STATIC LOAD TEST FOR HYDRO-PNEUMATIC DRIVELINE PROPULSION SYSTEM

SHAIFUL MOHAMMED TASHMIN BIN HALIM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STATIC LOAD TEST FOR HYDRO-PNEUMATIC DRIVELINE PROPULSION SYSTEM

SHAIFUL MOHAMMED TASHMIN BIN HALIM

A Project report submitted in fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering (Hons)

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this project report entitled "Static load test for hydro-pneumatic driveline propulsion system" is the result of my research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature	·
Name	:
Date	•••••••

i

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient regarding scope and quality as partial fulfilment of Bachelor Degree in Mechanical Engineering with Honours.

Signature	:
Name of Supervisor	:
Date	:

DEDICATION

To my beloved family for the endless support they had gave, especially to my beloved mother and father, Rokiah Binti Abdullah and Halim Bin Joki.

Supervisor En. Faizil Bin Wasbari.

&

Dear friends

•

ABSTRACT

The study emphasized the effect of static load on the performance of the hydropneumatic driveline propulsion system. Hydraulic hybrid vehicle (HHV) is a new technology being developed to enhance fuel economy for passenger vehicles. However, this system is still ranked under the research and development stage. Many things regarding the performance of this system are still unclear. Therefore, research related to the effects of the static load is carried out, which is focused on passenger vehicles. In this research, the functional circuit of the charging and propulsion have been designed and simulated by using Automation Studio software. Chassis dynamometer test has been conducted to obtain performance data of hydro-pneumatic driveline propulsion system with the load imposed. Through the project, it was found that the higher the load, the longer will be the running time due to the energy capacity effect. The maximum 88.6 s running time was recorded by 200 bar pressure and 10 Nm load. It was 31% higher compared to the minimum running time recorded by 2 Nm load. The higher torque at 200 bar was 63% greater than the lowest torque at load 2 Nm. However, there was an opposite effect on the RPM where the higher the given load, the slower the revolution of the wheel. The differential percentage is about 23% slower. Throughout this study, it was concluded that the value of running time under load condition, RPM and torque generated were reasonable, and this system is applicable. For future research, if this technology is to be adopted in the passenger car, the sizing of the accumulator must be taken into consideration so it can fit in the car.

ABSTRAK

Kajian ini memberi penekanan mengenai kesan beban statik terhadap prestasi sistem pendorong hibrid hidro-pneumatik. Kenderaan hibrid hidraulik (HHV) merupakan teknologi baru yang dibangunkan untuk menjimatkan penggunaan bahan bakar kenderaan penumpang. Bagaimanapun, sistem ini masih berada di peringkat penyelidikan dan pembangunan. Banyak perkara mengenai prestasi sistem yang masih belum jelas. Oleh itu, penyelidikan yang berkaitan dengan kesan beban statik dijalankan dan difokuskan pada kenderaan penumpang. Dalam kajian ini, litar fungsi pengisian dan pendorong telah direka dan disimulasi dengan menggunakan perisian Automation Studio. Ujian kerangka dynamometer pula telah dijalankan untuk mendapatkan data mengenai prestasi sistem pendorong hibrid hidro-pneumatik apabila beban dikenakan. Didapati bahawa semakin tinggi beban, semakin lama masa pergerakan roda yang disebabkan oleh kesan kapasiti tenaga. Masa pergerakkan maksimum 88.6 s dicatatkan oleh tekanan 200 bar dan beban 10 Nm. Ia adalah 31% lebih tinggi berbanding dengan masa pergerakkan minimum yang direkodkan oleh beban 2 Nm. Tork yang dihasilkan pada 200 bar – 10 Nm adalah 63% lebih tinggi daripada tork terendah pada beban 2 Nm. Walau bagaimanapun, terdapat kesan yang bertentangan di mana apabila beban yang lebih tinggi dikenakan, semakin perlahan revolusi roda. Peratusan perbezaan kesan ini adalah kira-kira 23% lebih perlahan. Sepanjang kajian ini, disimpulkan bahawa nilai masa pergerakkan di bawah keadaan beban, RPM dan tork yang dihasilkan adalah munasabah, dan sistem ini sesuai digunakan pada kenderaan penumpang berskala kecil. Untuk penyelidikan masa depan, jika teknologi ini diterima pakai, ukuran penumpuk mesti dipertimbangkan supaya ia boleh dimuatkan dalam kereta.

ACKNOWLEDGMENTS

First and foremost, praise is to Allah SWT the Almighty and the Merciful who has given me His blessing, kindness, and guidance in leading me to accomplish the final year project. Shalawat and Salam are always delivered to Prophet Muhammad SAW, who has guided his followers to the right path.

I would like to take this opportunity to express my sincere acknowledgment to my supervisor Mr. Faizil Bin Wasbari from the Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his invested unwavering support, collegiality, and encouragement towards the completion of this thesis. I also would like to show my greatest gratitude to Mrs. Nor Faizah Binti Haminudin second examiner, Ir. Dr. Mohd Shukri Bin Yob for his valuable time in giving me some advice and suggestion in the evaluation of effects of fluid power parameter on charging system of the hydro-pneumatic driveline.

Next, I would also like to express my most profound gratitude to Mr. Ikhmal Hisham Bin Ibrahim and Mr. Nor Izwan Bin Junoh, the assistant engineer from laboratory Faculty of Mechanical Engineering, for his assistance and efforts in all the lab and analysis works.

Special thanks to all my peers, my mother, beloved father and siblings for their moral support in completing this degree. Lastly, thank you to everyone who had been to the crucial parts of realization of this project.

vi

TABLE OF CONTENTS

DECLARATION	i
APPROVAL	ii
DEDICATION	iii
ABSTRACT	iv
ABTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	xi
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	XV
CHAPTER	
INTRODUCTION	1
1.1 Background	1

1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Project	4
1.5	Hypothesis	5

vii

LITERATURE REVIEW

	2.1 Introduction	6
	2.2 Hybrid System Background	6
	2.3 Hybrid on Passenger Car	10
	2.4 Hydro-Pneumatic System	11
	2.5 Propulsion System	12
	2.6 Type of Load System	13
	2.6.1 Prony Brake Dynamometer	14
	2.6.2 Hydraulic Brake Dynamometer	16
	2.6.3 Eddy Current Brake Dynamometer	17
	2.7 Dynamic Load of Vehicle System	18
	2.7.1 Introduction	18
	2.7.2 Newton's Second Law	19
	2.7.3 Loading of Vehicle System	20
	2.8 Experiment Set Up (Chassis Dynamometer)	26
	2.8.1 Chassis Dynamometer Operation System	27
	2.8.2 Power Requirement/Driving Resistance Simulation	28
N	METHODOLOGY	30
	3.1 Introduction	30
	3.2 Flow Chart	31
	3.3 Analysis Load of Vehicle	33
	3.4 Schematic Diagram	35
	3.4.1 Pictorial Schematic Diagram	36
	3.4.2 Functional Schematics Diagram	36

6

3.4.3 Fluid Schematics Diagram	37
3.4.4 Test Rig Design	38
3.5 Model/Equation	40
3.6 Simulation Parameter	42
3.7 Simulation	43
3.7.1 Specification For The System Equipment	44
3.8 Calibration	47
3.9 Fabrication	49
3.10 Test Rig (Experimental – Chassis Dynamometer)	51
3.11 Operating Procedure (Chassis Dynamometer – Load by Eddy Current)	53
3.11.1 How To Configure The Load (Nm)	53
3.11.2 How To Apply The Load (Nm)	53
3.11.3 How To Switch "Off" The System	54
RESULT AND DISCUSSION	55
4.1 Data and Result by Chassis Dynamometer	55
4.2 Condition of Experimental Graph	57
4.2.1 Maximum Load and Maximum Pressure	57
4.2.2 Maximum Load and Minimum Pressure	58
4.2.3 Minimum Load and Maximum Pressure	59
4.2.4 Minimum Load and Minimum Pressure	61
4.3 Effect of Accumulator Pressure Different by Running Time	62
4.4 Effect of Pressure Changes to The Rotational Speed (RPM)	64
4.5 Effect of Pressure Changes to The Torque	65
4.6 Effect of Pressure Changes to The Power	66

4.7 Effect of Load System to The Velocity	67
CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	68
5.2 Recommendation for The Future Work	69
5.2.1 Schematic Diagram	69
5.2.2 Experimental	69
5.2.3 Accumulator of Hydro-Pneumatic	69
REFERENCES	

72

APPENDICES

х

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Accumulator in vehicle	9
2.2	Prony brake dynamometer	15
2.3	Hydraulic brake dynamometer	16
2.4	Eddy current brake dynamometer	17
2.5	Vehicle axis system	18
2.6	Shape drag of a vehicle	22
2.7	Vehicle in slope condition	24
2.8	Forces are acting on a car	25
2.9	Conventional chassis dynamometer	27
2.10	Direction of force applied on dynamometer	28
2.11	Direction of force applied	29
3.1	Process of flow chart	32
3.2	Hydro-pneumatic driveline propulsion system in vehicle	36
3.3	Functional of driveline propulsion system	36
3.4	Diagram propulsion drive system	37
3.5	Isometric view of test rig	38
3.6	Orthographic view of test rig	39
3.7	Schematics diagram	40
3.8	Calibration of Hydrotechik instrument	47

xi

LIST OF FIGURES

FIGURE	TITLE	PAGE
3.9	System calibration in lab scale	48
3.10	Pressure sensor calibration data analysis on delta P (Pa)	48
3.11	Design of experiment test	49
3.12	Before and after making permanent joining	50
3.13	Before and after painting on rig	50
3.14	Test rig by chassis dynamometer for load system	51
3.15	Power unit of hydro-pneumatic control the different pressure	52
3.16	Control load setting and eddy current as a load system	54
4.1	Torque and RPM vs. Run Time for 200 bar with 10 Nm	58
4.2	Torque and RPM vs. Run Time for 100 bar with 10 Nm	59
4.3	Torque and RPM vs. Run Time for 200 bar with 2 Nm	60
4.4	Torque and RPM vs. Run Time for 100 bar with 2 Nm	61
4.5	Effect of accumulator pressure different and running time	63
4.6	Effect of pressure changes to the vehicle speed	64
4.7	Effect of pressure changes to the torque	65
4.8	Effect of pressure changes to the power	66
4.9	Effect of load system to the velocity at constant pressure 200 bar	67

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Rolling resistance coefficient with road surface condition	21
2.2	Types of vehicle body shapes due aerodynamic	23
3.1	The propulsion with real time	42
3.2	The effect of pressure with fix load 30 Nm	42
3.3	Data specification for the system equipment	44
3.4	Simulation parameter	46
4.1	Chassis dynamometer data at load (2 Nm)	55
4.2	Chassis dynamometer data at load (4 Nm)	55
4.3	Chassis dynamometer data at load (6 Nm)	56
4.4	Chassis dynamometer data at load (8 Nm)	56
4.5	Chassis dynamometer data at load (10 Nm)	56

LIST OF ABBREVIATIONS

- DCV Directional Control Valve
- PRV Pressure Relieve Valve
- FCV Flow Control Valve
- HHV Hydraulic Hybrid Vehicle
- ICE Internal Combustion Engine
- MIG Metal Inert Gases
- CH_4 Methane
- CO_2 Carbon Dioxide
- NYC COMP New York Composite
- N_2 Nitrogen
- PHEV Parallel Hybrid Electric Vehicle
- PHHV Parallel Hydraulic Hybrid Vehicle
- SHHV Series Hydraulic Hybrid Vehicle
- SUV Sports Utility Vehicle
- SOP Standard Operating Procedure
- MG Motor Generator

LIST OF SYMBOLS

- E = energy storage of the accumulator (Joule)
- K_i = Correction factor
- η_M = Mechanical efficiency

 $\eta_{overall}$ = Overall efficiency

$$C$$
 = Displacement (m³/rad)

$$\eta_v$$
 = Volumetric efficiency

$$\Delta p$$
 = Pressure different (N/m²)

 p_{gh} = Gas pressure (Pascal)

$$p_{op}$$
 = Pressure of the oil (Pascal)

$$p_{in}$$
 = Pump input pressure (N/m²)

$$p_{out}$$
 = Pump output pressure (N/m²)

$$P_P$$
 = Pump power (Watt)

$$P_S$$
 = Shaft power (Watt)

$$Q_i$$
 = Flow rate (m³/s)

$$Q_{out}$$
 = Pump output flow rate (m³/s)

$$Q_{out}$$
 = Pump output flow rate (m³/s)

$$t_i$$
 = Filling time (s)

$$T = \text{Torque}(\text{Nm})$$

LIST OF SYMBOLS

- V_2 = Volume after compression (liter)
- V_{gh} = Gas volume (m³)
- ΔV_{ideal} = Effective volume (liter)
- ω = Nominal speed (rad/s)

CHAPTER 1

INTRODUCTION

1.1 Background

In this epoch of globalization, hybrid technology advancement has ended up become dominant in the automotive business. To enhance the performance of the vehicle, fuel consumption and greener technology, it was proven by the research and development. The new innovation of the hybrid vehicle types is a hydro-pneumatic hybrid. The combination of hydro-pneumatic hybrid car consists of two or more types of propulsion structure work in a vehicle. The concept of converting hydro-pneumatic into useful energy which reuse losses of energy in breaking. In this automotive field, the meaning of hybrid is a vehicle that has more than one propulsion system to get a motion on the vehicle. There are a many types of hybrid technology which are hybrid electric, hybrid flywheel, hydraulic and pneumatic hybrid. The hybrid technology is popular among the heavy truck, and it is still in a stage of research and development so that this concept can be applied to a passenger car (Wasbari, Anas and Abu Bakar, 2016). Hydro-pneumatic hybrid is a compounding of the internal combustion engine (ICE), the hydraulic system as propulsion and hydro-pneumatic accumulator as an energy source. However, the internal combustion engine consumes more fuel to operate and give small energy efficiency but high performance.

The increased performance of hybrid vehicles makes hybridization especially useful for city-town passenger cars, local delivery for small trucks and urban buses. When driven on highway, hybrid vehicles do not show a specific advance in fuel consumption (Transactions and Techniczne, 2016). Vehicles which are basically used on highway, downsized diesel engines are best equipped to get minimal fuel use of goods and services. The most prominent hybrid system is a hybrid renewable energy organization. However, based on the research and development stage, the innovation of another hybrid system is called hydro-pneumatic hybrid system. Hydro-pneumatic hybrid is the collaboration of the internal combustion engine, propulsion and pneumatic system which hydraulic system act as the energy source. There are four sub-systems of hydro-pneumatic driveline. First, for the hydro-pneumatic driveline, sub-organizations are driving the organization. It delivers energy from the energy storage to the actuator. The storage device that save energy propulsion called as the accumulator (Wasbari *et al.*, 2018). There are several reasons for considering the use of pneumatic systems over the hydraulic system, such as hydraulic liquid exhibit greater inertia than gases as weight of oil give problem when accelerating and decelerating actuators, hydraulic system requires special reservoirs and no leak system design, the pneumatic system use air that is exhaust directly back to the environment, pneumatic system is less expensive than hydraulic system and the hydraulic liquid exhibit greater viscosity than gas (Yavuz et al., 2014).

During innovation of the automobile, the drastic change has been in the field of automobile testing. It supports in building technologies to make sure that the highest standards are met regarding reliability, safety, durability, and product quality. An engineer has been under scope pressure either to improve engine power or to increase the fuel consumption. So it requires a way to test the power output and fuel economy of automobile engines, and continue the dynamometer for innovation. For this research, the focus point is on the field of hydro-pneumatic. One of the vital components of hydro-pneumatic driveline systems is the driving system. The effects of the system load on the performance of hydropneumatic drive-line were analyzed. The research will affect the use of Automation Studio tools to simulate the process and experiment. The outcome of this inquiry will lead to assumption, based on the system efficiency.

1.2 Problem Statement

Initial research has shown that the hydro-pneumatic hybrid system improved the fuel consumption and environmentally friendly, but there is no specific research about the detail drive subsystem of the car section. The crucial part in researching and developing new designs for the automotive industry is testing the powertrain of a vehicle. In this situation, it is a high requirement to further improvement the university's research capabilities by developing automotive research facilities. Besides, there is no previous study related to the performance of hydro pneumatic driveline in term of the test rig experiment.

Therefore, this research, focusing on the effects of the load system based on performance of hydro-pneumatic driveline will be carried out. The data of the experiment will be collected, and it can be referenced in future research. Therefore, experiment will be conducted and simulated via Automation Studio software.

1.3 Objectives

The objectives of the project are as follow:

- 1. To find the effect of static load to the system performance (running time, revolution speed (rpm), torque, power and velocity by load).
- 2. To calculate the system velocity (km/h).

1.4 Scope of Project

The main concern in this project is to design the structure of static load test of hydro-pneumatic driveline propulsion system by using Automation Studio software. Automation Studio software is a totally incorporated program package that enables users to create simulation which need to achieve the expected results. The latest version of hydraulic tools which are Automation Studio software v6.1 which implements for design, functional simulation of complex automation, preparation and documentation. It also contains hydraulic, pneumatic and electrical operative devices as well as a command part diagram. In this research, the static load system will apply on hydro pneumatic driveline propulsion test rig to collect new data as a future reference. To apply research on dynamic load is quite difficult because there is no specific apparatus to fulfill the experimental. Furthermore, there are no data from previous research, so it very tough for us to lead as the first researcher in this research. However, to ensure the experiment as work successful, a lot of steps will be planned by starting from designing, then continued by fabricating and collect all data based on the experiment.

1.5 Hypothesis

In this study, the effects of static load on the performance of hydro-pneumatic driveline will be proposed. To improve efficiency and performance, the effects of static load have been taken into consideration in the analysis of hydro-pneumatic driveline. At the end of this research, perhaps that the system should be able to outline the specific parameter to optimize the performance of the driveline system.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The beginning of the project as it started, the literature review has been taken place as a references. The purpose of this operation is to search and collect more information and data required to make sure that the project goes greatly and successfully. Since data and knowledge are required throughout the evolution of this project, this process was very helpful continuously until this project accomplished. In this literature review, the structuring of the chapter includes an introduction to the hybrid system, loading of driveline system, propulsion system, type of load and innovation in driveline system which retrieved from previous studies in this area. Moreover, the important parts in this research are keeping the functionality of the system to be clearly. In a nutshell, a very important part of this research is by the theories, journal, internet, article, and thesis from past researched.

2.2 Hybrid System Background

Theoretically, hybrid system studies the behaviour of dynamical systems, technological systems, dynamical of hybrid systems comprises heterogeneous dynamics that interrelate with each other and investigate their behaviours over time. Systems containing two different forms of dynamics: time-driven continuous variable dynamics,