THE INFLUENCE OF BLADE PARAMETERS CONFIGURATIONS ON THE PERFORMANCE OF THRUST POWER FOR AUV APPLICATION

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

THE INFLUENCE OF BLADE PARAMETERS CONFIGURATIONS ON THE PERFORMANCE OF THRUST POWER FOR AUV APPLICATION

PHARAWUS A/L ACHUAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this project report entitled "The Influence of Blade Parameters Configurations on The Performance of Thrust Power for AUV Application" is the result of my own work except as cited in the references.

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering (Hons).

DEDICATION

To my beloved mother and father

Eput A/P Din Chom & Achuan A/L Din Proom

ABSTRACT

In general, the project revolves about the configuration and analysis of propeller blade parameters on the performance of thrust power for Autonomous Underwater Vehicle (AUV) application. The study and analysis carried out is intended to find the optimum propeller blade configuration for the AUV performance in terms of stream velocity output and thrust power. The technique of modeling and simulation by using Computer Aided Design (CAD) software to manipulate the parameters configurations that come out with 32 designs of blade propeller is the best methods to get the effective optimum designs. From the study conducted, there are only research on each parameters of propeller blade but no research on the blade parameters configuration was found. Therefore, Computer Fluid Dynamic (CFD) has been used in this project as a medium for analyzing new parameters configuration for optimum performance of propeller blade. The study goes on to produce a propeller blade with new parameters configuration for AUV which the optimum thrust power produced. In additional, the data generated by the CFD analysis and calculated thrust power has been studied and the design with optimum thrust power has been identify while further work is to run the experiment as a method to test theories and hypotheses about how physical processes of this analysis work.

ABSTRAK

Secara umum, projek ini menyentuh tentang konfigurasi dan analisis parameter bilah kipas mengenai prestasi kuasa tujah untuk aplikasi Kenderaan Bawah Air Autonomi (AUV). Kajian dan analisis yang dijalankan bertujuan untuk mencari konfigurasi bilah kipas yang optimum untuk prestasi AUV dari segi output aliran dan daya tujahan. Teknik pemodelan dan simulasi dengan menggunakan perisian Reka Bantu Peranti Komputer (CAD) untuk memanipulasi konfigurasi parameter yang keluar dengan 32 reka bentuk kipas adalah kaedah terbaik untuk mendapatkan reka bentuk optimum yang berkesan. Dari kajian yang dijalankan, hanya terdapat penyelidikan pada setiap parameter bilah kipas tetapi tidak ada penyelidikan pada konfigurasi parameter yang dijumpai. Oleh itu, Dynamic Fluid Computer (CFD) telah digunakan dalam projek ini sebagai medium untuk menganalisis konfigurasi parameter baru untuk prestasi optimum bilah kipas. Kajian ini menghasilkan bilah kipas dengan konfigurasi parameter baru untuk AUV yang dihasilkan oleh daya teras yang optimum. Di samping itu, data yang dihasilkan oleh analisis CFD dan kuasa tujahan dikira telah dikaji dan reka bentuk dengan kuasa teras optimum telah dikenalpasti manakala kerja selanjutnya adalah untuk menjalankan percubaan sebagai kaedah untuk menguji teori dan hipotesis tentang bagaimana proses fizikal analisis ini bekerja.

ACKNOWLEDGEMENT

This thesis was prepared for the Faculty of Mechanical Engineering (FKM), Universiti Teknikal Malaysia Melaka (UTeM). This thesis report is submitted in fulfill of the requirement for the degree of Bachelor of Mechanical Engineering.

Firstly, I would like to express my deepest appreciation to my supervisor Dr. Masjuri Bin Musa@Othman for giving me this opportunity to do final year project with him. He never hesitated to give me advice and guidance whenever I confronted problems. I am thankful for his patience and advice while leading me in this project.

In additional, I would like to thank my course mates for giving me their support, patience and encouragement to complete this project. Lastly, I would like to thank my family who always on my side and giving their full support from the beginning till the end.

CONTENT

CHAPTER	CON	NTENT	PAGE
	DEC	CLARATION	
	APP	ROVAL	
	DED	DICATION	
	ABS	TRACK	i
	ABSTRAK		ii
	ACK	KNOWLEGEMENT	iii
	TAB	BLE OF CONTENT	iv
	LIST	r of figures	vi
	LIST	Γ OF TABLES	viii
H.C.	LIST	r of symbols	ix
ANT TEK	LIST	r of appendixs	x
CHAPTER 1	INT	RODUCTION	1
2	1.1	اويور سيتي بيڪنيڪ مليسيد Background	1
LIN	1.2	Problem Statement MALAYSIA MELAKA	5
01	1.3	Objective	6
	1.4	Scope of Project	6
CHAPTER 2	LITI	ERATURE REVIEW	7
	2.1	Introduction	7
	2.2	Propeller Physical	7
	2.3	Type of Propeller Blade	10
	2.4	Number of Propeller Blade	12
	2.5	Size of Propeller Blade	14
	2.6	Design of Ducted Propeller	17
	2.7	CFD Analysis of a Propeller Flow	19

	2.8	Summary	22
CHAPTER 3	MET	THODOLOGY	23
	3.1	Introduction	23
	3.2 Blade Parameters in Experiment		25
	3.3	Data Combination by Matrix	26
		Multiplication	
	3.4	Computational Fluid Dynamics Analysis of	33
		Propeller Blades	
		3.4.1 Ansys 16.0 Software	34
		3.4.2 Pre-processing	35
		3.4.3 Processing	39
	- AL	3.4.4 Post-processing	47
Ś	" MA	A 410	
CHAPTER 4	RES	ULTS AND DISCUSSION	52
μ	4.1	Results	52
FID		4.1.1 Thrust Power	53
	3AIND	4.1.2 Graph of Thrust power	56
رك	ا ^{4.2}	اونيومرسيني تيڪنيڪMonie	57
CHAPTER 5	CON	CLUSION AND RECOMMENDATION LAKA	59
	FOR	FUTURE WORK	
	REF	ERENCES	61

	~-
APPENDICES	63

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Propeller Thrust	3
1.2	Example of Newton's Third Law	4
2.1	Propeller nomenclature	8
2.2	The cross section of the blade	8
2.3	Basic propeller geometry	9
2.4	The pressure face and suction back	9
2.5	Pitch and pitch angle	10
2.6	Example of Flat Blade Propeller	10
2.7	Example of Twisted Blade Propeller	11
2.8	Front views of Twisted Propeller with different number	13
	of blades	
2.9	An example of twisted propeller diameter	15
2.10	Example of different size of propeller	
2.11	Optimum diameter selection graph for twisted propeller	
2.12	Geometry of ducted twisted propeller with four blades	
2.13	An example of CFD analysis on ducted propeller	
2.14	Example of the blockMesh in paraView	21
3.1	SLDC Phase and Steps of Methodology	
3.2	ANSYS Fluent platform	

3.3	Details of Enclosure	36
3.4	Details of Named Selections for Cylinder Surfaces	36
3.5	Details of Boolean 1 and Boolean 2	37
3.6	Setup of Mesh	38
3.7	Final output in the meshing process	38
3.8	General Condition in Setup	39
3.9	Materials Setup	40
3.10	Duct Zone Setup in Cell Zone Conditions	41
3.11	Propeller Zone Setup in Cell Zone Conditions	41
3.12	Solid Zone Setup in Cell Zone Conditions	42
3.13	Inlet Zone Setup in Boundary Conditions	43
3.14	Outlet Zone Setup in Boundary Conditions	43
3.15	References Values Setup	44
3.16	Solution Initialization Setup	45
3.17	Run Calculation Setup	46
3.18	Details of Velocity Streamline Setup	47
3.19	Pattern of Velocity Streamline	48
3.20	Setup of Plane	48
3.21	Setup of Velocity Contour	49
3.22	Output of Velocity Contour	49
3.23	Calculation of Fluid Velocity Outlet	50
3.24	Examples of CFD analysis images with stream velocity	51
4.1	Graph of P against D and v_{0}	56

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Characteristics of 3 and 4 blades	14
3.1	Parameters of Blade	25
3.2	Morphological chart	27
3.3	Data Combination	28
3.4	Examples of twisted propellers with different blade parameters	30
4.1	Data of Thrust Power for all designs	53
	VITTER OFFICE AND A MELANA	

LIST OF SYMBOLS

Т	- Thrust
D	- Propeller diameter
v	- Velocity of incoming flow
ρ	- Density of fluid
Δv	- Additional velocity, acceleration by propeller
Р	- Thrust power
Ν	- No. of blade
Θ	- Blade angle
HTR	Hub to tip ratio (hub radius/propeller radius)
L	- Nose cone length
R	اويومرسيني بيڪيڪ Nose cone radius
$v_{ m o}$	UNIVEStream velocity outlet L MALAYSIA MELAKA
g	- Gravitational gravity
Z	- Elevation
р	- Pressure
F	- Thrust force
А	- Surface area

LIST OF APPENDICES

APPENDIX	X TITLE	PAGE
А	Table of stream velocity outlet from CFD analysis with	63
	Calculated Thrust	
В	Figure of CFD analysis output with stream velocity	64
C1	Gantt Chart for PSM I (Semester 1 2018/2019)	69
C2	Gantt Chart for PSM II (Semester 2 2018/2019)	69
	JNIVERSITI TEKNIKAL MALAYSIA MELAKA	

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Autonomous Underwater Vehicle (AUV) was developed in 1957 by Stan Murphy and Bob Francois at the University of Washington to overcome the limitation of human capabilities into water especially deep sea. Deep sea in the ocean are very dangerous that sometimes can cause death to human. The AUV have created to explore and discover underwater world without make harm to human and at the same time reduce the limitation and increase the capabilities of human. Most of this vehicle have been used in military field, inspection of cracks on the underwater section of the ship, oil and gas industry, telecommunication and mineral exploration and the expedition to explorer under the deep ocean.

The AUV in military has been created and plays an important job to counter the danger from underwater by using advanced control systems, navigation systems and sonars to protect and detect any harms or enemy. The vehicle can operate in both shallow and deep sea, and allows exact detection, classification and coordination of any searching objects while the controller and others crew remain in a safe place and distance. After the AUV has completed the mission, military officers can enter the area with detailed information of the threat.

Though still a very small part of AUV usage in commercial sector like oil and gas industry that has been operated over 100 years. Oil and gas industry supplies energy to human in form of petroleum and gaseous by drilling to the resource cover up underground such as deep sea and transport it by using pipelines. In order to work in deep water that has a dangerous environment and can harm the human to operate, a robot plays an important job. An Autonomous Underwater Vehicle (AUV), which is a kind of a robot is used for equipment installation, operation and maintenance.

AUV can operate automatically and travels underwater by diving from the surface to deep sea and reverse. System of AUV can be compact, portable and small or they can be long-endurance and very large systems. Autonomous Underwater Vehicle basically bring power such as batteries, fuel cells or rechargeable solar power onboard in the body that design aerodynamically like a sub-marine. The power onboard are uses to operate all sensors on the AUV and to move the propellers or thrusters. Certain AUV minimize energy demands by allowing buoyancy and gravity to impel them and can reach shallow sea that boats can't and deep that human divers or other vehicles can't. AUV are safe from bad weather once deployed and underwater.

To enable AUV move in water, propellers or thrusters play an important role. Propellers is a mechanical device consists of several twisted and air-foil shaped blades that rotates and produce pressure differential between the blades to accelerate the fluid and provide thrust in opposite direction to propel the AUV. There are several parameters of blades will affect the performance of propeller need to be consider such as the radius of blade, the chord of the propeller and radius of hub.

There are several terms used to describe performance properties and characteristics of propeller of AUV. It is important considering all terms to ensure high system efficiency to provide great performance to the AUV. Bernoulli's principle and Newton's third law are used to modelled the operation of propeller.

$$rac{v^2}{2} + gz + rac{p}{
ho} = ext{constant}$$

Where:

- **v** is the fluid flow speed,
- **g** is the gravitational gravity,

- z is the elevation,
- **p** is the pressure,
- **ρ** is the density of the fluid.

While Newton's third law states that all forces between two objects exist in same magnitude but opposite direction. In the Figure 1.2, a boy is pulling a rope that is attached to an elephant with force F_A then elephant at the same time pulling a rope that is attached to a boy with force F_B , and the two forces are equal in magnitude but opposite in direction, $F_A = -F_B$.

1.2 PROBLEM STATEMENT

Nowadays, the development of AUV have been focus more on how to design the AUV with more portable and more compact with more energy efficiency innovation. To move the AUV, propeller been used to produce the efficient vertical and horizontal movement. There are a lot of research on the airplane propeller but development research on designing and manufacturing new marine propeller is still low. While the data or design from airplane propeller research is not suitable to use in marine vehicle because the different of the density of medium which is the density of water is 1000 times higher than air (D'Epagnier, 2006). Meanwhile the fabrication of a customize propeller is much more expensive compare to buying the existing propeller.

On the other hand, the development of new concepts in propeller designing has shown a significant improvement in the design method that could enhance the process of propeller designing. However, the impact of development has yet not shown due to the innovators and designers end at the traditional technique that has gone through loads of researches and were validated, which is much more reliable and were implemented for plenty of times.

The velocity of propeller is the main key to improve the movement performance of AUV. The design of blades with all parameters on propeller is most important to achieve a efficient movement of AUV. Therefore, it is important for this research to clearly show the best parameters of blades for optimum performance of AUV.

1.3 OBJECTIVE

The objective of this project is:

1. To identify the average outlet flow velocity based on blade parameters configurations which affected the performance (thrust power) of AUV.

1.4 SCOPE OF PROJECT

The scopes of this project are as follows:

1. To develop a blade parameters configurations for Autonomous Underwater Vehicle

(AUV) by using Computer-Aided Design (CAD).

- 2. To do Computational Fluid Dynamic (CFD) simulation analysis on the blade parameters configurations to identify the average outlet flow velocity based on the blade parameters such as number of blades, blade angle, hub to tip ratio and nose cone.
- 3. To identify the optimum blade configuration for the AUV performance (thrust power).

اونيۈم سيتى تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is devoted to a review of literature. The past developments in propeller for AUV will be discussed. Different methods will be covered, their shortcomings and advantages addressed, all with the goal of selecting the appropriate performance prediction method to use in this analysis. This section also will be focused on the review of propeller optimization methods with the same goal in mind of selecting the appropriate method for this present study. Past work performed in the field specifically focusing on research performed on type of blade, number of blades, blade angle, hub to tip ratio, nose cone of propeller and design of duct is covered. This section will also provide a brief introduction into a variety of materials and present their capabilities and limitations and CFD analysis. A summary of the conclusions reached in the process of the review will be presented.

2.2 **Propeller Physical**

The radius of the propeller is the distance between the tip of the blade and the centre of the hub (Duelley, 2010). The chord of the propeller is a straight-line distance between the leading edge and the trailing edge at a blade section of the propeller (Duelley, 2010). Figure 2.1 shows the nomenclature of the propeller as described.

Figure 2.1: Propeller nomenclature (Source: Duelley, 2010 and Schultz, 2009)

Camber of the propeller is the maximum distance from the mean line to the chord lines. The maximum thickness of the blade is measured in a normal to the chord line (Ferrando, 2012). The optimum performance of ideal propeller would be infinitely thin so that it is more hydrodynamic (Duelley, 2010). However, this is unrealistic and impossible to be achieved because it is not manufacturability, durability and efficient. Low thickness profile has the risk of breaking or bending when the blade is handled roughly as shown in Figure 2.2 (Duelley, 2010).

Figure 2.2: The cross section of the blade. (Source: International Towing Tank Conference, 2011)

Besides, the blade is classified into two, which is the leading edge and the trailing edge which is outlined on the Figure 2.3. Leading edge is the first part that contact with water when it is rotating while trailing edge is the last part of the blade that contact with the water. From Figure 2.4, it can clearly be seen that the pressure face of the propeller where it has high pressure at that part. The suction back has low pressure which is the cause of the AUV to move forward.

Figure 2.3: Basic propeller geometry. (Source: US Navy)

Figure 2.4: The pressure face and suction back (Source: US Navy)

Pitch is a measurement of the distance of propeller would move parallel to the direction of motion when it rotates at one revolution (Duelley, 2010). High pitch over diameter ratio can

increase the propeller efficiency (D'Epagnier, 2006). Pitch angle is the angle of the blade that is perpendicular to the water flow. Figure 2.5 explain about the pitch of a propeller.

2

2.3 Type of Propeller Blade

There are two common type of blade, flat blade and twisted blade. Flat blade means the blade angle is the same at all points from the hub to the tips (Vesting et al., 2014). While twisted blade means the angle of blade starts high at the hub and progressively decreases to the tips (Xiang et al., 2018).

Figure 2.6: Example of Flat Blade Propeller (Source: chinabrands)

Figure 2.7: Example of Twisted Blade Propeller (Source: aviation.stackexchange)

Flat blades normally can perform reversible rotation because of constant blade angle but generally required more horsepower to drive than twisted blade and not as clean cut or as good a windrow (Vesting et al., 2014). If one out of several blades is lost, flat blade produces less vibration.

While twisted blades need for a different blade angle along the blade from the fact that angular speed is constantly increase from the hub to the tips means that the speed of blade is much higher at the tip than at the hub (Xiang et al., 2018). The uses of twisted blade is necessary to maintain a constant angle of attack between the fluid flow and surface along the length of the blade (Prasad et al., 2017). Propeller performance is degraded when it is not at its optimum angle like a wing. Combine this with any forward speed the propeller, the relative waterflow is different from the hub to the tips. To keep thrust equal along the blade, the design is that the blade is thick at the hub with a large blade angle and thin at the tip with a low blade angle.

Choosing type of blades very important to get a good performance of propeller. Flat and twisted blades can use in different condition with their own advantage and disadvantage. From the information, twisted blade gives more equivalent thrust along the blade, so it will generate better forward speed than flat blades. While flat blades produce higher thrust at the tip of blade and low thrust at the hub.

2.4 Number of Propeller Blade

Propeller blades may vary from 3 blade propeller to 4 blade propeller and sometimes even 5 blade propellers (Hong, 2018). The most commonly used are 3 and 4 blades propeller. By increasing number of the blades, it caused to increase pressure in front of the propellers. So, the mass flow rate and the rotational speeds decreased (Ahmadi, 2016). Adding more blades means increasing the surface of the blades that will provide more force. Total force and thrust are increase but force on each blade and rotational speeds are reducing by adding blades. Having more blades moving through the water would generate more flow (Monfared, 2016). However, this ignores the effect of drag or water resistance. It is this drag that slows down motion, reduces waterflow, and increases energy consumption of a propeller. Having fewer blades may reduce drag but may also generate little waterflow (Dekanski, 1993). But fitting more blades to a propeller may not generate more waterflow because of the larger drag. This increased in drag would also mean a more powerful and a more energy consumption propeller motor is required (Dekanski, 1993). Having more blades also adds weight to the propeller and will need a more powerful propeller motor. The selection of the number of blades is a function of several important parameters, namely uniformity of output power, propeller loads and vibrations, cost as well as the propeller aerodynamic performance (Rezaeiha et al., 2018).

The number of blades in a propeller has little effect on performances. Three blades seem to be the best compromise between aerodynamic and structural concerns in low-speed applications such as boats and small aircraft but for higher spinning rates. Four blades are better, since they accelerate quicker and have less vibrations. In general, more propeller blades required in a powerful engine. The number of blades has a small effect on the efficiency. Usually a propeller with more blades will perform better as it distributes its power and thrust more evenly in its wake or start (Shaikh, 2015).

Figure 2.8: Front views of Twisted Propeller with different number of blades (Source: dreamstime)

Number of	3	4
Blades		
Characteristics	• The manufacturing	• The manufacturing cost is
	cost is lower than	higher than 3 blade
	other types.	propellers.
	• Gives a good high-	• Have better strength and
	speed performance.	durability.
	• The acceleration is	• Gives a good low speed
	better than other	handling and performance.
	types.	• Has a better holding power in
d.	• Low speed handling	rough seas.
KIII	is not much	• 4 blade propeller provides a
TE	efficient.	better power economy
LIP	anna -	
ک	نيكل مليسيا ملا	اونيۇم,سىتى تىك

Table 2.1: Characteristics of 3 and 4 blades

2.5 Size of Propeller Blade UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Propeller size is expressed with two numbers, diameter and pitch (Boatus, 2009). Diameter is two times the distance from the centre of the hub to the tip of blade (Schubel et al., 2012). Smaller diameters generally go with smaller engines or with fast high performing boats because it will generate less thrust than bigger diameter of propeller. The propeller size has a big impact on performance. Usually a larger propeller diameter will have a higher efficiency, as it catches more incoming fluid and distributes its power and thrust on a larger fluid volume (Shaikh, 2015). Pitch is the theoretical forward distance that a propeller travels during one revolution.

The size of propeller also can be in term of hub to tip ratio which mean there are two different diameters in this form, diameter or radius of the hub and diameter or radius of propeller. The radius of propeller is the distance from the tip of the blade to the centre of the hub. The hub to tip ratio is radius of the hub per radius of propeller. In the case, the diameter of the propeller is constant while the diameter of the hub is increasing, or the diameter of the hub and propeller has been increased with the same ratio. The hub effect will reach its minimum at a certain hub ratio (Ghassemi et al., 2012).

Figure 2.9: An example of twisted propeller diameter (Source: bblades)

A larger diameter means that the vessel is can achieve higher thrust, and so higher forward speed for the same rotational speed of the shaft (Asimakopoulos, 2016). The propeller diameter determination is a complex procedure involving various empirical formula for optimum efficiency. The rotational speed of the propeller could be reduced but still achieve the required forward movement in larger diameter condition (Asimakopoulos, 2016). A reduced rotational speed mean that the pressure imbalance on the blades be reduced with the reduction of the forces and so cavitation would be decreased or alleviated.

Figure 2.11: Optimum diameter selection graph for twisted propeller (Source: Asimakopoulos, 2016)

By considering type or condition need to be use, size of propeller should suitable in each condition. For example, there are unnecessary to use a big propeller that will need more power from motor in small boat or use a small propeller that will generate low thrust in big boat. Propeller should generate suitable thrust and force to move a marine vehicle. The size and weight of marine vehicle have effect for choosing the optimum size of propeller.

2.6 Design of Ducted Propeller

Ducted propellers are present in modern rotor systems ranging from marine/offshore propulsion systems, ducted wind turbine, tidal turbines to aerospace turbomachinery, drones and flying cars (Zhang, 2018). A ducted propeller is surrounded by a static nozzle which provides several attractive benefits, namely physical protection, greater power density, cavitation

reduction, and expanded operating environment. Based on the commercial duct propeller, a kind of vector propulsion system, including a deflectable duct propeller can only produce thrust without any additional control force. However, when the propeller is fixed, and the duct is deflected, the deflectable duct propeller will generate the lateral force and moment controlling AUV to change its states and the thrust to drive AUV. The design of a streamlined underwater vehicle utilizing an entirely enclosed propulsion and steering system (Kopman et al., 2012)

Figure 2.12: Geometry of ducted twisted propeller with four blades. (Source: Zhang, 2018)

The blades will produce high pressure areas behind them and low-pressure areas in front when propeller rotates. The different of pressure provides the excessive thrust to move the vessel in the fluid (Bhattacharyya, 2015). However, losses will occur as water escapes from the highpressure side of the blade to the low-pressure side at the tip of each blade. A ducted propeller will stop the escaping water by restricting water flow to the propeller tips. The entrance diameter is bigger than the trailing throat of the nozzle that designed as a funnel (Go, 2017). The mass flow rate must be constant as the water density is constant. The mass must compensate with a higher velocity at the trailing end when the area becomes smaller, thus accelerating throughout the nozzle. Thrust at the same input power when more water is moved by the ducted propeller (Krasilnikov, 2015). The nozzle will be increasing the inflow velocity, lower the pressure contribution on the propeller and the efficiency. The risk of cavitation will increase when lowering the pressure in the propeller disc. The inflow velocity will reduce when increasing the pressure through the propeller disc, but in turn reduce the cavitation risk.

The design of duct will help to prevent or decrease the losses or water escape at the tip of blade. The inlet diameter of nozzle generally bigger than outlet diameter of nozzle to give more acceleration and thrust at the same input power as no-duct propeller. The size of nozzle should suitable with the size of propeller to get the better performance of propeller. If the gap between the nozzle and the tip of blade is big, the water escape will still occur, the situation will be same as no-duct propeller.

2.7 CFD analysis of a propeller flow

CFD analysis used to simulate the behaviour of the model by running the mathematical equation in the analysis. The 3-dimension (3D) solid modelling for each propeller been used in CFD simulation will be exported from the computer aided design (CAD) software (Othman, 2014). 3D solid modelling of propeller is carried out using CATIA.

In CFD analysis, the speed rotation of propeller has been set because the simulation of propeller is using a low flow application (Othman, 2014). This value normally used a minimum speed rotation needed by a propeller. When all initial value needed under CFD has been fulfilled,

the simulation and end results can be obtained. The purpose of implementing CFD analysis is to determine the stream velocity for each propeller involved as well as to look at the flow patterns of the water at inlet, between the blades and at the outlet section (Subhas, 2012). The values of the stream velocity for each design later will be substituted in the power output equation in order to obtain the most optimum results of power output.

Figure 2.13: An example of CFD analysis on ducted propeller (Source:marin.nl)

Propeller performance in open water can calculate in the design stage. The thrust and torque coefficient can be compute using CFD. CFD was used to get the performance of the propeller when the water was moving because of difficulty in testing the propeller under axial flow (Husaini,2005). Computational Fluid Dynamics program that uses numerical methods to solve and analyse fluid problems (Colley, 2012). Pre-processing, processing (solving) and post-processing are generally three parts to solving a problem computationally. The boundary conditions are defined as specifying the way the fluid should move, the object and surrounding surfaces and volumes are then meshed during pre-processing. While the processing stage is

done via a solver. OpenFOAM, an open source CFD, allows many different solvers to be used. The solver that will be examined is steady-state solver for incompressible laminar flow. The objects and surrounding surfaces and volumes are then meshed. Various types of problems can be solved in different dub modules. ParaView is another open source tool in post-processing is where the analysis of the solution is done, to visualise and investigate the problem.

2.8 Summary

This chapter provided a literature review of propeller physical, type, size and number of propeller blade, design of ducted propeller, as well as CFD analysis of a propeller flow. The purpose of the CFD analysis was to choose the appropriate methods for this study. It was concluded that the CFD analysis is a sufficiently accurate and efficient method for analysing the velocity and power of propeller after drawn a 3D solid modelling in CAD. Type, size and number of propeller blade of this review was devoted to determining the best parameters. Twisted blade will be used because will give the equal thrust along the blade. So, there will be two angles needed in this type of blade which are inlet angle and outlet angle. While having more blades will generate more flow of water but also will increase the drag force. The number of blades must be suitable to use with AUV. The objective was to select an appropriate value of every parameters of blade to consider. Several possible values were discussed, and it was also concluded that shape of ducted should be able to provide better thrust and performance of propeller.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will cover the details explanation of methodology that is being used to make this project complete and working well by using three major steps to implement project starting from planning, design and analyse based on System Development Life Cycle (SDLC). All the methods used for finding and analysing data regarding the project related to achieve the objective of the project that will accomplish a perfect result. A detailed discussion of the parameters of blade used for the purpose of propeller performance prediction will be given. It provides information on the propeller, what the parameters and how they were sampled and the reasons for this choice. The instrument that was used for data collection is also described and the procedures that were followed to carry out this study are included. This chapter also discuss the methods used to analyse the data. Lastly, the methods used to analyse the data are also discussed.

PSM II

PSM I

Figure 3.1: SLDC Phase and Steps of Methodology

3.2 Blade Parameters in Analysis

To identify all the information and requirement such as software, planning must be done in the proper manner. The planning phase have two main elements namely data collection and the requirements of software. The twisted shape of blade will be designed with parameters shown in Table 3.1. This data values gain from referring to existing project and a was the best values. The design of this ducted is the standard design used in propeller of AUV.

Parameters	Details	
Type of Dlade	Twisted Dlade (Source: massfluw Halisial 2018)	
Type of Blade	Twisted Blade (Source: mecalluxHeliclei, 2018)	
Number of Blades (N)	3 and 4 (Source: Aerotrash, 2012)	
Blade Angle (θ)	Inlet angle: $I_1 = 60^\circ$, $I_2 = 64^\circ$	
سيا ملاك	Outlet angle: $0_1 = 16^\circ$, $0_2 = 20^\circ$	
	(Source: Xiang, 2018)	
UNIVERSI	TI TEKNIKAL MALAYSIA MELAKA	
Hub to Tips Ratio (radius	$HTR_1 : (2.0 \text{ cm}/5.2 \text{ cm}) = 0.48$	
of hub / radius of blade) of Blade (HTR)	HTR ₂ : (2.0cm/4.8cm)=0.53	
	(Source: BlueRobotics, 2018)	
Nose Cone	Design 1: 2.5cm in length, 26.7mm of radius	
	Design 2: 3.5cm in length, 47.0mm of radius	
	(Source: Ranjan, 2015)	

Table 3.1: Parameters of Blade

For software requirement, I have chosen CATIA to draw 3D solid modelling. CATIA is a software tool suite used primarily for 3D design. The software is used mainly to create 3D solid modelling for manufacturing of printed model. While analysis will be done using CFD simulation to gain the velocity of the water flow. That velocity will be using to calculate the power output of propeller performance.

3.3 Parameters Configurations by Matrix Multiplication

At this stage, planning about the project's resources and requirements, literature studies and schedule to get more information in this study. All the materials are collected from journal, texts book and research papers gathered from libraries and Internet. The morphological chart used to generate analytical and systematic ideas. Functions of the propeller are taken as a starting point and subfunctions which is parameters of blade can be established through a function analysis.

Table 3.2: Morphological chart

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

All data of blade parameters by using twisted blade with 3 and 4 blades. Twisted blade consists of inlet and outlet angle which is 64°, 60° for inlet angle and 16°, 20° for outlet angle. The size of propeller is measure using radius of blade and radius of hub. In this case, radius of hub is fix with 2.0cm while radius of blade is 4.8cm and 5.2cm. For nose cone, there are 2 design with different length and radius. First design is 2.5cm in length, 26.7mm in radius while second design is 3.5cm in length, 47.0mm in radius. By using matrix multiplication, all data was combined to get 32 designs in Table 3.2. Before proceeding with CFD analysis, the 3-dimension

solid modelling of each data pairing have been designed and drawn in the computer aided design (CAD) software which is CATIA.

No. of Design	No. of	Blade	HTR	Nose	Velocity,	Power,
	Blade,	Angle,		Cone	$v(m/s^2)$	P(Watt)
	Ν	Θ				
Design 1	3	L O	HTP.	Design 1	V.	D,
Design 1	5	1, 01	IIIK	Design 1	• 1	I
Design 2	3	$I_1, 0_2$	HTR_1	Design 1	V_2	P ₂
Design 3	3	$I_2, 0_1$	HTR ₁	Design 1	V3	P3
	6	2, 01		2005811		- 5
Design 4	3	$I_2, 0_2$	HTR_1	Design 1	V_4	P ₄
Design 5	3	$I_1, 0_1$	HTR ₂	Design 1	V 5	P5
Design 6	3 /wn	$I_1, 0_2$	HTR ₂	Design 1	V ₆	P ₆
Design 7	a (3	$I_2, 0_1$	HTR ₂	Design 1	V7 •	P ₇
Design 8	3	$I_2, 0_2$	HTR ₂	Design 1	∇_8	P ₈
Design 9	ER3ITI	$I_1, 0_1$	HTR ₁	Design 2	ME V ₉ KA	P9
Design 10	3	$I_1, 0_2$	HTR_1	Design 2	V ₁₀	P ₁₀
Design 11	3	$I_2, 0_1$	HTR_1	Design 2	V ₁₁	P ₁₁
Design 12	3	$I_2, 0_2$	HTR_1	Design 2	V ₁₂	P ₁₂
Design 13	3	$I_1, 0_1$	HTR ₂	Design 2	V ₁₃	P ₁₃
Design 14	3	$I_1, 0_2$	HTR ₂	Design 2	V ₁₄	P ₁₄
Design 15	3	$I_2, 0_1$	HTR ₂	Design 2	V ₁₅	P ₁₅
Design 16	3	$I_2, 0_2$	HTR ₂	Design 2	V ₁₆	P ₁₆
Design 17	4	$I_1, 0_1$	HTR_1	Design 1	V ₁₇	P ₁₇

Table 3.3: Data Combination

Design 18	4	$I_1, 0_2$	HTR_1	Design 1	V ₁₈	P ₁₈
Design 19	4	$I_2, 0_1$	HTR_1	Design 1	V ₁₉	P ₁₉
Design 20	4	$I_2, 0_2$	HTR_1	Design 1	V ₂₀	P ₂₀
Design 21	4	$I_1, 0_1$	HTR ₂	Design 1	V ₂₁	P ₂₁
Design 22	4	$I_1, 0_2$	HTR ₂	Design 1	V ₂₂	P ₂₂
Design 23	4	$I_2, 0_1$	HTR ₂	Design 1	V ₂₃	P ₂₃
Design 24	4	$I_2, 0_2$	HTR ₂	Design 1	V ₂₄	P ₂₄
Design 25	4	$I_1, 0_1$	HTR_1	Design 2	V ₂₅	P ₂₅
Design 26	4	$I_1, 0_2$	HTR_1	Design 2	V ₂₆	P ₂₆
Design 27	AL 4 8/4	$I_2, 0_1$	HTR ₁	Design 2	V ₂₇	P ₂₇
Design 28	4	$I_2, 0_2$	HTR ₁	Design 2	V ₂₈	P ₂₈
Design 29	4	$I_1, 0_1$	HTR ₂	Design 2	V ₂₉	P ₂₉
Design 30	4	$I_1, 0_2$	HTR ₂	Design 2	V ₃₀	P ₃₀
Design 31	4	$I_2, 0_1$	HTR ₂	Design 2	V ₃₁	P ₃₁
Design 32	4	$I_2, 0_2$	HTR ₂	Design 2	V ₃₂	P ₃₂

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 3.4: Examples of twisted propellers with different blade parameters.

3.4 Computational Fluid Dynamics Analysis of Propeller Blades

To do the CFD analysis, all the 3D solid modelling from the CAD be exported to the CFD analysis software. Since this study is about low flow application for the propeller, therefore the speed rotation of the propeller has been set in the CFD analysis by using estimated value for water flow rate. Once when all initial condition needed under CFD has been fulfilled, the simulation and the end results can be obtained. The purpose of implementing CFD analysis is to determine the stream velocity for each propeller involved as well as to look at the flow patterns of the water at inlet, between the blades and at the outlet section. The values of the stream velocity for each propeller design will be substituted in the thrust power equation in order

P = T.v

Where,

T = Thrust(N)

D = Propeller diameter (m)

v = Velocity of incoming flow (m/s)

 ρ = Density of fluid (kg/m³)

 Δv = Additional velocity, acceleration by propeller (m/s)

P = Thrust power

For propeller that working in fixed medium at constant speed, thrust will depends on the velocity of flow at the outlet of propeller and propeller diameter only. While thrust power defined as work done per unit time. Using the available thrust and velocity of incoming flow, the propulsive power can be calculated.

3.4.1 ANSYS 16.0 Software

AALAYSI.

Ansys software is a general-purpose software used to design products and semiconductors, as well as to create simulations that test a product's durability, temperature distribution, fluid movements, and electromagnetic properties. Therefore, Computational Fluid Dynamics (CFD) tools in ANSYS can be used to analyse and simulate tests on propeller blade on AUV in virtual environment before processing of prototypes of the products. In this project, ANSYS Fluent platform is used to carry out an external flow of the fluid motion around the propeller. Then, the performance of the propeller can be determined, and the stream velocity of the propeller blade can be analysed. Fluent software contains the broad, physical modelling capabilities for model flow, turbulence, heat transfer and reactions for industrial applications. These range can be used to generate the fluid flow over a propeller that also offers highly scalable, high-performance computing (HPC) to help solve complex, large-model computational fluid dynamics (CFD) simulations quickly and cost-effectively.

3.4.2 **Pre-processing**

In ANSYS Fluent platform, the first step is the preparation of the model by import the propeller design from CAD using Standard for the Exchange of Product (STP). STP is a file extension for a 3-D graphic file used by CAD software. The simulations are performed inside a fluid tunnel in the shape of a cylinder of 60 mm width in diameter and 60 mm length using the Enclosure tools along the y-axis. The surfaces of the cylinder need to be renamed with inlet, wall and outlet for boundary conditions setup. The propeller and nose cone inside the cylinder are combine using the Boolean tools of unite because these two parts will be move in rotation. The second Boolean tools is used to determine which part will be use in the simulation which the combination of propeller and nose cone with duct acted as a tool bodies, and the cylinder of

fluid flow act as a target body. The tool bodies need to preserve for the cell zone conditions setup.

Details View			ą
Details of Enclo	sure1		
Enclosure		Enclosure1	_
Shape		Cylinder	
Cylinder Alignm	ent	Y-Axis	
Number of Plan	es	0	
Cushion		Non-Uniform	
FD1, Cushior	n Radius (>0)	30 mm	
FD2, Cushior	n (>0), +ive Direction	30 mm	
FD3, Cushior	n (>0), -ive Direction	30 mm	
Target Bodies		All Bodies	
Sketching Details View Details View Export Se Include In	Fluid Flow (Fluent) XYPlane ZXPlane YZPlane YZPlane Modeling Modeling Modeling Yzes	اونيومرسيتي تيد AYSIA MELAKA	

Figure 3.4: Details of Named Selections for Cylinder Surfaces.

Tree Outline 4	Tree Outline	9
 ☐	A: Fluid Flow ((Fluent) e1 Bodies
Sketching Modeling	Details View Details of Boolean2	7
Details View 4	Boolean	Boolean2
Details of Boolean1	Operation	Subtract
Boolean Boolean1	Target Bodies	1 Body
Operation Unite	Tool Bodies	2 Bodies
Tool Bodies 2 Bodies	Preserve IOOI Bodies?	Tes
	1	

Figure 3.5: Details of Boolean 1 and Boolean 2.

In meshing setup, the first step is to delete all the contacts in the connections tab to avoid manifold in the model. Next is the Proximity and Curvature option is chosen in the Advanced Size Function tab in Mesh details to control the number of mesh elements employed in the gaps between two geometric entities and to specify the minimum number of elements layers created in regions that constitute as gaps in the model. The Proximity and Curvature also been selected because the maximum tetrahedral size defined on surface parts is larger than a geometric entity in the specified part. Then, generate the mesh and the final output of meshing process with statistics of nodes and elements for mesh will be auto generated.

Figure 3.7: Final output in the meshing process.

3.4.3 Processing

For General Setup, the solver with Pressure Based type been selected because the nonpremixed flow model is available only with this solver. The Time is set to be Steady for frame motion of propeller while Velocity Formula is absolute based on the type of solver.

E 🤹 Setup	General				
	Mesh				
Haterials	Scale	Check	Report Quality		
Boundary Conditions	Display				
Dynamic Mesh Reference Values	Solver				
Solution Methods Solution Controls Monitors Calculation Activities Run Calculation	Type Pressure-Base Density-Based Time Steady Transient	Velocity ed Absolution Relat	Formulation lute ive		
Graphics Graphics Animations Graphics	Gravity		Units		
	Help				

Figure 3.8: General Condition in Setup.

In materials setup, the water-liquid will be used as the fluid flow. So, the new material needs to be created from the Fluent Database.

Fluent Fluid Materials)	Material Type	
vinyl-silylidene (h2cchsih) vinyl-trichlorosilane (sid3ch2ch) vinylidene-chloride (ch2cd2) water-liquid (h2ocd>)	^	fluid V Order Materials by Name Ordenical Formula	
water-vapor (nzo) wood-volatiles (wood_vol) <	>		
Copy Materials from Case Delete			
Density (kg/m3)	constant	View	ī
	998.2		1
Cp (Specific Heat) (j/kg-k)	constant	View	
Theoremal Counds with sites (suclear la)	4182		1
Thermai Conductivity (w/m-k)	constant	View	
	0.6		
Viscosity (kg/m-s)	constant	View	I,
	0.001003		
New Edit	Save	Conv. Close Help	

Figure 3.9: Materials Setup.

The Cell Zone Conditions of duct, propeller and cylinder zone need to be setup. The material that will be used for duct and propeller zone is aluminium because this material is a currently been used in the simulation and it is also can be used for these zones without affected the output of simulation. In propeller zone, the frame motion with rotational velocity of -600 RPM and rotate at y-axis. The negative sign of rotational velocity indicates to the rotation in counterclockwise in y-axis. While in solid (cylinder) zone, the material is referring to fluid flow which is water-liquid. The different of frame motion and mesh motion are the frame motion is a coordinate system that moves during simulation, e g. rotation. Instead to put all mesh and paddles to rotates, the coordinate system can do it. Mesh motion is more general and can deal with rotation, shape changes or normal displacements of wall that changes the domain's volume, e.g. gear pumps and car engines cylinders.

Figure 3.10: Duct Zone Setup in Cell Zone Conditions.

Solid	
Zone Name propeller Material Name aluminum Frit	
Frame Motion Mesh Motion Reference Frame Mesh Motion Relative Specification UDF Relative To Cell Zone absolute Zone Motion Fi	اونيومرسيتي تيڪ ^
Rotation-Axis Origin Rot	tation-Axis Direction
X (m) 0 constant V X	0 constant ~
Y (m) 0 constant V	1 constant ~
Z (m) 0 constant v	0 constant ~
Rotational Velocity	Translational Velocity
Speed (rad/s) -600 constant ~	X (m/s) 0 constant ~
Copy To Mesh Motion	Y (m/s) 0 constant ~ Z (m/s) 0 constant ~

Figure 3.11: Propeller Zone Setup in Cell Zone Conditions.

Iuid		×
Zone Name Solid		
Material Name water-liquid ~ Edit		
Frame Motion 3D Fan Zone Source Terms		
Mesh Motion Fixed Values		
Porous Zone		
Reference Frame Mesh Motion Porous Zone 3D Fan	Zone Embedded LES Reaction Source Terms Fix	ed Values Multiphase
Rotation-Axis Origin	Rotation-Axis Direction	^
X (m) 0 constant ~	X 0 constant ~	
Y (m) 0 constant ~	Y 1 constant ~	
Z (m) 0 constant ~	Z 0 constant ~	

Figure 3.12: Solid Zone Setup in Cell Zone Conditions.

In Boundary Conditions Setup, the inlet zone act as a velocity inlet with the fluid flow velocity of 0.3m/s (Kobeissi, 2017) in y-axis direction which is suitable for water flow in the pool that used in AUV competition. While the outlet zone is a pressure outlet with the pressure of 1 atm. This pressure is referring to the pressure inside the pool. There are just a little different of pressure at the surface and bottom of the pool that can be ignore.

Velocity Inlet			×		
Zone Name					
inlet	inlet				
Momentum Thermal Radiation Species	s DPM Multiphase U	DS			
Velocity Specification Method	Magnitude and Direction		\sim		
Reference Frame	Absolute		~		
Velocity Magnitude (m/s)	0.3	constant	\sim		
Supersonic/Initial Gauge Pressure (pascal)	0	constant	\sim		
Coordinate System	Cartesian (X, Y, Z)	1	~		
X-Component of Flow Direction	0	constant	~		
Y-Component of Flow Direction	1	constant	\sim		
Z-Component of Flow Direction	0	constant	~		
Figure 3.13: Inlet Zone Setup in Boundary Conditions.					
Zone Name INIVERSITI TEKNIKAL MALAYSIA MELAKA					
Momentum Thermal Radiation Specie	Momentum Thermal Radiation Species DPM Multiphase UDS				
Gauge Pressure (pascal)	01325	constant	~		
Backflow Direction Specification Method Normal to Boundary			~		
Radial Equilibrium Pressure Distribution Average Pressure Specification Target Mass Flow Rate					

Figure 3.14: Outlet Zone Setup in Boundary Conditions.

The reference values need to be computed from inlet and outlet to get the density of water, pressure and inlet velocity.

Reference Values	
Compute from	
outlet	~
Reference Values	
Area (m2)	1
Density (kg/m3)	998.2021
Enthalpy (j/kg)	
Pressure (pascal)	101325.1 ويوم سيتي بي 288.16
UNIVER Selecity (m/s)	AL MALAYSIA MELAKA 0.3000002
Viscosity (kg/m-s)	0.001003
Ratio of Specific Heats	1.4

Figure 3.15: References Values Setup.

In Solution Initialization, the standard initialization was selected because the initial values of gauge pressure and inlet velocity need to be computed from inlet and outlet. Then, this setup needs to be initialized before proceeding to run calculation.

Initial	ization Metho	ds			
	Hybrid Initializ Standard Initia	ation alization			
Comp	ute from				
outle	:t				\sim
Refer	ence Frame				
	Relative to Ce Absolute	ll Zone			
Initial	Values 🕺				
Gal	ige Pressure ((pascal)			<u>^</u>
1)1325.1	I	7	G	
XV	elocity (m/s)				
	elocity (m/s)	a	6	ست , ت	ومريد
0	3000002	al.		10 <u>10</u>	
E Z V	elocity (m/s)	NIKAI	. MAL	AYSIA	MEL/
0					

Figure 3.16: Solution Initialization Setup.

In Run Calculation Setup, the number of iterations is set to 100 iterations. Iterations mean the number of times the same equations will performed on the different boundary values. When define a system of simulation through the stand-alone system (CFD), a specific mathematical problem on the specific geometry have been define. Further, it is divided into the mesh, the mesh is comprised of nodes and element. On the first iteration, the entire problem will be executed once on given mesh. Then, the second iterations on the same problem with different mesh will give more proper results than the first iteration. Then this loop goes on until the last iteration.

Run Calculation	
Check Case Preview Mesh Motion	
Number of Iterations Reporting Interval	
ونيونر سيتي تيكنيد Profile Update Interval	١
UNIVERSITI TEKNIKAL MALAYSIA MELAK	Ą
Data File Quantities Acoustic Signals	
Calculate	

Figure 3.17: Run Calculation Setup.

3.4.4 Post-processing

After Run Calculation is finish, the result of the simulation can be view in the Result. By apply the streamline of velocity from the inlet with 500 points, the flow patterns or the streamline of the water from the inlet, between the propeller blades and at the outlet section can be view and analyse.

Coometry						
Geometry	Color Syr	nbol Limits	Render	View		
ype Definition	3D Streamline)				- ·
Domains	All Domains					·
Start From	inlet	Y SIA 40				• ••
Sampling	Equally Space	ed 🦕				•
# of Points 📓	500	5				
1 L				🛠 Prev	iew Seed Points	
Variable	Velocity				7 7 1	· ·
Apply	AIND				Reset	Defaults
5	يا ملا	کل ملیسہ		تى تىك	ونيومرسي	
	Figi	ire 3.18: Det	ans or ve	ocity Streamin	ine Setup.	_

Then, apply the velocity contour at the middle of propeller by using plane to see the

graphic in combination of constant magnitude of velocity.YSIA MELAKA

Details of Plan	e 1					
Geometry	Color Render	View				
Method	YZ Plane				•	^
x	0 [mm]					
Plane Bound	s				Ξ	
Туре	None				•	E.
Plane Type					Ξ	
Slice			○ Sample			~
Apply				Reset	Default	s

Figure 3.20: Setup of Plane.

Details of Con	tour 1		
Geometry	Labels Rend	ler View	
vomains	All Domains		· · · · · ·
Locations	Plane 1		•
Variable	Velocity		▼ …
Range	Global		•
Min			0 [m s^-1]
Max			0.80398 [m s^-1]
# of Contours	5 11		
Advanced P	roperties		÷
Apply]		Reset Defaults

Figure 3.21: Setup of Velocity Contour.

Figure 3.22: Output of Velocity Contour.

Finally, calculate the stream velocity at the outlet by using the Function Calculator. Set the function with Maximum Value of Velocity of v on Outlet. The stream velocity is located at the outlet in y-axis.

Figure 3.23: Calculation of Fluid Velocity Outlet.

(a) CFD image of Design 1

(b) CFD image of Design 2

(c) CFD image of Design 3

(d) CFD image of Design 4

Figure 3.24: Examples of CFD analysis images with stream velocity.

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 **RESULTS**

All the result data for each design in CFD analysis has been collected and compiled in the Table 4.1. The value of the stream velocity for each configuration of related parameter from the CFD analysis will be substituted into the equation of thrust power.

Thrust power equation,
$$e_{1}$$

UNIVERSITI $_T = \left(\frac{\pi}{4}\right) \cdot D^2 \cdot \left(v + \frac{\Delta v}{2}\right) \cdot \rho \cdot \Delta v$ MELAKA

and

$$P = T.v$$

Where,

Thrust, T (N)

Propeller diameter, D(m) = 0.104m for HTR_1 and 0.096m for HTR_2

Velocity of incoming flow (velocity inlet), v or v_i (m/s) = 0.3 m/s

Density of fluid, $\rho_{water}~(kg/m^3)=998.2~kg/m^3$

Additional velocity, acceleration by propeller, $\Delta v (m/s) = (v_0 - v)$

Thrust power, P (W)

4.1.1 Thrust Power

No. of Design	No. of	Blade	Hub to Tip	Nose Cone,	Thrust
L. M.	Blade,	Angle, θ	Ratio (hub	(m)	Power, P
IT TEKING	N	(°)	radius/propeller radius), HTR	Length=L Radius=R	(Watt)
Design 1	3	$I_1 = 60$	0.48	L = 0.025	0.2657
alle	(n	$0_1 = 16$	ة تتكنيا	R = 0.0267	0
Design 2	** 3 **	$I_1 = 60$	0.48	L = 0.025	0.2569
UNIVE	RSITI	02 = 20	AL MALAYSI	R = 0.0267	A
Design 3	3	$I_2 = 64$	0.48	L = 0.025	0.2253
		$0_1 = 16$		R = 0.0267	
Design 4	3	$I_2 = 64$	0.48	L = 0.025	0.2456
		$0_2 = 20$		R = 0.0267	
Design 5	3	$I_1 = 60$	0.53	L = 0.025	0.2159
		$0_1 = 16$		R = 0.0267	
Design 6	3	$I_1 = 60$	0.53	L = 0.025	0.2181
		$0_2 = 20$		R = 0.0267	

Design 7	3	$I_2 = 64$	0.53	L = 0.025	0.2110
		$0_1 = 16$		R = 0.0267	
Design 8	3	$I_2 = 64$	0.53	L = 0.025	0.2072
		$0_2 = 20$		R = 0.0267	
Design 9	3	$I_1 = 60$	0.48	L = 0.035	0.2214
		$0_1 = 16$		R = 0.0470	
Design 10	3	$I_1 = 60$	0.48	L = 0.035	0.2596
		$0_2 = 20$		R = 0.0470	
Design 11	3	$I_2 = 64$	0.48	L = 0.035	0.2133
AL MA	LAYSIA	$0_1 = 16$		R = 0.0470	
Design 12	3	$I_2 = 64$	0.48	L = 0.035	0.2276
TEK	1	$0_2 = 20$		R = 0.0470	
Design 13	3	$I_1 = 60$	0.53	L = 0.035	0.2355
(b)		$0_1 = 16$./	R = 0.0470	1
Design 14	<u></u>	$I_1 = 60$	0.53	L = 0.035	0.2126
UNIVE	RSITI	$0_2 = 20$	 AL MALAYSI	R = 0.0470	A
Design 15	3	$I_2 = 64$	0.53	L = 0.035	0.1937
		$0_1 = 16$		R = 0.0470	
Design 16	3	$I_2 = 64$	0.53	L = 0.035	0.1997
		$0_2 = 20$		R = 0.0470	
Design 17	4	$I_1 = 60$	0.48	L = 0.025	0.3178
		$0_1 = 16$		R = 0.0267	
Design 18	4	$I_1 = 60$	0.48	L = 0.025	0.3217
		$0_2 = 20$		R = 0.0267	

Design 19	4	$I_2 = 64$	0.48	L = 0.025	0.2883
		$0_1 = 16$		R = 0.0267	
Design 20	4	$I_2 = 64$	0.48	L = 0.025	0.2898
		$0_2 = 20$		R = 0.0267	
Design 21	4	$I_1 = 60$	0.53	L = 0.025	0.2517
		$0_1 = 16$		R = 0.0267	
Design 22	4	$I_1 = 60$	0.53	L = 0.025	0.2768
		$0_2 = 20$		R = 0.0267	
Design 23	4	$I_2 = 64$	0.53	L = 0.025	0.2632
at m	LAYSIA	01 = 16		R = 0.0267	
Design 24	4	$I_2 = 64$	0.53	L = 0.025	0.2822
TEK	-	$0_2 = 20$		R = 0.0267	
Design 25	4	$I_1 = 60$	0.48	L = 0.035	0.3065
~11	in .	$0_1 = 16$		R = 0.0470	
- the				1.0.005	0.0017
Design 26	u ⁴ u ⁴	$I_1 = 60$	0.48	L = 0.035	0.3817
UNIVE	RSITI	$0_2 = 20$	AL MALAYSI	R = 0.0470	А
Design 27	4	$I_2 = 64$	0.48	L = 0.035	0.2946
		$0_1 = 16$		R = 0.0470	
Design 28	4	$I_2 = 64$	0.48	L = 0.035	0.2835
		$0_2 = 20$		R = 0.0470	
Design 29	4	$I_1 = 60$	0.53	L = 0.035	0.2798
		$0_1 = 16$		R = 0.0470	
Design 30	4	$I_1 = 60$	0.53	L = 0.035	0.2698
		$0_2 = 20$		R = 0.0470	

Design 31	4	$I_2 = 64$	0.53	L = 0.035	0.2705
		$0_1 = 16$		R = 0.0470	
Design 32	4	$I_2 = 64$	0.53	L = 0.035	0.2594
		$0_2 = 20$		R = 0.0470	

4.1.2 Graph of Thrust Power

Figure 4.1: Graph of P against D and v_0 .

4.2 **DISCUSSION**

Based on the results in Table 4.1 and graph in Figure 4.1, the parameters configuration of propeller blade in Design 26 indicated the highest value of thrust power, 0.3817W compared to others design. Design 26 are using 4 blades, blade angle with inlet angle of 60° and outlet angle of 20°, hub to tip ratio of 0.48 and with nose cone of 0.035m in length and 0.0470m in radius. This show that design with smaller inlet angle, bigger outlet angle, smaller hub to tip ratio or bigger propeller blade diameter and longer nose cone can generate more stream velocity and thrust power. The longer nose cone will reduce drag force and make the stream flow more ease through the blade. while twisted blade with smaller inlet angle and bigger outlet angle will provide more equivalent thrust along the blade that will help to increase the stream flow velocity. The bigger diameter of propeller blade obviously will increase the velocity of stream flow by give more force but at the same time it is increase the friction and contact between the surface of propeller blade and flow of streamline. The overall results are randomly for each design which mean it cannot be conclude mathematically.

These results may influence by some conditions such as water hammer and friction between water flow and surface of propeller blade. Water hammer occur when the motion of water flow is forced to stop or force to change it direction suddenly. It will reduce the speed of water flow and change the momentum of water flow until the pressure in front of propeller increase. While the friction between the water flow and surface of propeller blade will depend on the size or length and the angle of propeller blade. The higher the size or length of propeller blade, the higher the friction between the water flow and surface of propeller blade. It will decrease the speed of water flow or stream velocity.
While based on Figure 4.1, the graph of thrust power for Design 1 until Design 32 with separated line for 3 blades and 4 blades presents both patterns or trends of thrust power for 3 blades and 4 blade from Design 1 to Design 32 are almost the same. This indicated that the stream velocity output from CFD analysis is acceptable while the calculated value of thrust power is in small-scale because it is a minimum thrust power of propeller for every parameters configurations that will be generated from 0.3m/s of inlet velocity at rotation of blade at 600RPM.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

The literature study to investigate the blade parameters of propeller has been presented in this report. Type of propeller, number of blades, blade angle, hub to tip ratio or size of propeller, design of nose cone and duct are all parameters that will be a manipulated data to find the optimum performance of propeller.

All the information and requirement such as data of blade parameters are gain from the best measurement values of existing project and experiment. The twisted shape of blade will be designed with parameters. While the design of ducted is the standard design used in propeller of AUV with bigger inlet diameter and smaller outlet diameter. By using matrix multiplication, all data was combined to get all designs in. The 3-dimension solid modelling of each data pairing have been designed and drawn in the computer aided design (CAD) software which is CATIA.

CFD analysis has been used in this study to analyse the flow patterns of the streamlines at the inlet and outlet of the propeller blade. The stream velocities data for each of blade's parameters configuration involved were also gained from this analysis. Therefore, from all these data, the estimated thrust power produced by the propeller blade can be calculated by substituted it with related thrust power equation. From the results in Table 4.1, indicated that the maximum thrust power which able to produce by the propeller blade with 4 blades, blade angle with inlet angle of 60° and outlet angle of 20°, hub to tip ratio of 0.48 and with nose cone of 0.035m in length and 0.0470m in radius was 0.3817 W by Design 26. In this case, the minimum output value produced was about 0.1937 W by Design 15. From the Figure 4.1 also, increasing of number of blades will cause the value of the thrust power produced by the propeller became higher. Furthermore, by increasing the outlet angle and decreasing the inlet angle of blades, the thrust power produced by the propeller blade will also became higher because it generates higher pressure different around propeller. While nose cone with longer length and smaller radius will make the waterflow more efficient. From the analysis, 4 blades of propeller produced more higher thrust power than 3 blades propeller. While the average outlet flow velocity based on blade parameters configurations which affected the performance (thrust power) and the optimum blade parameters configuration for the AUV are in range of 0.4494 m/s to 0.5147 m/s from the velocity inlet of 0.3 m/s.

However, fabrication and field experiments are important to be actualized in which the parameters and specifications configurations included must be the same as what had been conducted in CFD analysis so that comparison can be made between both results later. The design should be fabricated, and experiments should be conducted as a primary component of the scientific method to test theories and hypotheses about how physical processes work under real conditions.

The research in designing and manufacturing of marine propeller especially for parameters of the blade need to be increase so the development of new concepts in propeller designing can be improve and the optimum performance of propeller can be obtained.

REFERENCES

Shaikh, A., 2015. Study of Propeller Design Parameters. *ICITDCEME'15 Conference Proceedings*. 2015. Maharashtra, India.

Pivano, L., 2008. Thrust Estimation and Control of Marine Propellers in Four- Quadrant Operations. Norwegian University of Science and Technology.

Chrusciel, T., Ciba, E., and Dopke, J., 2014. CFD and FEM model of an underwater vehicle propeller. *Polish Maritime Research*, 3(83), pp. 40-45.

Zhang, Q., & Jaiman, R. K. (2019). Numerical analysis on the wake dynamics of a ducted propeller. *Ocean Engineering*, 171, pp. 202-224.

Bhattacharyya, A., Krasilnikov, V., & Steen, S. (2016). A CFD-based scaling approach for ducted propellers. *Ocean Engineering*, 123, pp. 116-130.

Subhas, S., Saji, V.F., Ramakrishna, S., and Das, H.N., 2016. CFD Analysis of a Propeller Flow and Cavitation. *International Journal of Computer Applications*.

Husaini, M., Samad, Z., & Rizal, M. (2011). Autonomous Underwater Vehicle Propeller Simulation using Computational Fluid Dynamic. *Computational Fluid Dynamics Technologies and Applications*.

Song, Y. S., & Arshad, M. R. (2016). Thruster modeling for a Hovering Autonomous Underwater Vehicle considering thruster-thruster and thruster-hull interaction. 2016 IEEE International Conference on Underwater System Technology: Theory and Applications (USYS).

Go, J., Yoon, H., & Jung, J. (2017). Effects of a duct before a propeller on propulsion performance. *Ocean Engineering*, 136, pp. 54-66

Ghassemi, H., Mardan, A., and Ardeshir, A., 2012. Numerical Analysis of Hub Effect on Hydrodynamic Performance of Propellers with Inclusion of PBCF to Equalize the Induced Velocity. *Polish Maritime Research* 2(73), pp. 17-24

Othman, M. M., Razak, J. A., Bashar, M. F., Muhammad, N. S., & Sopian, K. (2014). CFD Analysis on the Flat Runner Blades of Propeller's Turbine under Low Head and Low Flow Condition. *Applied Mechanics and Materials*, 699, pp. 437-442

Lee, C.S., Choi, Y.D., Ahn, B.K., Shin, M.S., & Jang, H.G., 2010. Performance optimization of marine propellers. *Inter J Nav Archit Oc Engng*, 2, pp. 211-216

Djodikusumo, I., Diasta, I. N., & Awaluddin, I. S. (2016). Geometric Modeling of a Propeller Turbine Runner Using ANSYS BladeGen, Meshing Using ANSYS TurboGrid and Fluid Dynamic Simulation Using ANSYS Fluent. Applied Mechanics and Materials, 842, 164-177.

Mutoh, H., & Maekawa, K. (2008). 119 CFD Analysis Example using "FLUENT for CATIA V5". The Proceedings of Conference of Kansai Branch, 2008.83(0)

Bothe, F., Friebe, C., Heinrich, M., & Schwarze, R. (2014). CFD Simulation of Incompressible Turbomachinery — A Comparison of Results From ANSYS Fluent and OpenFOAM. Volume 2B: Turbomachinery

Meng, X., Qin, Y., Zhang, M., & Xu, Y. (2010). Thruster Fault Diagnosis of An AUV Based on Multi-AUV System. Robot, 32(3), 314-320

Healey, A., Rock, S., Cody, S., Miles, D., & Brown, J. (n.d.). Toward an improved understanding of thruster dynamics for underwater vehicles. Proceedings of IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV94)

Saunders, A., & Nahon, M. (n.d.). The effect of forward vehicle velocity on through-body AUV tunnel thruster performance. Oceans 02 MTS/IEEE

Guillaume. (n.d.). 2-blade vs 3-blade and 4-blade propellers. Retrieved from http://aerotrash.over-blog.com/2015/02/2-blade-vs-3-blade-and-4-blade-propellers.html

Ranjan, R. R., Parmar, D. V., Raipuria, H. K., & Singh, P. B. (2015). Innovative Nose Cone Design of Aircraft. Volume 1: Advances in Aerospace Technology

Software, M. H. (n.d.). Retrieved from https://heliciel.com/en/helice/Vrillage calage pale helice.htm UNIVERSITITEKNIKAL MALAYSIA MELAKA

 $T200\ Thruster.\ (n.d.).\ Retrieved\ from\ https://www.bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster/$

Xiang, S., Yang, K., & Zhao, W. (2018). Aerodynamic Characteristics Test for Two Kinds of Propeller with Different Blade Angle. DEStech Transactions on Engineering and Technology Research, (Amee)

Joung, T., Sammut, K., He, F., & Lee, S. (2012). Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis. International Journal of Naval Architecture and Ocean Engineering, 4(1), 44-56.

APPENDIX

APPENDIX A

No. of	Stream Velocity	Thrust.		No. of	Stream Velocity	Thrust.
Design	Outlet, v_0 (m/s ²)	T (N)		Design	Outlet, v_0 (m/s ²)	T (N)
Design 1	0.4720	0.5630		Design 17	0.4922	0.6456
Design 2	0.4682	0.5486		Design 18	0.4937	0.6518
Design 3	0.4548	0.4954		Design 19	0.4810	0.5993
Design 4	0.4636	0.5297		Design 20	0.4816	0.6018
Design 5	0.4669	0.4624		Design 21	0.4838	0.5204
Design 6	0.4680	0.4661		Design 22	0.4948	0.5593
Design 7	0.4645	0.4543		Design 23	0.4889	0.5383
Design 8	0.4626	0.4480		Design 24	0.4971	0.5675
Design 9	ما 0.4530	0.4885	i.	Design 25	0.4880	0.6281
Design 10	0.4695	0.5530		Design 26	0.5147	0.7416
Design 11 [∪]	0.4494	0.4747		Design 27	0.4834	0.6092
Design 12	0.4558	0.4993		Design 28	0.4791	0.5916
Design 13	0.4763	0.4944		Design 29	0.4961	0.5639
Design 14	0.4653	0.4570		Design 30	0.4918	0.5486
Design 15	0.4557	0.4251		Design 31	0.4921	0.5496
Design 16	0.4588	0.4353		Design 32	0.4872	0.5323

Table of stream velocity outlet from CFD analysis with Calculated Thrust.

APPENDIX B

Figure of CFD analysis output with stream velocity.

CFD image of Design 11

CFD image of Design 12

CFD image of Design 13 CFD image of Design 14

CFD image of Design 16

CFD image of Design 21

CFD image of Design 22

CFD image of Design 23

CFD image of Design 28

CFD image of Design 29

CFD image of Design 30

APPENDIX C1

	PSM I																			
	Activity Week																			
			2	3	4	5	6	7	7	8	9	10	11	12	13	14	15			
	Title Selection Literature Review																			
	Proposal Writing																			
	Data Collection						_													
	Data Configurations																			
	CAD Design																			
	Report Writing	AYSI	1																	
APPENDIX C2 Gantt Chart for PSM II (Semester 2 2018/2019)																				
PSM II																				
	Activity UNIVER	ISIT		EP	CIVI	KA		WI /	٩L	Av	Veek	AIV	EL	AK	A					
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			
	Detail CAD Design																			
ſ	CFD Analysis																			
	Performance Calculation																			
	Justification on Design Configurations																			
	Design Configuration Selection																			
	Report Writing																			
	Seminar																			

Gantt Chart for PSM I (Semester 1 2018/2019)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA