WIDEBAND NON-LINEAR PIEZOELECTRIC VIBRATION ENERGY HARVESTING

WAN AHMAD FAIZ BIN WAN HASHIM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

WIDEBAND NON-LINEAR PIEZOELECTRIC VIBRATION ENERGY HARVESTING

WAN AHMAD FAIZ BIN WAN HASHIM

This report is submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this project report entitled "Wideband Non-linear Piezoelectric Vibration Energy Harvesting" is the result of my own work except as cited in the references.

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:	
Name of Supervisor	:	
Date	:	

DEDICATION

To my beloved mother and father

ABSTRACT

Kinetic energy exists in the form of vibrations, forces and any random displacements. Harvesting the kinetic energy is needed in order to generate electricity and prevent it to be wasted. Energy harvesting can be defined as processes that capture the freely available energy in environment and converting it in electrical energy that can be used or stored. Piezoelectric is used to convert mechanical energy to electrical energy. Piezoelectric produces charge when piezoelectric material compressed or mechanically stressed. Basically, energy harvesters are designed as a linear system in order to achieve optimal performance but most ambient energy is sensitive and having different frequency. Due to that, the linear energy harvesters need to tune for every application in order to prevent from narrow bandwidth. To solve this problem, a non-linear mechanism is suggested, which is wider bandwidth can be obtained in one mechanism. In addition, by using non-linear energy harvesting, it able to produce wider bandwidth without any adjustment. A nonlinear energy harvester is designed as a cantilever beam with mechanical stopper at upper and bottom side of the beam. The piezoelectric is attached on the beam so that it will deflect along with the beam. The aim of this mechanism is to provide a wider bandwidth with maximum power harvested. The experimental results for the linear and non-linear device are obtained by using quasi-static and dynamic measurement. The quasi-static measurement is used to measure the restoring force against the deflection of beam. Meanwhile, dynamic measurement is used to measure the dynamic response for characterisation of the device. The performance of open circuit and closed circuit of system are also investigated. The system is varied by changing the length of the beam, position of the stopper and input level.

ABSTRAK

Tenaga kinetik wujud dalam bentuk getaran, daya dan sebarang pengalihan secara rawak. Untuk menjana tenaga elektrik, penuaian tenaga kinetik diperlukan atau sebaliknya tenaga kinetik tersebut akan terbuang. Penuaian tenaga boleh ditakrifkan sebagai proses yang menangkap tenaga bebas yang terdapat di persekitaran dan mengubahnya kepada tenaga elektrik yang boleh digunakan atau disimpan. Piezoelektrik digunakan untuk menukar tenaga mekanikal kepada tenaga elektrik. Piezoelektrik menghasilkan caj apabila bahan piezoelektrik dimampatkan atau ditekan secara mekanikal. Pada asasnya, penuai tenaga direka dalam bentuk linear bagi mencapai prestasi optimum tetapi tenaga bebas yang terdapat di persekitaran adalah sensitif dan mempunyai frekuensi yang berbeza-beza. Oleh itu, penuai tenaga linear perlu menyesuaikan diri untuk setiap aplikasi untuk mengelakkan dari lebar jalur menjadi sempit. Untuk menyelesaikan masalah ini, satu mekanisma bukan linear dicadangkan, yang merupakan jalur lebar yang lebih luas boleh diperolehi dalam satu mekanisma. Di samping itu, dengan menggunakan penuaian tenaga bukan linear, ia dapat menghasilkan jalur lebar yang lebih luas tanpa sebarang pelarasan. Penuai tenaga bukan linear direka sebagai rasuk penyangga dengan penahan mekanikal di sebelah atas dan bawah rasuk. Piezoelektrik dipasang pada rasuk supaya ia memesong bersama rasuk. Matlamat mekanisma ini adalah untuk menyediakan jalur lebar yang lebih luas dengan kuasa maksimum dituai. Keputusan eksperimen untuk peranti linear dan bukan linear diperoleh dengan menggunakan pengukuran kuasi statik dan dinamik. Pengukuran kuasi statik digunakan untuk mengukur daya pengembalian terhadap pesongan rasuk. Sementara itu, pengukuran dinamik digunakan untuk mengukur tindak balas dinamik untuk pencirian peranti. Prestasi litar terbuka dan sistem litar tertutup juga disiasat. Sistem ini diubah dengan mengubah panjang rasuk, kedudukan penahan dan tahap input.

ACKNOWLEDGEMENTS

Alhamdulillah, by the grace of Al-Mighty that I have finally completed my final year project report. I would like to take this opportunity to gratitude to all people who guide me in all aspect towards the completion of this project. Not forgetting to my supervisor on this project, Prof Madya Dr. Roszaidi Bin Ramlan for his guidance, patience, motivation and idea throughout my final year project. Besides that, I would like to thank my beloved parents who never stopped praying for my welfare and always supported me morally as well as economically. Last but not least, special thanks to everyone especially to all my friends who supported me directly or indirectly for letting me to finish this report effectively.

TABLE OF CONTENT

CHAPTER	CON	TENT	PAGE
	DEC	LARATION	i
		ROVAL	ii
	DFD	ICATION	
	ABS'	TDACT	iv
			IV
			•
	ACK		VI
	ТАВ	LE OF CONTENT	vii
	LIST	COFFIGURES	xi
	LIST	TOF TABLES	xviii
CHAPTER 1	INTI	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2
	1.3	Objectives	2
	1.4	Scope	3
CHAPTER 2	LITI	ERATURE REVIEW	4
	2.1	General resonant generator theory	9
		2.1.1 Transduction damping coefficients	14
	2.2	Generators	16
		2.2.1 Electromagnetic generators	16
		2.2.2 Electrostatic generators	19
		2.2.3 Piezoelectric generators	23
	2.3	Tuning techniques	27
	2.4	Multimodal energy harvesting	41
		2.4.1 Hybrid energy harvesting scheme	42

		2.4.2	Cantilever array	43
	2.5	Freque	ency up-conversion	48
	2.6	Non-li	inear techniques	51
		2.6.1	Monostable non-linear energy harvesters	53
		2.6.2	Bistable non-linear energy harvesters	58
CHAPTER 3	MET	THODO	LOGY	67
	3.1	Introd	uction	67
	3.2	Chara	cterisation of vibration based energy harvester	68
		3.2.1	Linear system	68
			3.2.1.1 Mass-excitation	69
			3.2.1.2 Base excitation	69
		3.2.2	Non-linear system	71
	3.3	Design	n and development of energy harvester	73
		3.3.1	Linear energy harvester	73
		3.3.2	Non-linear energy harvester	75
	3.4	Exper	imental investigation of non-linear	76
	piezo	oelectric	energy harvester	
		3.4.1	Quasi-static measurement	77
			3.4.1.1 Quasi-static test for linear system	79
			3.4.1.2 Quasi-static test for non-linear	79
			system	
		3.4.2	Dynamic measurement	80
			3.4.2.1 Dynamic test for linear system	83
			3.4.2.1.1 Dynamic test of open	83
			circuit linear system	
			3.4.2.1.2 Dynamic test of closed	84
			circuit linear system	
			3.4.2.2 Dynamic test for non-linear system	85
			3.4.2.2.1 Dynamic test of open	86
			circuit non-linear system	
			3.4.2.2.2 Dynamic test of closed	87
			circuit non-linear system	

viii

CHAPTER 4	RES	SULTS A	ND DIS	CUSSION	88
	4.1	Experin	nental res	sults of quasi-static measurement	88
		4.1.1	Quasi-s	tatic results for linear system	88
			4.1.1.1	The effect of different beam length	88
			in linear	r system	
		4.1.2	Quasi-s	tatic results for non-linear system	90
			4.1.2.1	The effect of horizontal position of	90
			stopper		
			4.1.2.2	The effect of vertical position of	92
			stopper		
	4.2	Experin	nental res	sults of dynamic measurement.	94
		4.2.1	Dynam	ic measurement results of linear	94
		systen	n		
			4.2.1.1	Open circuit performance of linear	94
			piezoele	ectric energy harvester	
			4.2.1.2	Closed circuit performance of linear	95
			piezoele	ectric energy harvester	
		4.2.2	Dynam	ic measurement results of non-linear	98
		systen	n		
			4.2.2.1	Open circuit performance of non-	98
			linear pi	iezoelectric energy harvester	
			Ζ	4.2.2.1.1 The effect of horizontal	99
			I	position of the stopper in open circuit	
			I	non-linear system	
			Z	4.2.2.1.2 The effect of vertical	100
			I	position of the stopper in open circuit	
			I	non-linear system	
			2	4.2.2.1.3 The effect of amplitude	101
			ł	base displacement in open circuit non-	
			1	inear system	
			4.2.2.2	Closed circuit performance of non-	102
			linear pi	iezoelectric energy harvester	

4.	2.2.2.1	The effect of horizontal	103
рс	osition of	the stopper in closed	
ci	rcuit non	-linear system	
4.	2.2.2.2	The effect of vertical	105
рс	osition of	the stopper in closed	
ci	rcuit non	-linear system	
4.	2.2.2.3	The effect of amplitude	106
ba	ise displa	cement in closed circuit	
nc	on-linear	system	

CHAPTER 5	CONCLUSION	108
	5.1 Conclusion from the thesis	108
	5.2 Recommendations for future	work 109

REFERENCES 110

LIST OF FIGURES

FIGURE TITLE

PAGE

2.1	Solar photovoltaic system	5
2.2	Wind turbines	6
2.3	Sayano-Shushenskaya hydropower plant	7
2.4	Base excitation of spring-mass-damper	9
2.5	Model of an electrostatic resonant generator	15
2.6	A silicon electromagnetic generator by Beeby et al. [14]	17
2.7	A cross-section of inertial generator by Perez-Rodriguez et al. [16]	18
2.8	The electromagnetic generator proposed by El-Hami et al. [11]	18
2.9	An electromagnetic resonator by Glynne-Jones et al. [17]	19
2.10	In plane overlap varying	22
2.11	Out of plane gap closing	22
2.12	In plane gap closing	22
2.13	Lead zirconate titanate or PZT	24
2.14	Notation of axes	24
2.15	Schematic of supported bimorph energy harvester by Leland and	28
	Wright [28]	
2.16	Damping and resonance frequency vs compressive preload by	28
	Leland and Wright [28]	
2.17	Upper side and bottom sides of the generator with schematic of the	29
	entire setup by Eichhorn et al. [29]	
2.18	Resonances curves with various prestress by Eichhorn et al. [29]	29
2.19	Pre-tensioning two membranes by a rigid link. from Morris et al.	30
	[30]	

2.20	Graph normalized force vs normalized displacement for an XMR	31
	with rectangular membrane by Morris et al. [30]	
2.21	Cross-sectional of an assembled XMR prototype by Morris et al.	31
	[30]	
2.22	Frequency response at three different positions by Morris et al.	32
	[30]	
2.23	A piezoelectric cantilever with a moveable mass by Wu et al. [32]	32
2.24	Resonance frequency vs the position of the gravity center of	33
	moveable mass by Wu et al. [32]	
2.25	Schematic of the resonance tunable harvester by Challa et al. [33]	33
2.26	Power output vs tuned resonance frequency by Challa et al. [33]	34
2.27	Schematic of the resonance tunable harvester by Reissman et al.	35
	[34]	
2.28	Qualitative hypothesis on varying size potential energy wells with	36
	respect to the relative displacement of the magnets Reissman et al.	
	[34]	
2.29	Open and short circuit frequencies resonance vs displacement, D_y	36
	by Reissman et al. [34]	
2.30	A schematic of tuning mechanism by Zhu et al. [35]	37
2.31	Resonance frequency vs distance between two magnets by Zhu et	37
	<i>al.</i> [35]	
2.32	Maximum output RMS power at optimum load vs resonance	38
	frequency by Zhu et al. [35]	
2.33	The setup of the tunable energy harvesting system by Wu et al.	39
	[36]	
2.34	Tunable resonator with one clamped and one free actuator by	40
	Peters et al. [37]	
2.35	Both ends of actuator are deflected by Δy (V_{op}) with applied tuning	40
	voltage by Peters et al. [37]	
2.36	Resonance frequency vs applied tuning voltage by Peters et al.	40
	[37]	
2.37	Schematic of a piezoelectric bender by Roundy and Zhang [27]	41
2.38	A multimodal energy harvesting device by Tadesse et al. [40]	42

2.39	Schematic of two beams with two end masses elastically	43
	connected by Yang and Yang [41]	
2.40	Power density vs frequency for different end mass pairs with a	43
	fixed spring stiffness by Yang and Yang [41]	
2.41	Power density vs frequency for different spring stiffness with a	44
	fixed mass Yang and Yang [41]	
2.42	Band-pass filter by Shahruz [42]	45
2.43	Transfer function of the device by Shahruz [42]	45
2.44	A harvester with multiple PBs by Xue et al. [44]	46
2.45	Output power vs frequency for a single PB and 10 PBs connected	46
	in series with various thicknesses by Xue et al. [44]	
2.46	Schematic of array prototype by Liu et al. [45]	47
2.47	AC output of three cantilevers in an array and the direct serial	47
	connection by Liu et al. [45]	
2.48	Electrical connection after AC-DC rectification Liu et al. [45]	48
2.49	Concept of microenergy harvesting device by Lee et al. [46]	49
2.50	A cross-sectional view of the generator by Kulah and Najafi [47]	50
2.51	Microgenerator structure in three-dimensional view for micro-	50
	scale implementation by Kulah and Najafi [47]	
2.52	Numerical solution for non-dimensional power harvester with	54
	damping ratio $\zeta = 0.01$ and amplitude Y= 0.5 by Ramlan <i>et al.</i> [51]	
2.53	Schematic diagram of the magnetic levitation system by Mann and	54
	Sims [48]	
2.54	Theoretical predictions and experimental velocity response from	55
	forward (red dots) and reverse (green circles) frequency sweep	
	under two excitation level at 2.1 ms ⁻² by Mann and Sims [48]	
2.55	Theoretical predictions and experimental velocity response from	55
	forward (red dots) and reverse (green circles) frequency sweep	
	under two excitation level at 8.4 ms ⁻² by Mann and Sims [48]	
2.56	Schematic diagram of non-linear harvester by Stanton et al. [49]	56
2.57	Predicted response amplitudes of output voltage for $d = -2 \text{ mm}$	57
	(Hardening response) by Stanton et al.[49]	

2.58	Predicted response amplitudes of output voltage for $d = 5 \text{ mm}$	57
	(Softening response) by Stanton et al. [49]	
2.59	The comparison between non-linear and linear configurations	58
	under the same excitation amplitude by Stanton et al. [49]	
2.60	Snap-through generator by Ramlan et al. [51]	59
2.61	The piezomagnetoelastic generator by Erturk et al. [52]	60
2.62	Chaotic strange attractor motion (excitation: 05 g at 8 Hz) by	60
	Erturk et al. [52]	
2.63	Large amplitude periodic motion due to the excitation amplitude	61
	(excitation: 0.8 g at 8 Hz) by Erturk et al. [52]	
2.64	Large amplitude periodic motion due to disturbance at 11 s	61
	(excitation: 0.5 g at 8 Hz) by Erturk et al. [52]	
2.65	a) Root mean square acceleration at differences frequency and b)	61
	Root mean square voltage output over a wide frequency range by	
	Erturk <i>et al.</i> [52]	
2.66	Schematic of the experimental apparatus by Cottone et al. [55]	62
2.67	Inverted pendulum potential function $U(x)$ with different distances	63
	by Cottone <i>et al.</i> [55]	
2.68	Experimental setup by Ferrari et al. [57]	63
2.69	Output voltage from the piezoelectric cantilever beam by Ferrari <i>et al</i> . [57]	64
2.70	Frequency spectra from different distances between magnets by	65
	Ferrari <i>et al.</i> [57]	
2.71	Arrangement of one DOF beam model, in which the distance A - A '	66
	can be adjusted at frequency ω setup by Ramlan <i>et al</i> . [51]	
3.1	Flow chart of the process	67
3.2	A plot of force against displacement in linear system	68
3.3	Mass-excitation of spring-mass-damper	69
3.4	Base-excitation of spring-mass-damper	70
3.5	A plot of power against frequency in linear energy harvester	70
3.6	A plot of force against displacement in non-linear system	71
3.7	Base-excitation of hardening spring-mass-damper	71

3.8	A plot of power against frequency of a) hardening response in	72
	non-linear energy harvester and in b) linear energy harvester	
3.9	A schematic diagram of linear energy harvesting device	73
3.10	A rectangular cross-section of the beam	74
3.11	Actual photograph of the linear energy harvesting device	75
3.12	A pair of stoppers is added at upper and bottom side of the beam	75
3.13	a) Actual photograph of non-linear energy harvesting device b)	76
	close-up view of the stopper	
3.14	LDS V406 electrodynamic shaker	77
3.15	Figure 3.15: Actual photograph of a) PC with Signal Calc 240	78
	software and b) SignalCalc Ace Dynamic signal analyser	
3.16	Experimental setup for quasi-static measurement	78
3.17	Actual photograph ETS amplifier and ETS shaker	81
3.18	TENMA 72-7270 resistance decade box.	81
3.19	a) An actual photograph of Dytran accelerometer and b) close-up	82
	view of accelerometer	
3.20	The experimental setup of dynamic measurement	83
3.21	Schematic diagram of linear piezoelectric energy harvesting	84
	device.	
3.22	Closed circuit linear system under dynamic measurement setup.	84
3.23	A non-linear piezoelectric energy harvesting device on ETS shaker	85
3.24	The test that will be conducted in non-linear system	85
4.1	Force against deflection graph of linear energy harvester with	88
	length of the beam, L at 90 mm	
4.2	Force against deflection graph of linear energy harvester with	89
	length of the beam, L at 80 mm	
4.3	Force against deflection graph of linear energy harvester with	89
	length of the beam, L at 70 mm	
4.4	Force-deflection curve of non-linear energy harvester with stopper	90
	at $y = 1$ mm and $x = 25$ mm. Hardening zone (dash).	
4.5	Force-deflection curve of non-linear energy harvester with stopper	90
	at $y = 1$ mm and $x = 35$ mm. Hardening zone (dash).	

4.6	Force-deflection curve of non-linear energy harvester with stopper	91
	at $y = 1$ mm and $x = 45$ mm. Hardening zone (dash).	
4.7	Force-deflection curve of non-linear energy harvester with stopper	92
	at $x = 45$ mm and $y = 3$ mm. Hardening zone (dash).	
4.8	Force-deflection curve of non-linear energy harvester with stopper	92
	at $x = 45$ mm and $y = 2$ mm. Hardening zone (dash).	
4.9	Force-deflection curve of non-linear energy harvester with stopper	93
	at $x = 45$ mm and $y = 1$ mm. Hardening zone (dash).	
4.10	A plot of voltage against frequency of open circuit linear system	94
4.11	The power against frequency graph of closed circuit linear	95
	piezoelectric energy harvester with load resistor, R_L at 1.0 M Ω .	
4.12	The power against frequency graph of closed circuit linear	96
	piezoelectric energy harvester with load resistor, R_L at 1.5 M Ω .	
4.13	The power against frequency graph of closed circuit linear	96
	piezoelectric energy harvester with load resistor, R_L at 2.0 M Ω .	
4.14	Comparison of measured output power of energy harvester as	97
	function of load resistor, R_L operating at its experimental	
	resonance frequencies	
4.15	A plot of power against frequency of a) linear energy harvester	98
	and b) hardening response non-linear energy harvester	
4.16	Voltage against frequency graph of non-linear piezoelectric energy	99
	harvester with fixed vertical position, y (1 mm) and varies in	
	horizontal position, x	
4.17	Voltage against frequency graph of non-linear piezoelectric energy	100
	harvester with fixed horizontal position, x (45 mm) and varies in	
	vertical position, y	
4.18	Voltage against frequency graph of non-linear energy harvester	101
	with stopper fixed at x 45 mm and $y = 1$ mm but varies in	
	amplitude base displacement.	
4.19	Voltage against frequency graph of non-linear piezoelectric energy	104
	harvester with fixed in vertical position, y (1 mm) and varies in	
	horizontal position, x	

4.20	Power against frequency graph of non-linear piezoelectric energy	104
	harvester with fixed in vertical position, $y (1 \text{ mm})$ and varies in	
	horizontal position, x	
4.21	Voltage against frequency graph of non-linear piezoelectric energy	105
	harvester with fixed in horizontal position, x (45 mm) and varies in	
	vertical position, y	
4.22	Power against frequency graph of non-linear piezoelectric energy	105
	harvester with fixed in horizontal position, x (45 mm) and varies in	
	vertical position, y	
4.23	Voltage against frequency graph of non-linear piezoelectric energy	106
	harvester with fixed in horizontal position, x (45 mm), fixed in	
	vertical position, y (1 mm) and varies in amplitude base	
	displacement	
4.24	Power against frequency graph of non-linear piezoelectric energy	107
	harvester with fixed in horizontal position, x (45 mm), fixed in	
	vertical position, y (1 mm) and varies in amplitude base	
	displacement	

LIST OF TABLES

TABLE TITLE

PAGE

1	Electrostatic force variation for the three configurations	23
2	Coefficients of several piezoelectric materials [24, 25]	26
3	Mechanical properties of the device	74
4	Configurations of length beam	79
5	Configurations of non-linear device in quasi-static measurement.	80
6	Configuration of open circuit non-linear piezoelectric energy	86
	harvester	
7	Configuration of closed circuit non-linear piezoelectric energy	87
	harvester	

xviii

CHAPTER 1

INTRODUCTION

1.1 Background

Energy is the capacity to do work. It may appear in many forms such as potential energy, thermal energy, kinetic energy and more. Basically, energy is associated with motion and can be converted to another form in various ways. For example, kinetic energy generators able to convert energy in the form of mechanical movement present in application environment into electrical energy. Kinetic energy exists in the form of vibrations, forces and any random displacements. Kinetic energy could produce motion, sound, thermal energy and electrical energy. In order to generate a clean electricity, harvesting the kinetic energy are needed or otherwise it be wasted.

Energy harvesting can be defined as the sum of all those processes that allow capturing the freely available energy in environment and converting it in electrical energy that can be used or stored. Harvesting energy is one of the most promising techniques in response to global energy problem. Nowadays, most vibration-based energy harvesters are designed as linear resonators that only work efficiently with limited bandwidth near their resonant frequencies. Unfortunately, in the vast majority of practical scenarios, ambient vibrations are frequency-varying or aimless with energy distributed over a wide frequency range. Therefore, increasing the bandwidth of vibration energy harvesters has become one of the most critical issues before these harvesters can be widely deployed in practice.

1.2 Problem Statement

In linear energy harvesting system, maximum power can be obtain when device is operated at the natural frequency of the system, ($\omega_{system} = \omega_n$). But, if the harvester is mistuned, a slight shift of excitation frequency will drop the performance of the system. Most ambient energy is frequency-varying and sensitive. Due to that, the linear energy harvesters need to adjust for every application in order to prevent from narrow frequency range. To solve this problem, a non-linear mechanism is suggested, which is a wide frequency range can be obtained in one mechanism. Furthermore, by using non-linear energy harvester, there is no need to adjust or tune towards wider bandwidth. So, the device can cover the bandwidth and optimize the performance. The harvester should be carefully designed in accordance with prescribed procedure.

1.3 Objectives

The objectives of this project are:

- a) To characterise the linear and non-linear mechanism in energy harvesters.
- b) To design and develop the non-linear energy harvester.
- c) To investigate the performance of the non-linear piezoelectric energy harvester.

1.4 Scope

This research is studies the effect of non-linear energy harvester with appearance of piezoelectric. A non-linear energy harvester can be simply design as a cantilever beam with rectangular cross-section. A pair of mechanical stopper is added at upper and bottom side of the beam. The gap between stopper and beam is expected to inherit the features of resonant peaks and hardening dynamics for bandwidth widening. The experiment will be conducted by two types of measurement, which are quasi-static measurement and dynamic measurement. The system is varied by changing the length of the beam, position of the stopper and the input level.

CHAPTER 2

LITERATURE REVIEW

There is energy in everything and energy is used in everything. Energy is the ability to do work and it fall in two categories: non-renewable and renewable. Non-renewable energy is energy that comes from the ground and it is not replaced in relatively short amount of time. For examples, energy generated from combustion of fossil fuels, coal, natural gas and etc. Most of fossil fuels such as oil, natural gas and coal are considered as non-renewable resources. Their used is not sustainable because their formation takes a billion years. The term of non-renewable resources also refers to minerals and metals from the earth, such as gold, silver and iron, which is similarly formed as long-term results of geological processes such as plate tectonics. These resources often cost to mine, as they are usually deep within the earth but there are more abundant than fossil fuels. Some types of groundwater are considered as non-renewable resources, if the aquifer is unable to be replenished at the same rate at which it is drained. Also, nuclear materials such as uranium are referring as non-renewable resources. Meanwhile, renewable energy can be generated continuously practically without of decay of source. Some of examples are solar energy, wind energy, hydro energy, geothermal energy and kinetic energy. Renewable sources of energy are better than non-renewable sources because they refill themselves over a short period time while non-renewable resources have a limited quantity and it will be run out. The world is taking a serious look at ways to make a renewable source of energy.