DYNAMIC PERFORMANCE OF LONG COMMERCIAL VEHICLE

MUHAMMAD ZARUL BIN KHAIRUL AZMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

DYNAMIC PERFORMANCE OF LONG COMMERCIAL VEHICLE

MUHAMMAD ZARUL BIN KHAIRUL AZMAN

This report is submitted in fulfillment of the requirement for the degree of Bachelor of Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2019

DECLARATION

I declare that this project report entitled "Dynamic Performance Of Long Commercial Vehicle" is the result of my own work except as cited in the references

Signature	:	
Name	:	
Date	:	

APPROVAL

I hereby declare that I have read this project report and in my opinion this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering.

Signature	:.	
Name of Supervisor	:	
Date	:	

DEDICATION

To my beloved mother, Maimun Binti Abdullah and my supportive father, Khairul Azman Bin

Hosnan.

ABSTRACT

Dynamic performance of a vehicle is the important aspect in designing a vehicle. As for commercial vehicle which is related in delivering passengers and goods, comfort and safety are the crucial characteristics that must be taken into consideration. Three type of test simulation which cover ride, handling and stability criteria were carried out to determine the behavior of the vehicle in real world driving condition. Every test was carried out with different test parameters at different vehicle's speeds and masses. In the ride criteria, the bounce sine sweep test was carried out to represent the motion of vehicle when travelling on uneven road surface. Then, the handling criteria used double lane change test to represent the motion of vehicle during overtaking on the highway. For the stability criteria, J-turn type test was carried out to represent motion of vehicle when a sharp steering input was applied to the vehicle in an event of avoiding obstacle during emergency situation. All of the results from the tests are analyzed based on different test parameters to determine the difference in dynamic behavior of the vehicle. Higher values of vehicle's speed and produce higher value of test output results.

v

ABSTRAK

Prestasi dinamik sesebuah kenderann ialah suatu aspek yang amat penting dalam fasa rekaan kenderaan. Bagi kenderaan komersial yang amat berkait dalam kerja penghantaran penumpang dan barang-barangan, keselesaan dan keselamatan adalah ciri penting yang perlu diambil kira dalam fasa rekaan kenderaan. Oleh itu, tiga jenis ujian simulasi yang merangkumi ciri penunggangan, pengendalian dan kestabilan telah dijalankan untuk menilai kelakuan kenderaan dalam situasi pemanduan sebenar. Setiap ujian dijalankan dengan menggunakan parameter ujian yang berbeza iaitu kelajuan berbeza dan berat berbeza. Dalam ciri penunggangan, ujian "Bounce sine sweep" telah dijalankan untuk mewakili pergerakan kenderaan ketika melalui permukaan jalan yang tidak rata. Selepas itu, ciri pengendalian menggunakan ujian "Double lane change" untuk mewakili pergerakan kenderaan kereta ketika memotong di jalan raya. Untuk ciri kestabilan, ujian "J-turn type" telah dijalankan untuk menunjukkan pergerakan kenderaan ketika stereng diputarkan dengan keadaan yang tergesagesa untuk mengelak daripada halangan ketika situasi kecemasan. Semua keputusan ujian yang telah dijalankan akan dianalisa berdasarkan perbezaan parameter ujian untuk menentukan keadaan kenderaan. Kelajuan dan berat kenderaan yang tinggi akan menghasilkan keputusan ujian yang tinggi.

ACKNOWLEDGEMENT

I would like to thank my supportive supervisor, PM. Dr. Mohd Azman Bin Abdullah, for guiding me throughout this project. He already gave me many ideas regarding this project and helped me to understand this research better. I could not have imagined having a better supervisor for my final year project.

I also want to express my sincere thanks to my seminar panels, Mr. Amrik Singh A/L Phuman Singh and Mr. Adzni Bin Md. Saad for giving me a lot of comments and inputs during the seminar. I acknowledged all the comments and inputs for improving my research.

Last but not least, I would to thank my family for giving me support to finish this project.

TABLE OF CONTENT

CHAPTER	CONTENT	PAGE
	DECLARATION	ii
	APPROVAL	iii
	DEDICATION	iv
	ABSTRACT	V
	ABSTRAK	vi
	ACKNOWLEDGEMENT	vii
	TABLE OF CONTENT	viii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	XX
	LIST OF SYMBOLS	xxi
	LIST OF APPENDICES	xxiii
CHAPTER 1	INTRODUCTION	
	1.1 Background	1
	1.2 Problem Statement	3
	1.3 Objective	3
	1.4 Scope of Project	4
	1.5 Thesis Outline	4
CHAPTER 2	LITERATURE REVIEW	
	2.1 Introduction	6
	2.2 Comfort aspect	6
	2.3 Safety aspect	8
	2.4 Vehicle axis system	8
	2.5 Vehicle suspension system	9
	2.6 Tire	11
	2.7 Vehicle dynamic analysis	14
	2.7.1 Ride	14

	2.7.2 Handling	17
	2.7.3 Stability	19
	2.8 Vehicle test	21
	2.8.1 Bounce sine sweep test	21
	2.8.2 Double lane change	21
	2.8.3 J turn test	23
	2.8.4 Test output results	24
CHAPTER 3	METHODOLOGY	
	3.1 Introduction	25
	3.2 Literature review	25
	3.3 Vehicle specification	26
	3.4 Test simulation	30
	3.4.1 Bounce sine sweep test	30
	3.4.2 Double lane change	34
	3.4.3 J turn type test	38
	3.5 Data collection and analysis	42
CHAPTER 4	RESULT AND DISCUSSION	
	4.1 Bounce sine sweep test (Ride)	46
	4.1.1 Pitch angle of sprung mass	46
	4.1.2 Maximum pitch moment calculation	49
	4.1.3 Vertical acceleration of sprung masses	52
	4.1.4 Comparison between tire forces of R1	56
	4.1.5 Vertical tire force, R1	56
	4.2 Double lane change (Handling)	59
	4.2.1 Trajectory Y vs X	59
	4.2.2 Lateral acceleration of CG	63
	4.2.3 Yaw angle of sprung masses	68
	4.2.4 Comparison between tire forces for tire R1	71
	4.2.5 Lateral tire force	72
	4.2.6 Vertical tire force, R1	75
	4.3 J-turn type test (Stability)	79

	4.3.1 Trajectory Y vs X	79
	4.3.2 Lateral Acceleration of CG	82
	4.3.3 Roll moment calculation	86
	4.3.4 Roll angle of sprung mass	91
	4.3.5 Comparison between tire forces R1	94
	4.3.6 Lateral tire force, R1	95
	4.3.7 Vertical tire force, R1	98
	4.3.8 Rollover index	101
CHAPTER 5	CONSCLUSION AND RECOMMENDATIONS	
	5.1 Conclusion	106
	5.2 Recommendations	107
	REFERENCES	108
	APPENDICES	111

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	ISO 2631-1 comfort guidelines	7
3.1	General specification 1	27
3.2	General specification 2	28
4.1	Maximum pitch angle comparison for different speeds	50
4.2	Maximum pitch angle comparison for different masses	51
4.3	Maximum pitch moment value at different speeds	53
4.4	Maximum roll moment when unladen and fully laden vehicle	53
4.5	Comparison of maximum vertical acceleration at different speeds	55
	Comparison of maximum vertical acceleration when fully laden	
4.6	and unladen vehicle	57
4.7	Comparison of vertical tire force at different speeds	59
4.0	Comparison of vertical tire force when fully laden and unladen	
4.8	vehicle	60

4.9	Comparison of maximum Y displacement at region C at different speeds	63
4.10	Comparison of maximum Y displacement at region C when fully laden and unladen vehicle	65
4.11	Comparison of maximum lateral acceleration at different speeds	67
4.12	Comparison of maximum lateral acceleration when fully laden and unladen vehicle	69
4.13	Comparison of maximum yaw angle at different speeds	71
4.14	Comparison of maximum yaw angle when fully laden and unladen vehicle	73
4.15	Comparison of lateral tire forces at different speeds	76
4.16	Comparison of lateral tire forces when fully laden and unladen vehicle	77
4.17	Comparison of vertical tire force at different speeds	80
4.18	Comparison of vertical tire force when fully laden and unladen vehicle	81
4.19	Vehicle trajectory comparison at different speeds	83
4.20	Comparison of vehicle trajectory when fully laden and unladen vehicle	84

4.21	Comparison of maximum lateral acceleration at different speeds	87
4.22	Comparison of maximum lateral acceleration when fully laden and unladen vehicle	88
4.23	Maximum roll moment value at different speeds	90
4.24	Maximum roll moment when unladen and fully laden vehicle	91
4.25	Comparison of maximum yaw angle at different speeds	93
4.26	Comparison of maximum yaw angle when fully laden and unladen vehicle	94
4.27	Comparison of roll angle at different speeds	96
4.28	Comparison of roll angle when fully laden and unladen vehicle	97
4.29	Comparison of lateral tire forces at different speeds	100
4.30	Comparison of lateral tire forces of R1 when fully laden and unladen vehicle	101
4.31	Comparison of vertical tire force of R1 at different speeds	103
4.32	Comparison of vertical tire force when fully laden and unladen vehicle	104
4.33	Maximum rollover index for different speeds	106
4.34	Maximum rollover index when fully laden and unladen vehicle	108

LIST OF FIGURES

2.1	Vehicle axis system [6]	9
2.2	Air suspension system [9]	11
2.3	Tire axis system	12
2.4	Behaviour of tire when subjected to side force	12
2.5	Friction ellipse concept	13
2.6	Tire slip condition [22]	14
2.7	Vertical and longitudinal vibration response gain [11]	16
2.8	Curvature response of the vehicle	18
2.9	Steering amplitude for Fishhook manoeuvre test [17]	20
2.10	Sine manoeuvre test path [17]	20
2.11	Bounce sine sweep test procedure	21
2.12	Double lane change test procedure	22
2.13	The trail of J turn test [20]	23

3.1	Vehicle type for simulation	26
3.2	The power flow of the bus (RWD)	29
3.3	Selection of test procedure	32
3.4	Setup the vehicle's target speed	32
3.5	Setup the vehicle's mass	33
3.6	Ground elevation of tire R1 for standard speed	33
3.7	Graph plot and 3D vehicle animation	34
3.8	Selection of test procedure	35
3.9	Setup the vehicle's target speed	36
3.10	Setup the vehicle's mass	36
3.11	Test procedure in form of vehicle trajectory	37
3.12	Graph plot and 3D vehicle animation	38
3.13	Selection of test procedure	39
3.14	Setup the vehicle's target speed	40
3.15	Setup the vehicle's mass	40
3.16	Test procedure in form of vehicle trajectory	41
3.17	Graph plot and 3D vehicle animation	42

3.18	All graphical data based on test parameters	43
3.19	Detailed view of the graph	43
3.20	Data from graph plotted	44
3.21	Example for comparison graph between three different speeds	45
4.1	Pitching motion of the bus	47
4.2	Pitch angle of sprung mass for standard speed	47
4.3	Pitch angle of sprung masses with different speed	48
4.4	Pitch angle of sprung masses with different when fully laden and unladen vehicle	49
4.5	Diagram of pitch moment acting on the bus	50
4.6	Vertical acceleration of sprung masses with standard speed	53
4.7	Vertical acceleration of sprung masses with different speed	54
4.8	Vertical acceleration of sprung masses when fully laden and unladen vehicle	55
4.9	Comparison between tire forces of R1	56
4.10	Vertical tire force of R1 at standard speed	57
4.11	Vertical tire force of R1 at different speeds	58

4.12	Vertical tire force of R1 when fully laden and unladen vehicle	59
4.13	Vehicle trajectory for standard speed	60
4.14	Vehicle trajectory at different speeds	61
4.15	Vehicle trajectory when fully laden and unladen vehicle	63
4.16	Lateral acceleration of vehicle's center of gravity at standard speed	64
4.17	Lateral acceleration of CG at different speeds	65
4.18	Lateral acceleration of CG when fully laden and unladen vehicle	67
4.19	Yaw angle of sprung masses at standard speed	68
4.20	Yaw angle of sprung masses at different speeds	69
4.21	Yaw angle of sprung masses when fully laden and unladen vehicle	70
4.22	Comparison between three tire forces	71
4.23	Lateral tire forces of R1 at standard speed	72
4.24	Lateral tire force of R1 at different speeds	73
4.25	Lateral tire force of R1 when fully laden and unladen vehicle	75
4.26	Vertical tire force of R1 at standard speed	76

4.27	Vertical tire force of R1 at different speeds	77
4.28	Vertical tire force of R1 when fully laden and unladen vehicle	78
4.29	Vehicle trajectory at standard speed	80
4.30	Vehicle trajectory at different speeds	81
4.31	Vehicle trajectory for fully laden and unladen vehicle	82
4.32	Lateral acceleration at standard speed	83
4.33	Lateral acceleration at different speeds	84
4.34	Lateral acceleration when fully laden and unladen vehicle	85
4.35	Diagram of roll moment acting on the bus	86
4.36	Yaw angle of sprung mass at standard speed	89
4.37	Yaw angle of sprung mass at different speeds	90
4.38	Yaw angle of sprung mass when fully laden and unladen vehicle	91
4.39	Representation of roll moment of vehicle	92
4.40	Roll angle of sprung mass at standard speed	92
4.41	Roll angle of sprung mass at different speeds	93
4.42	Roll angle of sprung mass when fully laden and unladen vehicle	94

4.43	Comparison of tire force of R1	95
4.44	Lateral tire force of R1 at standard speed	96
4.45	Lateral tire forces of R1 at different speeds	97
4.46	Lateral tire force of R1 when fully laden and unladen vehicle	98
4.47	Vertical tire force of R1 at standard speed	99
4.48	Vertical tire force of R1 at standard speed	100
4.49	Vertical tire force of R1 when fully laden and unladen vehicle	101
4.50	Rollover index when vehicle travel at different speeds	103
4.51	Rollover index when fully laden and unladen vehicle	104
4.52	The condition of the bus when the right tire is about to lift off	104

LIST OF ABBREVIATIONS

MIROS	Malaysian Institute of Road Safety Research
3D	3 Dimensional
ISO	International Organization for Standardization
CG	Center of Gravity
SAE	Society of Automotive Engineers
ESC	Electronic Stability Control
WSS	Wheel Speed Sensor
SAS	Steering Angle Sensor
RWD	Rear Wheel Drive
R1	Front right tire
RMS	Root Mean Square
NHTSA	National Highway Traffic Safety Administration

LIST OF SYMBOLS

a_v	=	RMS acceleration		
a_x	=	Longitudinal acceleration		
a_y	=	Lateral acceleration		
a _z	=	Vertical acceleration		
р	=	Roll		
q	=	Pitch		
r	=	Yaw		
F_x	=	Tractive force/Longitudinal force		
F _{xmax}	=	Maximum longitudinal force		
F_y	=	Lateral force		
F _{ymax}	=	Maximum lateral force		
F_z	=	Vertical force		
F_s	=	Side force		
α	=	Side slip angle		
δ	=	Steering angle		
Ψ	=	Drift angle		
K _s	=	Understeer coefficient		
α_f	=	Front tire slip angle		
α_r	=	Rear tire slip angle		
θ	=	Pitch angle		

ø	=	Roll angle
γ	=	Yaw angle
M_y	=	Pitch moment
M _{ymax}	=	Maximum pitch moment
m_b	=	Sprung mas of the bus
h	=	Height of CG to the ground
F _{zr}	=	Vertical tire force for right side of vehicle
F_{zl}	=	Vertical tire force for left side of vehicle
R	=	Rollover index

LIST OF APPENDICES

APPENDIX		TITLE	PAGE
А	Gantt chart for PSM 1		112
В	Gantt chart for PSM 2		113