STUDY OF FLOW INSIDE THERMOACOUSTIC SYSTEM

LEE WEE TECK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

STUDY OF FLOW INSIDE THERMOACOUSTIC SYSTEM

LEE WEE TECK

This report is submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I decleare that this project report entitled "Study Of The Flow Inside Thermoacoustic System" is the result of my own work except as cited in the references.

Signature	:	•
Name	: LEE WEE TECK	
Date	:	

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is enough in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:
Supervisor Name	: DR. FATIMAH AL-ZAHRAH BINTI MOHD SA'AT
Date	:

DEDICATION

To my beloved father and mother.

ABSTRACT

The study of flow in thermoacoustic system is important in order to find out ways to increase the efficiency of thermoacoustic engine. However, the study of thermoacoustic principle is difficult to be understood without the working experimental apparatus and simulation model. The objectives of this project is to design a small scale thermoacoustic prototype for experimentation, to test the small scale thermoacoustic system using suitable measurement methods, and to model a simple thermoacoustic flow field by using computational fluid dynamics (CFD) software. In experimentation, a small thermoacoustic refrigerator (TAR) rig that is operating under 133.45 Hz is built with two different type of stacks; acrylonitrile butadiene styrene (ABS) and stainless-steel scrubber. In CFD simulation, a simple CFD model is designed based on the actual operating parameters of the experiment rig with ABS stack only. Experimental result shows that a temperature drops of approximately 1 °C is achieved for both type of stacks and the same result is also obtained from the CFD simulation with ABS as the stack. The results are discussed and the recommendations for further research on the study of flow inside thermacoustic system are suggested at the end of the report.

ABSTRAK

Kajian aliran dalam sistem termoakustik adalah penting untuk mengetahui cara meningkatkan kecekapan enjin termoakustik. Walau bagaimanapun, kajian prinsip termoakustik sukar difahami tanpa peralatan uji kaji dan model simulasi. Objektif projek ini adalah untuk merekabentuk prototaip termoakustik berskala kecil untuk eksperimen, untuk menguji sistem termoakustik berskala kecil dengan menggunakan kaedah pengukuran yang sesuai, dan memodelkan medan aliran termoakustik dengan menggunakan perisian dinamik bendalir komputasi (CFD). Dalam eksperimen, sebuah penyejuk termoakustik kecil (TAR) yang beroperasi di bawah 133.45 Hz dibina dengan menggunakan dua jenis timbunan yang berbeza yang diperbuat daripada acrylonitrile butadiene styrene (ABS) dan span keluli tahan karat dan diuji dengan menggunakan instrumen ukuran yang sesuai. Dalam simulasi CFD, satu model CFD yang mudah telah direka berdasarkan parameter operasi sebenar dalam rig uji kaji yang menggunakan timbunan ABS sahaja. Hasilnya, kejatuhan suhu adalah kira-kira 1 °C untuk kedua-dua jenis timbunan dapat dihasilkan dan keputusannya adalah sama dengan apa yang didapatkan daripada simulasi CFD untuk ABS sahaja. Semua dapatan dalam projek ini dibincangkan dan cadangan untuk penyelidikan lanjut tentang kajian aliran di dalam sistem termoakustik dicadangkan di bahagian hujung laporan.

V

ACKNOWLEDGEMENT

First and foremost, I would like to say thank you to Universiti Teknikal Malaysia Melaka (UTeM) for providing me a golden opportunity to study the Bachelor of Mechanical Engineering course and providing facilities, equipment, and resources to me in order to complete my final year project (FYP).

Next, I would like to give my deepest appreciation to my FYP supervisor, DR. Fatimah Al-Zahrah binti Mohd Sa'at for supervising and guiding me so that I could complete my FYP along this year. Thanks for her patience, kindness, and guidance on sharing her knowledge regarding my FYP field.

After that, I want to say thank you to my second examiner, DR. Mohamad Shukri bin Zakaria and Prof. Madya DR. Tee Boon Tuan for providing me suggestions and advices for my FYP. I would also like to thank Miss Dahlia binti Johari for her kindness to share her knowledge and experience on thermoacoustic and measurement instrumentation.

Lastly, I want to thank my coursemates, friends, and family for their encouragement and mental support throughout my study in UTeM.

TABLE OF CONTENT

CHAPTER	CON	TENT	Page
	DECLARATION		i
	APPH	ROVAL	ii
	DED	ICATION	iii
	ABST	ГКАСТ	iv
	ABST	ΓRAK	V
	ACK	NOWLEDGEMENT	vi
	TAB	LE OF CONTENT	vii – ix
	LIST	OF TABLES	Х
	LIST	OF FIGURES	xi – xiii
	LIST	OF ABBREVIATION	xiv
	LIST	OF SYMBOLS	xv – xvii
1	INTR	RODUCTION	1-5
	1.1	Background	1-3
	1.2	Problem Statement	4
	1.3	Objectives	5
	1.4	Scope of Project	5
2	LITE	RATURE REVIEW	6 - 27
	2.1	Thermoacoustic	6-11
		2.1.1 General Formula	10 - 11
	2.2	Thermoacoustic Refrigerator	11 - 22
		2.2.1 Design of the Thermoacoustic Refrigerator	13 – 18
		2.2.2 Design of Stack	18 - 22
	2.3	CubePro 3D Printer	23 - 25
	2.4	Computational Fluid Dynamics (CFD) Simulation	25 - 27

vii

3	MET	HODO	LOGY	28 - 65
	3.1	Flow (Chart	28 - 31
	3.2	Therm	oacoustic Refrigerator Apparatus	32 - 43
		3.2.1	Thermoacoustic Refrigerator Components	34
		3.2.1.1	Loudspeaker Box	34
		3.2.1.2	2 Resonator	35
		3.2.1.3	3 Loudspeaker	36
		3.2.1.4	4 Stack	36 - 39
		3.2.1.5	5 Cover	39 - 40
		3.2.1.6	5 Amplifier	40 - 41
		3.2.1.7	Function Generator	42 - 43
	3.2.2	Fabric	ation and Assembling	44 - 49
		3.2.2	Fabrication and Assembling	44 - 45
		3.2.3	Calibration and Debugging	45 - 46
		3.2.4	Summary of Thermoacoustic Refrigerator	47 - 49
	3.3	Comp	utational Fluid Dynamics (CFD) Simulation	50 - 65
		3.3.1	Geometry Drawing	50 - 52
		3.3.2	Meshing	52 - 55
		3.3.3	Mesh Checking	56 - 57
		3.3.4	Solver Setting	58 - 63
		3.3.5	Grid Independence Test Method	64
		3.3.6	Validation Method	65
4	RESU	ULT AN	ALYSIS AND DISCUSSION	66 - 80
	4.1	Experi	imental Result	66 – 69
		4.1.1	Experimental Result for 3D-Printed ABS	66 – 67
			Stack	
		4.1.2	Experimental Result for Stainless-Steel	68 – 69
			Scrubber Stack	
	4.2	Comp	utational Fluid Dynamics (CFD) Results	69 – 78
		4.2.1	Grid Independence Test	70
		4.2.2	Model Validation	71 - 72

viii

	4.2.3	Pressure Result	72 - 74
	4.2.4	Temperature Result	75 – 76
	4.2.5	Velocity Result	77 - 78
4.3	Discu	ssion	79 – 80
CON	CLUSI	ON AND RECOMMENDATION	81 - 84
5.1	Concl	usion	81 - 82
5.2	Recor	nmendation	83 - 84
REF	ERENC	TES	85 - 92
LIST	OF AP	PENDICES	93 – 95
APPI	ENDIX	A1 Drawing of ABS Stack	93
APPI	ENDIX	A2 Gantt Chart for PSM 1	94
APPI	ENDIX	A3 Gantt Chart for PSM 2	95

LIST OF TABLES

TABLE	TITLE	PAGE	
2.1	Dimensionless parameters in the thermoacoustic refrigerator	14	
	system		
2.2	Materials' Thermal Properties Comparison	21	
2.3	Nomenclature of Navier-Stokes Equations' Parameters	27	
3.1	Action taken at Phase 1 (PSM 1)	29	
3.2	Action taken at Phase 2 (PSM 2)	30	
3.3	Specification of Flepcher FLP-MT1201 Amplifier	41	
3.4	Specification of MCP SG1005 Function Generator	42 - 43	
3.5	Thermoacoustic Refrigerator's Parameter (3D-Printed ABS	48	
	Stack) Summary		
3.6	Thermoacoustic Refrigerator's Parameter (Stainless-Steel	49	
	Scrubber Stack) Summary		
3.7	Details on Edge Meshing in ANSYS Meshing	53	
3.8	Details on "MultiZone Quad/Tri" Inserted Mesh Method	54	
3.9	Skewness and Aspect Ratio of Mesh Model	57	
4.1	Percentage error of amplitude	72	
4.2	Average temperature at both end points of ABS stack	76	
4.3	Summary of Simulation Cases		

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1(a)	Alpha Type Stirling Engine	2
1.1(b)	Beta Type Stirling Engine	2
1.2	Schematic Diagram of Thermoacoustic Refrigerator	3
2.1(a)	Schematic Diagram of a Thermoacoustic Refrigerator	7
2.1(b)	Schematic Diagram of a Thermoacoustic Engine	7
2.2	Thermoacoustic Stirling Engine	8
2.3	Schematic Diagram of Thermoacoustic Cycle	9
2.4	Thermoacoustic Refrigerator	12
2.5	Tabletop Thermoacoustic Refrigerator Apparatus	15
2.6	Stack's Cross-section in Thermoacoustic System	18
2.7	Specific Heat and Thermal Conductivity of Materials	21
2.8	CubePro 3D Printer	23
2.9	Build Settings of CubePro Software	24
2.10	BCC Single Unit Cell for 1 Complete Lattice Structure Block	24
3.1	Flow Chart of Methodology	31
3.2	Schematic Diagram of Thermoacoustic Refrigerator Apparatus	32
3.3	Thermoacoustic Refrigerator Experiment Rig	33
3.4	The Speaker Box of Thermoacoustic Refrigerator	34
3.5	Resonator of Thermoacoustic Refrigerator	35
3.6	Sound Driver for Thermoacoustic Refrigerator	36
3.7	Cross-section of 3D Printed Stack	37
3.8(a)	3D-Printed Stack	38
3.8(b)	Stainless-Steel Scrubber Stack	38
3.9	Cover for Thermoacoustic Refrigerator Resonator	39

3.10	Flepcher FLP-MT1201	40
3.11	MCP SG1005 Function Generator	43
3.12	V-Tech Acetic Silicone	44
3.13(a)	M4 Screws	45
3.13(b)	M4 Bold Nuts	45
3.14	PicoLog Data Logger TC 08	46
3.15	SENTRY ST-730 Hot Wire	46
3.16	Type K Thermocouples	46
3.17	2D Geometry Drawing in ANSYS	50
3.18	Geometry Dimension Parameters	51
3.19	Meshing Methods Used in ANSYS Meshing	52
3.20	Zoom in View of Mesh Display At Stack's Zone	55
3.21	Defined Named Selection on Boundaries	55
3.22	Mesh Size	56
3.23	Mesh Quality	56
3.24	General Setting Setup	58
3.25(a)	Specific heat Polynomial Profile of Air	59
3.25(b)	Thermal Conductivity Polynomial Profile of Air	59
3.26	Power Law Viscosity Profile of Air	59
3.27	Mass Flux Code for User-Defined Function	60
3.28	Solution Methods Configuration	61
3.29	Surface Monitor Setting	62
3.30	Run Calculation Configuration	63
4.1	Graph of temperature at two end points of 3D-Printed ABS stack	67
	against time	
4.2	Graph of temperature at two end points of stainless-steel scrubber	68
	stack against time	
4.3	x-Velocity at point-52 for different mesh densities	70
4.4	Comparison of x-velocity at Point-52 between the theoretical and	71
	simulation results	
4.5	Pressure contour result from CFD simulation	73

4.6	Graph of pressure against x direction	73
4.7	Graph of pressure against time step at point-52	74
4.8	Temperature contour result from CFD simulation	75
4.9	Graph of temperature against x direction	75
4.10	Velocity contour result from CFD simulation	77
4.11	Graph of velocity against x direction	78
4.12	Velocity against number of time steps at point-52	78

xiii

LIST OF ABBREVIATION

ABS	Acrylonitrile Butadiene Styrene
ANSYS	Analysis System
СОР	Coefficient of Performance
CFD	Computational Fluid Dynamics
FYP	Final Year Project
GA	Genetic Algorithm
MOGA	Multi-Objective Genetic Algorithm
Ph. D.	Doctor of Philsophy
PISO	Pressure-Implicit with Splitting of Operators
PISO PLA	Pressure-Implicit with Splitting of Operators Polylactic Acid
PLA	Polylactic Acid
PLA PSM	Polylactic Acid Projek Sarjana Muda
PLA PSM SOGA	Polylactic Acid Projek Sarjana Muda Single-Objective Genetic Algorithm
PLA PSM SOGA STL	Polylactic Acid Projek Sarjana Muda Single-Objective Genetic Algorithm Stereolithography

xiv

LIST OF SYMBOLS

λ	=	Wavelength of sound
α	=	Speed of sound
f	=	Oscillation frequency
ρ	=	Density of air
k	=	Thermal conductivity
ω	=	Angular frequency
π	=	Pi (Mathematical constant for circle)
C_p	=	Specific heat per unit mass
κ	=	Diffusivity of gas
μ	=	Dynamic viscosity
υ	=	Kinematic viscosity
σ	=	Prandtl number
δ_y	=	Viscous penetration depth
δ_k	=	Thermal penetration depth
Q_c	=	Cooling Power
W	=	Acoustic Power
Q_{cn}	=	Normalized cooling power
W	=	Normalized acoustic power
δ_{kn}	=	Normalized thermal penetration depth
COP	=	Coefficient of performance
L_s	=	Stack length
Lsn	=	Normalized stack length
p_o	=	Dynamic pressure
p_m	=	Mean pressure
X_n	=	Normalized stack position

XV

χ_s	=	Stack center position
γ	=	Ratio of specific heat (Gamma)
Уo	=	Half spacing of the stack
J	=	Acoustic wave number
T_m	=	Mean Temperature
ΔT_m	=	Temperature difference across the stack
ΔT_{mn}	=	Normalized temperature difference
В	=	Blockage ratio (Porosity)
ΔT_{crit}	=	Critical longitudinal temperature gradient
η	=	Thermal efficiency
T_c	=	Cold end temperature
T_h	=	Hot end temperature
Q	=	Conservative variable sector
t	=	Time
Ε	=	Inviscidflux vector along the x-axis
x	=	Horizontal Cartesian coordinate
F	=	Inviscid flux vector along y-axis
у	=	Vertical Cartesian coordinate
E_v	=	Viscous flux vector along the x-axis
F_v	=	Viscous flux vector along the y-axis
е	=	Total energy per unit mass
Т	=	Temperature
τ	=	Stress tensor
$ au_{xx}$	=	Stress tensor along x-axis
$ au_{yy}$	=	Stress tensor along y-axis
$ au_{xy}$	=	Stress tensor along xy-axis
v	=	Vertical velocity component
и	=	Horizontal velocity component
g	=	Gravitational acceleration, 9.81 m s ⁻²
P_1	=	Inlet oscillating pressure

m_1	=	Inlet mass flux
0		51 11.00

 θ = Phase difference

xvii

CHAPTER 1

INTRODUCTION

1.1 Background

Thermoacoustic (TA) system is a system that is able to produce either heating effect or cooling effect based on thermoacoustic principle. Thermoacoustic principles allow gas particles to expand, compress and exchange heat with adjacent surfaces to complete a thermodynamic cycle so that heating or cooling effect can be produced.

These processes take place inside a resonator without the use of any moving mechanism, except for the acoustic driver. Hence, it is greener technology than the conventional refrigerator or engine.

The meaning of "Thermoacoustic" (TA) is a field from combination of thermodynamic and acoustic fields which is self-explanatorily defined by Nikolaus Rott in1980 (Rott, 1980). According to Swift (2001), the early stage of thermoacoustic was begun with Stirling engines since a century ago and the early concept of the Stirling engine was to produce work with the combination of crankshaft, piston, connecting rods, displacer, and et cetera while the structure of a Stirling engine is shown in Figure 1.1(a) and Figure 1.1(b) as in below.

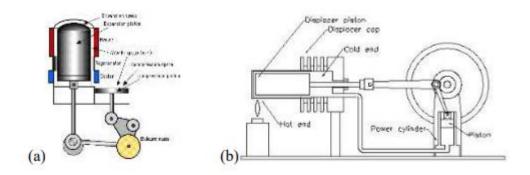


Figure 1.1: (a)Alpha Type Stirling Engine

(Retrieved from: https://www.ohio.edu/mechanical/stirling/engines/engines.html) and (b)Beta Type Stirling Engine

(Retrieved from: https://www.webcomsknkwrks.com/schmstirl.jpg)

Based on the analysis that was done in nineteenth century ago, powerful computational tools during that time had been used to analyze the four discrete steps of Stirling cycle, that is compression, displacement to and fro (two steps), and expansion in order to study the relation between the pressure change and velocity in the Stirling engine.

The studied analysis was based on extreme approximation in order to simplify the analysis or in another word, the analyzed Stirling cycle could be said as idealized cycle. Figure 1.2 below shows schematic diagram of how does a thermoacoustic engine work.

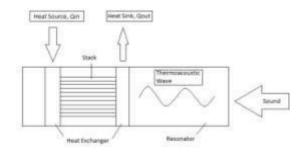


Figure 1.2: Schematic Diagram of Thermoacoustic Refrigerator

However, the study of Stirling cycle gave a sparking idea to Peter Ceperly that the phasing between pressure and velocity in the thermodynamic elements of Stirling machine is the same as the phasing between pressure and velocity in a traveling acoustic wave. As long as there is a phasing between pressure and velocity, there will be a temperature change and this concept leads to invention of thermoacoustic engine where the engine is used as heat exchanger or sub-cooler in both heat engine and refrigerator.

The components of a simple thermoacoustic engine is basically built from resonator, stack, and sound source. The two ends of the stack in the engine experience temperature increase and temperature decrease when a sound wave is passing through the stack. Due to this phenomenon, the thermoacoustic engine can be used as heat exchanger or sub-cooler in both heat engine and refrigerator.

1.2 Problem Statement

If the thermoacoustic engine is used as a heat exchanger or sub-cooler in power plant industry, the heat exchanger structure is much simpler than the commercial heat exchanger in power plant system and of course the cost is relatively cheaper than commercial heat exchanger. However, the work generated due to temperature change in thermoacoustic engine may be insufficient for huge electric energy generation. In order to obtain a higher efficiency or a more stable thermoacoustic system, the study of flow characteristic and heat transfer performance of the acoustic wave inside the thermoacoustic engine is very important to help us to understand the behavior of the acoustic wave.

Thermoacoustic has been studied by many researchers around the world but there are very few thermoacoustic laboratories available in Malaysia. Building a big and complicated thermoacoustic system may be costly especially for beginners. However, few researchers such as Zolpakar et al. (2017), Yap and Cruz (2015), and Russell and Weibull (2002) reputed on research activities on the thermoacoustic system just by building a small simple thermoacoustic engine or thermoacoustic refrigerator. Understanding thermoacoustic system is difficult without the help of working apparatus. Hence, there is a need to conduct feasibility study for a laboratory scale thermoacoustic apparatus. Moreover, most earliest experimental investigations of thermoacoustic system were not accompanied by appropriate Computational Fluid Dynamics (CFD) simulations. This makes it difficult to understand the fluid dynamics and thermodynamics properties of the system. Hence, a simple CFD model of the laboratory scare thermoacoustic system is also needed.

1.3 Objectives

The objectives of this study or project are:

- i. To design a small scale thermoacoustic prototype for experimentation.
- ii. To test the small scale thermoacoustic system using suitable measurement method.
- iii. To model a simple thermoacoustic flow field by using Computational Fluid Dynamics (CFD) software.

1.4 Scope of Project

This project is carried out experimentally and numerically. A simple thermoacoustic prototype will be developed using available cheap materials. A simple Computational Fluid Dynamics (CFD) model is also built by using ANSYS Fluent to provide additional details of flow behavior inside the system. This project is not covering details such as efficiency or stability of thermoacoustic engine, the fitness value and so on. This study is mainly focused on the study of flow of a thermoacoustic system. Therefore, the study concerns only the temperature at both ends of stack, pressure and velocity in thermoacoustic refrigeration system. Since this study is only focused on the resonator part of thermoacoustic system, either thermoacoustic refrigerator or thermoacoustic engine can be selected to be studied and hence, flow inside of thermoacoustic refrigerator system is chosen to be studied in this project.