DESIGN OF MINI COCONUT FIBER CRUSHER AND SCREENING MACHINE

AHMAD KHUZAIRI BIN ABU

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

DESIGN OF MINI COCONUT FIBER CRUSHER AND SCREENING MACHINE

AHMAD KHUZAIRI BIN ABU

A report submitted in fulfilment of the requirement for the Bachelor of Mechanical Engineering

FACULTY OF MECHANICAL ENGINEERING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this report entitled "Design of Mini Coconut Fiber Crusher and Screening Machine" is the result of my own work except as cited in the references.

Signature	:	
Name	:	Ahmad Khuzairi Bin Abu
Date	:	

C Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this project report and in my opinion, this report is sufficient in term of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Design & innovation).

Signature	:	
Supervisor's Name	:	Prof Madya Ir. Dr. Abdul Talib Bin Din
Date	:	

ABSTRACT

Mini coconut fiber crusher and screening machine is a machine that crushing and screening a coconut fiber for the purpose of agriculture and other industry. There are few companies or enterprises are producing coconut fiber crusher and screening machine in Malaysia but the size of the machine is big. The objective of this project is to design and create a mini coconut fiber crusher and screening machine where producing a product in form of coco fiber and coco peat. This machine focuses on a machine in a small size, affordable for personal used and product produced in a small scale. The basic principle of the machine operation is a coconut fiber is throw into hopper where it cause the coconut fiber fall into a crushing compartment which is upper body. The upper body of this machine consist of blade, blade holder, shaft, small pulley and semi drum. During crushing process, the coconut fiber is hammer and cut to form coco peat and coco fiber. All the product pass through the semi drum. The purpose of semi drum is to filter or segregate the partial crush coconut fiber from fall into a coco fiber drawer. The uncomplete crush coconut fiber will continue crush until it can pass through the semi drum. In the coco fiber drawer, there is a wire mesh acting as filter of coco peat. The wire mesh only allow a coco peat pass through it while the coco fiber remain inside the coco fiber drawer.

ABSTRACT

Mesin penghancur dan penyaring sabut kelapa mini ialah sebuah mesin untuk menghancurkan dan menyaring sabut kelapa untuk tujuan pertanian dan industry lain. Terdapat beberapa syarikat atau usahawan yang menghasilkan mesin penghancur dan penyaring sabut kelapa di Malaysia tetapi saiz mesin tersebut adalah besar. Objektif bagi projek ini adalah mereka bentuk dan menghasilkan sebuah mesin penghancur dan penyaring sabut mini di mana produk yang dihasilkan dalam bentuk coco peat dan coco fiber. Mesin ini memfokuskan mesin dalam bentuk yang kecil, mampu milik untuk kegunaan peribadi dan produk yang dihasilkan dalam skala yang kecil. Prinsip asas bagi operasi mesin ini adalah sabut kelapa akan dicampakkan di dalam corong dimana sabut tersebut akan jatuh ke dalam ruangan penghancur iaitu badan atas. Bahagian atas mesin terdiri daripada bilah, pemegang bilah, aci, puli kecul dan semi drum. Semasa process penghancuran, sabut kelapa akan dikutuk dan dipotong untuk menghasilkan coco peat dan coco fiber. Semua produk yang terhasil akan melalui semi drum. Tujuan semi drum adalah untuk menapis atau memisahkan sabut kelapa yang hancur separuh daripada jatuh ke dalam laci coco fiber. Sabut kelapa yang tidak hancur akan terus dihancurkan sehingga ia lepas untuk melalui semi drum. Di dalam laci coco fiber, terdapat jarring wayar yang bertindak sebagai penapis untuk coco peat. Jarring wayar tersebut hanya membenarkan coco peat sahaja melalui nya manakala coco fiber kekal di dalam laci coco fiber.

DEDICATION

A special dedicated to my beloved parents, my final year project supervisor, Prof Madya Ir. Dr. Abdul Talib Bin Din, my lecturers, my family members and all my friends which have supported me in completing this project.

ACKNOWLEDGEMENT

Bismillahirrahmannirrahim,

Alhamdullilah. Thanks to Allah SWT, who with His willingly give me the opportunity to complete my final year project with title "Design of Mini Coconut Fiber Crusher and Screening Machine". This final year project was prepared for Universiti Teknikal Malaysia Melaka (UTeM), basically for student in final year to complete the undergraduate program that leads to the degree of Bachelor of Mechanical Engineering (Hons). This report was based on the methods given by the university.

Firstly, a million thanks to Prof Madya Ir. Dr. Abdul Talib Bin Din, a lecturer at Faculty of Mechanical Engineering and also assign as my supervisor who had guided me a lot of tasks during this semester. I also would like to express my deepest thanks and appreciation to my parents, family members and others for their cooperation, encouragement, constructive suggestion and full of support for this project to finish from beginning until the end of this final year project. Also deepest thanks to all of my friends and everyone that has been contributed by supporting my work and help me during the final year project until it fully complete.

TABLE OF CONTENT

Content	Page	
Declaration		
Approval		
Abstract	i	
Abstrak	ii	
Dedication	iii	
Acknowledgement	iv	
Table of Content	v	
List of Tables	ix	
List of Figures	xi	
List of Abbreviations, Symbols and Nomenclature	xvi	
List of Appendix		
CHAPTER 1: INTRODUCTION	1	
1.0 Background	1	
1.1 Problem Statement	4	
1.2 Objective	4	
1.3 Scope of Report	4	
1.4 Project Significant	5	
1.5 Report Outline	5	
CHAPTER 2: LITERATURE REVIEW		
CHAPTER 2: LITERATURE REVIEW	7	

2	.1	Component Used		7
		2.1.1	Motor Type and Power	7
		2.1.2	Rotation Speed of Blade	9
		2.1.3	Number of Blade	11
		2.1.4	Blade Shape	12
		2.1.5	Pulley and Belt Selection	13
		2.1.6	Selection of Shaft	14
		2.1.7	Screening Size	16
2	.2	Product		17
		2.2.1	Coco Peat	17
		2.2.2	Coco Fiber	21
2	.3	Summar		25
CHAPTER 3: METHODOLOGY			LOGY	26
3	.1	Introduct	ion	26
3	.2	Flow Cha	art	26
3	.3	Gantt Ch	art	29
3	.4	Making S	Survey	30
		3.4.1	Survey Question	31
		3.4.2	Survey Responses	32
3	.5	Quality H	Function Deployment	35
3	.6	Concept	Generation	36
		3.6.1	Morphological Chart	37
		3.6.2 0	Concept Design	39
3	.7	Concept	Scoring and Screening	43
		3.7.1	Concept Screening	43
		3.7.2	Concept Scoring	44
3	.8	Final De	sign Selection	45
3	.9	Material	Selection & Cost Analysis	46
3	.10	Testing A	Analysis	48
3	.11	Fabricati	on Method	48
3	.12	Prototype	e Testing	50
3	.13	Summar	у	50

CHAPTER 4: DESIGN AND FABRICATION PROCESS

4.1	Design Stage	51
	4.1.1 Lower Frame	51
	4.1.2 Upper Frame	52
	4.1.3 Motor Frame	53
	4.1.4 Bearing Frame	53
	4.1.5 Push handle	54
	4.1.6 Adjuster	55
	4.1.7 Caster Plate	55
	4.1.8 Blade Holder	56
	4.1.9 Blade	57
	4.1.10 Shaft	57
	4.1.11 Bearing	58
	4.1.12 Large Pulley	59
	4.1.13 Small Pulley	59
	4.1.14 V-belt	60
	4.1.15 Fix Caster	61
	4.1.16 Rotatable Caster With Lock	61
	4.1.17 V-Belt Cover	62
	4.1.18 Drawer Metal Sheet	63
	4.1.19 Semi Drum	63
	4.1.20 Hopper	64
	4.1.21 Lid	65
	4.1.22 Joint Blade	66
	4.1.23 Upper Body	66
	4.1.24 Coco Fiber Drawer	67
	4.1.25 Coco Peat Drawer	68
	4.1.26 Lower Body	69
	4.1.27 Motor Base	69
	4.1.28 Transmit Mechanism	70
	4.1.29 Mini Coconut Fiber Crusher And Screening	71
	Machine	
4.2	Measuring Process	72

4.3	Cutting	Process	73	
4.4	Weldin	g Process	74	
4.5	Drilling	g Process	75	
4.6	Bendin	g Process	76	
4.7	Grindir	Grinding Process		
4.8	Asseml	78		
4.9	Finishi	ng Process	79	
CHAPTER 5: RE	SULT &	DISCUSSION	80	
5.1	Calculat	tion Of Machine Structure	80	
	5.1.1	Blade Shaft	80	
	5.1.2	Adjuster	83	
	5.1.3	Theoretical Calculation Of Blade Shaft	85	
	5.1.4	Discussion	87	
5.2	Produc	t Gained From Machine Calculation	87	
	5.2.1	Driven Pulley Calculation	87	
	5.2.2	V-Belt Length Calculation	88	
	5.2.3	Low Speed Blade Rotation Calculation	89	
	5.2.4	Coco Peat	90	
	5.2.5	Coco Fiber	92	
	5.2.6	Discussion	94	
CHAPTER 6: CO	NCLUSI	ON & RECOMMENDATION	95	
REFERENCE			97	
APPENDICES			100	

LIST OF TABLE

TABLE	TITLE	PAGE
2.1	Coconut fiber blade test result	9
2.2	Relationship between machine rotation variation toward production capacity	10
2.3	Result of crushing coconut fiber using 5 blades	11
2.4	Result of crushing coconut fiber using 10 blades	11
2.5	Test result of variation in rotation speed with cylinder blade	12
2.6	Test result of variation in rotation speed with rectangular cutter	12
2.7	Screening relationship with screening product (coco fiber)	16
2.8	analysis of variant height, diameter, seed quality index and percentage of six month cempaka wasian seed life	18
2.9	Duncan further test and high growth rate, diameter, BKA and six month cempaka wasian BKA seed	18
2.10	growth different percentage and high growth rate decline, diameter, BKP and six month cempaka wasian BKA seed	18
3.1	Gantt Chart	29
3.2	Morphological Chart	37
3.3	Concept screening	43
3.4	Concept Scoring	44
3.5	Material selection and cost analysis	46
5.1	Results of FEA Bending Analysis for the blade shaft part.	81
5.2	Results of FEA safety factor for the blade shaft part.	82

5.3	Results of FEA Bending Analysis for the adjuster part.	84
5.4	Results of FEA safety factor for the adjuster part.	85
5.5	Result of coco peat weight and coco peat crushed quality	91
5.6	Result of coco fiber weight and coco fiber crushed quality	93
5.7	Comparison of coco peat weight and coco fiber weight with	94
	changes of blade rotation speed	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Function of coconut skin	2
1.2	Coco fiber	3
1.3	Coco peat	3
2.1	Graph between rotation against coconut fiber product	9
2.2	Graph rotation against percentage of coconut fiber produced	10
2.3	Uniform normal distribution load	14
2.4	Screening relationship with screening product (coco fiber)	16
2.5	Figure 2.2.2 (i): Comparison between the shock test result for pads of 0.025m thickness and made of fibrous material for a drop height of 0.30m, in the $0.11 - 0.48$ kPa static load range at $21^{\circ}C \pm 2^{\circ}C$ e $60\% \pm 3\%$ UR.	22
2.6	Comparison between the shock test result for pads of 0.05m thickness and made of fibrous material for a drop height of 0.30m, in the $0.11 - 0.48$ kPa static load range at $21^{\circ}C \pm 2^{\circ}C$ e $60\% \pm 3\%$ UR.	22
2.7	Doormat	23
2.8	Coco mesh	23
2.9	Coco pot	24
2.10	Coco sheet	24
2.11	Coconut fiber cement board	25
3.1	Flow chart	27

3.2	Flow chart	28
3.3	Survey question	31
3.4	Survey response question 1	32
3.5	Survey response question 2	33
3.6	Survey response question 3	33
3.7	Survey response question 4	33
3.8	Survey response question 5	34
3.9	Survey response question 6	34
3.10	Survey response question 7	34
3.11	Quality function deployment	35
3.12	Concept design 1	39
3.13	Concept design 2	40
3.14	Concept design 3	41
3.15	Concept design 4	42
3.16	Final design selection	45
4.1	Lower frame	52
4.2	Upper frame	52
4.3	Motor frame	53
4.4	Bearing frame	54
4.5	Push handle	54
4.6	Adjuster	55
4.7	Caster plate	56
4.8	Blade holder	56
4.9	Blade	57
4.10	Shaft	58

4.11	Bearing	58
4.12	Large shaft	59
4.13	Small pulley	60
4.14	V-belt	60
4.15	Fix caster	61
4.16	Rotatable caster with lock	62
4.17	V-belt cover	62
4.18	Drawer metal sheet	63
4.19	Semi-drum	64
4.20	Hopper	64
4.21	Lid front side	65
4.22	Lid back side	65
4.23	Joint blade	66
4.24	Upper body	67
4.25	Upper body	67
4.26	Coco fiber drawer	68
4.27	Coco peat drawer	68
4.28	Lower body	69
4.29	Motor base	70
4.30	Transmit mechanism	70
4.31	Mini Coconut Fiber Crusher and Screening Machine front view	71
4.32	Mini Coconut Fiber Crusher and Screening Machine back view	71
4.33	Measuring process using measuring tape	72
4.34	Measuring tool	72
4.35	Cutting an angle bar using an angle grinder	73

xiii

4.36	Cutting tool	73
4.37	Welding process	74
4.38	Welding tools	74
4.39	Drilling process using hand drill	75
4.40	Drilling process using table drill	75
4.41	Folding machine	76
4.42	Forging process	76
4.43	Grinding process using grind disc	77
4.44	Riveting tool	78
4.45	Assembling caster wheel with machine using bolt and nut	78
4.46	Painting process of the machine	79
5.1	FEA bending total deformation analysis for the blade shaft part	80
5.2	FEA normal elastic strain for the blade shaft part	81
5.3	FEA normal stress for the blade shaft part	81
5.4	FEA safety factor for the blade shaft part	82
5.5	FEA bending total deformation analysis for the adjuster part	83
5.6	FEA normal elastic strain for the adjuster part	83
5.7	FEA normal stress for the adjuster part	83
5.8	FEA safety factor for the adjuster part	84
5.9	Free Body Diagram for blade shaft	85
5.10	belt and pulley	88
5.11	Coco crushed quality at 4500 RPM	90
5.12	Coco crushed quality at 4500 RPM	90
5.13	Graph of rotation speed of blade (RPM) vs weight of coco peat (g)	91
5.14	Coco fiber crushed quality at 4500 RPM	92

xiv

5.15	Coco fiber crushed quality at 4500 RPM	92
5.16	Graph of rotation speed of blade(RPM) vs weight of coco fiber (g)	93
5.17	Graph of rotation speed of blade against weight	94

LIST OF ABBREVIATIONS, SYMBOLS AND NOMENCLATURE

HP	Horsepower
RPM	Revolution per minute
MOR	Modulus of rapture
MOE	Modulus of elasticity
CFB	Coco fiber board
MDF	Medium density board
QFD	Quality function deployment
AC	Alternating current
CAD	Computer aided design
LED	Light emitting diode
NO	Normally open
NC	Normally close
MIG	Metal inert gas

LIST OF APPENDIX

APPENDIX	TITLE	PAGE
A1	Gantt chart for PSM 1	100
A2	Gantt chart for PSM 2	101
B1	Orthographic drawing for adjuster	102
B2	Orthographic drawing for bearing	103
B3	Orthographic drawing for belt cover frame	104
B4	Orthographic drawing for belt cover mesh	105
B5	Orthographic drawing for v belt	106
B 6	Orthographic drawing for blade holder	107
B7	Orthographic drawing for blade	118
B 8	Orthographic drawing for caster plate	119
B9	Orthographic drawing for caster wheel with brake	110
B10	Orthographic drawing for drawer sheet 4.1	111
B11	Orthographic drawing for drawer sheet metal	112
B12	Orthographic drawing for drum	113
B13	Orthographic drawing for caster wheel fix	114
B14	Orthographic drawing for hinge 1	115
B15	Orthographic drawing for hinge 2	116
B16	Orthographic drawing for hopper door	117
B17	Orthographic drawing for hopper	118
B18	Orthographic drawing for large pulley	119

xvii

B19	Orthographic drawing for left bearing frame	120
B20	Orthographic drawing for left motor base	121
B21	Orthographic drawing for left motor frame	122
B22	Orthographic drawing for left railing bar	123
B23	Orthographic drawing for left side rail inner	124
B24	Orthographic drawing for left side rail outer	125
B25	Orthographic drawing for lid sheet metal	126
B26	Orthographic drawing for lower frame	127
B27	Orthographic drawing for petrol motor	128
B28	Orthographic drawing for pull handle	129
B29	Orthographic drawing for push handle	130
B30	Orthographic drawing for small pulley	131
B31	Orthographic drawing for upper frame	132
B32	Orthographic drawing for upper sheet	133
B33	Orthographic drawing for wire mesh	134
C1	Exploded view of belt cover	135
C2	Exploded view of bumper clip	136
C3	Exploded view of coco fiber drawer	137
C4	Exploded view of coco peat drawer	138
C5	Exploded view of full blade	139
C6	Exploded view of big hinge	140
C7	Exploded view of joint blade	141
C8	Exploded view of left bearing	142
C9	Exploded view of lid	143
C10	Exploded view of lower	144

xviii

C11	Exploded view of motor base	145
C12	Exploded view of small hinge	146
C13	Exploded view of upper	147
D	Exploded view of full mini coconut fiber crusher and screening machine	148

CHAPTER 1

INTRODUCTION

This chapter covers the background of study, problem statement, objectives and project scope. The chapter overview is also included in this chapter.

1.0 Background

The use of coconut fiber waste is still limited due to lack of public awareness of the waste that has high selling value. For example, household handicrafts that used coconut fibers only a small portion, whereas the need for coconut fibers is very high such as beds, pillows, bolsters, brooms and the latest one it can be used as a composite instead of wood. In the largest engineering field application, we need modern technology that changes about the advantages of using coconut fibers as a technical application is where it can break down by the soil so it not lead to the environmental pollution.

Coconut fiber itself is the largest part of coconut fruit. Coconut fiber if processed optimally will produce coconut fiber with good quality, providing added value from a broom and doormat because it has its own appeal made from natural fibers because the physical and chemical properties of lignocellulose possessed by coconut fiber are in accordance with human needs. That coconut fiber is cheaper than other fibers and environmentally friendly. Coconut trunk can use as a small bridge to cross a trench or small river. Besides, coconut