juga 

dikaji di mana NACA 4418 menjana daya angkat lebih pada sudut serangan terbaik 

berbanding dengan NACA 4412. Prestasi untuk NACA 4418 adalah lebih baik daripada 

NACA 4412. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.0 Background of Study 

 An airfoil is defined as the cross section of a body that is placed in an airstream to 

produce a useful aerodynamic force in the most efficient manner possible. (E. Abrahams & 

D. Cladwell, 2005) The airfoil profile geometry is shown in Figure 1.1. The important 

aspects of the airfoil geometry are the maximum camber, chord and the maximum thickness 

where it is used for classification of an airfoil. The length of the chord line that connecting 

the leading and trailing edges is called chord. Leading edge is the point at front of the airfoil 

that has maximum curvature whereas the trailing edge is the point has maximum curvature 

as well but at the rear area of the airfoil. The maximum camber line is the distance between 

the mean camber line and the chord. The thickest part of the airfoil is the maximum 

thickness. 

 

Figure 1.1: An airfoil geometry profile. (Source: https://en.wikipedia.org/wiki/Airfoil) 

https://en.wikipedia.org/wiki/Airfoil
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 One of the common and known airfoils throughout the world of aviation is NACA 

airfoil. NACA airfoils are series of airfoils developed by the National Advisory Committee 

for Aeronautics (NACA); hence, the name given to the airfoils. NACA has standardized the 

group of airfoils into 4-digit, 5-digit and 6-digit series and the meaning of this nomenclature 

are best explained by examples. 

NACA 2412 

2   → The mean line has a camber of 0.02 chord; mean line has 4 % camber 

4   → The maximum camber located at 0.4 chord 

12 → The maximum thickness is 0.12 chord, airfoil has 12% thickness 

NACA 23012 

2   → The mean chamber line has a camber of 0.02 chord approximately 

30 → The maximum camber is located at 0.3/2 = 0.15 chord 

12 → The maximum thickness is 0.12 chord 

NACA 65₃ - 418 

6   → Series designation 

5   → The minimum pressure point is at 0.5 chord 

3   → The minimum drag coefficient occurs at an angle of attack that corresponds to the 

 design lift coefficient and the bucket-like shape of drag curve (drag bucket) stretches 

 from design lift coefficient of -0.3 to +0.3 

3   → design lift coefficient is 0.4  

18 → The maximum thickness is 0.18 chord 
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 These are the primary airfoils’ series that introduce by the NACA but this does not 

include the modified series and the airfoils used for supersonic flight. All airfoil has their 

own unique flight characteristics so the factor of choosing airfoil usually depends on the 

requirement for the experiment or manufacturers of the aircraft wings and turbines. Yeminici 

O. (2014) choose NACA 0012 for his study because of the symmetrical shape of NACA 

0012. Kamas T. (2009) chooses the symmetrical NACA 0012 and the cambered NACA 2414 

in his study the aerodynamic forces effect on those airfoils. 

 Aerodynamic forces are forces exerted on a body by the air where the body is 

immersed in air and it is due to the flow between the body and the gas. When airflow through 

an airfoil, aerodynamic forces are created causes by normal force and shear force. The 

normal force is due to the pressure surrounding the airfoil and the skin friction due to the 

viscosity of the air. The aerodynamic forces in an airfoil can be resolved into three different 

components with the addition of weight as shown in Figure 1.2. Weight is not considered as 

an aerodynamic force but a body force since it causes by gravity and not exerted on the body 

by air. The lift force is the component of the force that is perpendicular to the flow direction 

of air while drag force is parallel to the direction of the air flow. Drag is the force that resists 

the motion of an aircraft during flight. Thrust is the forward force created by the jet engines 

or propellers to overcome the drag force and thus it acts in the opposite direction of drag 

force. 

 

Figure 1.2: Forces components on an airfoil. 

Lift 

Drag 

Weight 

Thrust 
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 An airfoil is designed in a way that the shape takes advantage of the airs to react to 

certain laws of physic. A positive pressure lifting action occurs at the lower surface of the 

airfoil and a negative pressure lifting action from lowered pressure on the top surface occur 

as the air strike the airfoil. In an aircraft flight or in a wind tunnel, an airfoil is a streamlined 

object that placed into an airstream movement. For the airfoil to lift, the air moving over the 

upper surface must move faster than the air moving along the lower surface. This is done by 

inclined the airfoil to a certain angle so that the airflow becomes faster at the upper surface. 

The increase in speed on the upper surface of the airfoil produces a drop in pressure 

according to Bernoulli’s principle. This will cause differences in pressure on upper and lower 

surface. The higher pressure on the lower surface will push the airfoil upward and thus 

creating lift force. 

 

1.1 Problem Statement 

 Fuel consumption in an airplane is the major problem for the airline companies and 

aircraft manufacturers. Koppula, R (2018) stated that it has been estimated that fuel demands 

from aviation will increase by between 1.9% and 2.6% each year until 2025. This means that 

more money will be spent on the fuel for the aircraft to operate. Most airline companies and 

aircraft manufacturer want to reduce the amount of money spend on fuel consumption of 

aircraft. Fuel consumption can be related to the drag produced by the aircraft during flight. 

If the drag produced by the aircraft high, the fuel consumption also increases.  

 This is because of the thrust needed to overcome the drag is produced by the engines 

of the aircraft. The engines used fuel to power up thus the drag indirectly increased the fuel 

consumption. Payloads of the aircraft also play an important role in fuel consumption but in 

this study, the concern is more toward reducing the drag to increase the efficiency of fuel 
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consumption. Reducing drag means that study on airfoils essential for correct selection of 

airfoils needed to design the wing, winglet and the tail plane. 

 Haque M. N., et al. (2015) stated that the efficiency, as well as the performance of an 

aircraft mostly depend on the aerodynamic characteristics e.g. lift, drag, lift to drag ratio, 

etc. of wings. Therefore, improving the aerodynamic characteristics are desired by the 

aircraft manufacturers and racing cars company. Airfoils geometry such as the maximum 

thickness and maximum camber can play an important role in order to improve the 

aerodynamic forces. The different in geometry might able to generate significant lift or 

reducing drag that can improve the aerodynamic performance of the airfoils before selecting 

it for use of aircraft or the geometry able to help to increase the down force for racing car to 

increase it speed.  

 An aerodynamic stall also a concern when flying an airplane. An aerodynamic stall 

is a condition when the airfoil exceeds its critical angle of attack and cannot produce the 

desired lift force for the flight. An aerodynamic stall can cause a sudden change in the 

airplane level where it feels like the airplane is falling. Besides, it also can cause the airplane 

to roll or turn to one side of the airplane. It a dangerous condition since aircraft may enter a 

spin and the pilot lose control of the airplane. Therefore, knowing the critical angle of an 

airfoil is important when designing the aircraft’s wings, horizontal and vertical stabilizers.  

 

1.2 Objectives 

i. Comparing the aerodynamic forces between two different NACA airfoil on 

Computational Fluid Dynamic (CFD) simulation with different turbulent 

models. 

ii. Analyze the best angle of attack on the airfoils at different velocities 


