DESIGN AND DEVELOPMENT OF AUTONOMOUS UNDERWATER VEHICLE (TUAH 4.0) FOR UNDERWATER MONITORING APPLICATION

GABRIEL JOHN TING

Bachelor Degree of Mechatronics Engineering with Honours UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF AUTONOMOUS UNDERWATER VEHICLE (TUAH 4.0) FOR UNDERWATER MONITORING APPLICATION

GABRIEL JOHN TING

A report submitted in partial fulfilment of the requirements for the degree of Bachelor of Mechatronics Engineering with Honours

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "DESIGN AND DEVELOPMENT OF AUTONOMOUS UNDERWATER VEHICLE (TUAH 4.0) FOR UNDERWATER MONITORING APPLICATION "is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Date	:	
Name	:	
Signature	:	

APPROVAL

I hereby declare that I have checked this report entitled "DESIGN AND DEVELOPMENT OF AUTONOMOUS UNDERWATER VEHICLE (TUAH 4.0) FOR UNDERWATER MONITORING APPLICATION" and in my opinion, this thesis it complies the partial fulfillment for awarding the award of the degree of Bachelor of Mechatronics Engineering with Honours

Signature	:	
Supervisor Name	:	
Date	:	

C Universiti Teknikal Malaysia Melaka

DEDICATIONS

To my beloved mother and father

ACKNOWLEDGEMENTS

Firstly, I would like to express my greatest thanks and gratitude to all the people that helped me through out every part of my final year project. I would like to offer my special thanks to my supervisor, Dr. Mohd Shahrieel Bin Mohd Aras for his grateful guidance to make this project successful. He gave valuable and constructive suggestions during the planning and development of this project. His willingness to give his time so generously has been very much appreciated.

I would also like to thank all of my friends for sharing their precious knowledge with him and giving me support on this project. I also very thankful for the help provided form other lectures regarding their teachings, knowledge and skill that help me a lot in making this project successful.

Last and not least, I would like to take the opportunity to express my deepest gratitude to my family members as their continuous support throughout my university life. Without their support, I would not be able to achieve what I have now.

ABSTRACT

Underwater vehicle has been developed and improved for decades in various designs and new innovations. Autonomous underwater vehicle (AUV) is also known as unmanned underwater vehicle is operated with little to no human intervention, conducts mission automatically and returns to a pre-programmed location by using integrated program. Underwater vehicle application and development still not widely apply and studied although Malaysia is a nation which surrounded by seas and full with rivers and lacks. An AUV that can help in underwater monitoring and searching is needed to make the operation easier as well in danger situation underwater. This project is focused on designing a new design of AUV named TUAH 4.0 for underwater monitoring application. TUAH 4.0 is designed using SolidWorks software and undergoes simulation such as center of mass, stress and strain test. A special frame design named X-wing type frame is developed for TUAH 4.0. TUAH 4.0 is operated with 6 thrusters which enable 5 degree of freedom motion. Sensors such as inertia measurement unit and depth sensor are used to control the movement of the TUAH 4.0 as feedback. TUAH 4.0 is controlled by Arduino MEGA and Raspberry PI 3 B+. Experiments are performed to verify the TUAH 4.0's performance such as speed, heading and depth control. The maximum speed for TUAH 4.0 is $0.53ms^{-1}$ with maximum PWM set at 1800. TUAH 4.0 can submerged maximum depth of 3 meters due to limitation of the swimming pool. The yaw and pitch control system of TUAH 4.0 is developed using bang-bang controller method for heading control. Correcting angle can be set from $\pm 10^{\circ}$ to $\pm 20^{\circ}$ for the heading control. TUAH 4.0 can maintain well straight line movement and desired depth control. TUAH 4.0 is successfully developed.

ABSTRAK

Kenderaan dalam air telah dimajukan dan dibangunkan selama beberapa dekad dalam pelbagai reka bentuk dan inovasi baru. Autonomi kenderaan dalam air (AUV) juga dikenali sebagai kenderaan dalam air tanpa pemandu dikendalikan dengan sedikit atau tiada campur tangan manusia, menjalankan misi secara automatik dan kembali ke lokasi yang pra-diprogramkan dengan menggunakan program bersepadu. Permohonan dan pembangunan kenderaan dalam air masih tidak meluas dikenakan dan dibelajar walaupun Malaysia adalah sebuah negara yang dikelilingi oleh laut dan penuh dengan sungai dan kekurangan. AUV yang boleh membantu dalam pemantauan air dan pencarian diperlukan untuk memudahkan operasi yang bahaya dalam air. Projek ini memberi tumpuan kepada mereka bentuk dan membangunkan AUV yang bernama TUAH 4.0 untuk aplikasi pemantauan air. TUAH 4.0 adalah direka menggunakan perisian SolidWorks dan menjalani simulasi seperti pusat jisim, tekanan dan ketegangan. TUAH 4.0 ini dikendalikan dengan 6 tujahan yang membolehkan darjah 5 gerakan kebebasan. Sensor seperti unit pengukuran inersia dan sensor kedalaman digunakan untuk mengawal pergerakan TUAH 4.0 sebagai maklum balas. TUAH 4.0 dikawal oleh Arduino MEGA dan Raspberry PI 3 B+. Eksperimen dilakukan untuk mengesahkan prestasi TUAH 4.0 seperti kelajuan dan kedalaman. Kelajuan tertinggi TUAH 4.0 ialah 0.53ms⁻¹ dengan PWM tertinggi 1800. TUAH 4.0 boleh menyelam kedalaman maksimum 3 meter kerana batasan kolam renang.Sistem kawalan yaw dan pitch TUAH 4.0 dibangunkan menggunakan kaedah pengawal bang-bang untuk mengendalikan kawalan. Sudut pembetulan boleh ditetapkan dari $\pm 10^{\circ}$ hingga $\pm 20^{\circ}$ untuk kawalan tajuk. TUAH 4.0 boleh mengekalkan pergerakan garis lurus dan kawalan kedalaman yang diinginkan.TUAH 4.0 berjaya dibangunkan.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATIONS	
ACKNOWLEDGEMENTS	2
ABSTRACT	3
ABSTRAK	4
TABLE OF CONTENTS	5
LIST OF TABLES	8
	-
LIST OF FIGURES	10
LIST OF SYMBOLS AND ABBREVIATIONS	14
LIST OF APPENDICES	15
CHAPTER 1INTRODUCTION1.1Introduction1.2Motivations1.3Problem Statement1.4Objectives1.5Scope and limitations1.6Organization of Report	16 16 16 17 18 18 19
CHAPTER 2LITERATURE REVIEW2.1Introduction2.2Theories and Principle Apply2.2.1Density2.2.2Buoyancy2.2.3Centre of mass2.2.4Propeller torque2.2.5Hydrostatic force	20 20 20 20 21 22 22 22
 2.3 Mechanical design 2.3.1 Architecture Design of the AUV frame 2.3.2 Pressure hull design 2.3.3 Propulsion system 2.3.4 Previous UTeM's AUVs 	22 23 27 28 29
 2.4 Electrical design 2.4.1 Sensors 2.4.2 Power supply 2.4.3 Software 	30 30 30 31

2.5	Summ	ary	31
СНАІ	PTER 3	METHODOLOGY	33
3.1	Introd		33
3.2	Projec	t flow chart	33
3.3	5	nical description	35
		Pressure hull	35
		AUV frame	36
		Electrical component holder	37
		Propulsion system	38
3.4		cal description	39
	3.4.1	-	40
	3.4.2	Inertia measurement unit	41
	3.4.3	Depth sensors	41
	3.4.4	Thruster driver	42
	3.4.5	Microcontroller	43
	3.4.6	Electrical components' conncetion	46
3.5	Simula	ation analysis description	47
	3.5.1	Centre of mass	47
	3.5.2	Stress and strain simulation	47
3.6	Experi	ment description	48
	3.6.1	Pressure hull waterproof test	48
	3.6.2	Depth sensor test	49
	3.6.3	Buoyancy balance test	50
	3.6.4	Speed and heading control test	51
3.7	Summ	ary	52
СНАЕ	PTER 4	RESULTS AND DISCUSSIONS	53
CHA 4.1	PTER 4 Introdu		53 53
	Introdu	action	53 53 53
4.1	Introdu AUV	action	53
4.1	Introdu AUV	action lesign AUV's SolidWorks hardware design	53 53
4.1	Introdu AUV	action design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull	53 53 53
4.1	Introdu AUV	action design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull	53 53 53 54
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing	53 53 53 54 55
4.1	Introdu AUV	action design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull	53 53 53 54 55 56
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing	53 53 53 54 55 56 57
4.1	Introdu AUV	Action design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid	53 53 54 55 56 57 58
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes	53 53 54 55 56 57 58 59
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock	53 53 54 55 56 57 58 59 60
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull	53 53 54 55 56 57 58 59 60 61
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate	53 53 53 54 55 56 57 58 59 60 61 62
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1	53 53 53 54 55 56 57 58 59 60 61 62 63
4.1	Introdu AUV	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2	53 53 53 54 55 56 57 58 59 60 61 62 63 64
4.1	Introdu AUV 4 4.2.1	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2 4.2.1.12 Assemble of AUV	53 53 53 54 55 56 57 58 59 60 61 62 63 64 65
4.1 4.2	Introdu AUV 4 4.2.1	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2 4.2.1.12 Assemble of AUV X-wing Type Frame design translational and rotational motion	53 53 54 55 56 57 58 59 60 61 62 63 64 65 67
4.1 4.2	Introdu AUV 4 4.2.1	AUV's SolidWorks hardware design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2 4.2.1.12 Assemble of AUV X-wing Type Frame design translational and rotational motion Vorks simulations results Centre of Mass	53 53 53 54 55 56 57 58 59 60 61 62 63 64 65 67 70
4.1 4.2	Introdu AUV 6 4.2.1 4.2.2 SolidV 4.3.1 4.3.2	AUV's SolidWorks hardware design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2 4.2.1.12 Assemble of AUV X-wing Type Frame design translational and rotational motion Vorks simulations results Centre of Mass	53 53 54 55 56 57 58 59 60 61 62 63 64 65 67 70 70
4.1 4.2 4.3	Introdu AUV 6 4.2.1 4.2.2 SolidW 4.3.1 4.3.2 TUAH	AUV's SolidWorks hardware design AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2 4.2.1.12 Assemble of AUV X-wing Type Frame design translational and rotational motion Vorks simulations results Centre of Mass Stress and Strain Simulation	53 53 54 55 56 57 58 59 60 61 62 63 64 65 67 70 70 70 72
 4.1 4.2 4.3 4.4 	AUV 6 4.2.1 4.2.2 SolidV 4.3.1 4.3.2 TUAH Experi	AUV's SolidWorks hardware design 4.2.1.1 X-wing type frame main body for cylindrical pressure hull 4.2.1.2 X-wing type frame main body for rectangular pressure hull 4.2.1.3 X-wing type frame horizontal wing 4.2.1.4 X-wing type frame vertical wing 4.2.1.5 Cover lid 4.2.1.6 Cover lid with connector holes 4.2.1.7 Cover lock 4.2.1.8 Cylindrical hull 4.2.1.9 Holder plate 4.2.1.10 Holder side 1 4.2.1.11 Holder side 2 4.2.1.12 Assemble of AUV X-wing Type Frame design translational and rotational motion Vorks simulations results Centre of Mass Stress and Strain Simulation 14.0 hardware	53 53 53 54 55 56 57 58 59 60 61 62 63 64 65 67 70 70 70 72 78

	4.5.2 Buoya	ancy balance test	85
	4.5.3 Depth	sensor test	87
	4.5.4 Speed	and heading control test	92
4.6	Evaluation of	the AUV	95
4.7	Summary		96
СНА	PTER 5	CONCLUSION AND RECOMMENDATIONS	98
5.1	Conclusion		98
5.2	Future works		99
REF	ERENCES		100
APP	ENDICES		102

LIST OF TABLES

Table 2.1: Comparison between frame types	23
Table 2.2: Comparison between underwater vehicles	23
Table 2.3: Comparison between underwater vehicles (cont.)	24
Table 2.4: Comparison between underwater vehicles (cont.)	25
Table 2.5: Comparison between underwater vehicles (cont.)	26
Table 2.6: Comparison between underwater vehicles (cont.)	27
Table 2.7: Comparison between TUAH 1.0 and TUAH 2.0	29
Table 3.1: Cylindrical tube parameters	35
Table 3.2: Air-tight storage container parameters	36
Table 3.3: Parameters of T100 Thruster	39
Table 3.4: Comparison between IMUs	41
Table 3.5: Pin description of MPX5700AP	42
Table 3.6: Specification of Arduino MEGA2560	44
Table 3.7: Specification of Arduino MEGA2560 (cont.)	45
Table 3.8: Specifications of Raspberry PI 3 model B+	45
Table 3.9: Specification of Raspberry PI 3 model B+ (cont.)	46
Table 4.1: Size of the AUV	67
Table 4.2: Resultant rotational torque	68
Table 4.3: Resultant rotational torque (cont.)	69
Table 4.4: Maximum thrust of the design	69
Table 4.5: Material property of PLA, Acrylic and PVC	72
Table 4.6: Factor of safety of all the simulated design parts	78
Table 4.7: Views of TUAH 4.0	79

Table 4.8: Views of TUAH 4.0 (const.)	80
Table 4.9: Colour of RGB LED status bar	83
Table 4.10: The condition of the tissue in the pressure hull	84
Table 4.11: Buoyancy balancing test results	86
Table 4.12: AUV weight before and after buoyancy balancing	87
Table 4.13: Analog sensor readings at different given pressure	90
Table 4.14: Speed and time the AUV reached the distance with different PW	/M
and correcting angle.	92
Table 4.15: Number of succeed passing through the gate with different	
correcting angle	95
Table 4.16: Evaluation of the AUV	96
Table 4.17: Comparison between TUAH 2.0 and TUAH 4.0	97

LIST OF FIGURES

Figure 2.1: Buoyancy of same volume of object is equal	21
Figure 2.2: Example of Carmichael hull (left) and cylindrical hull (right)	28
Figure 2.3: Pressure-neutral ring-thruster, 750W, 110V (Company ENITEC	H,
Germany).	28
Figure 2.4: Ducted propeller (left) and No ducted propeller (right)	29
Figure 2.5: Pressure-neutral battery block of 26V / 2.03 kWh Li-polymer ce	lls,
embedded in jelly-like silicon (Company ENITECH, Germany).	31
Figure 3.1: Project Flow Chart	34
Figure 3.2: Cylindrical pressure hull	35
Figure 3.3: Air-tight storage container	36
Figure 3.4: X-wing type frame design for cylindrical pressure hull	37
Figure 3.5: X-wing type frame design for rectangular pressure hull	37
Figure 3.6: T100 Thruster	38
Figure 3.7: CAD drawing of T100 Thruster	39
Figure 3.8: 12V 7.2Ah lead-acid battery	40
Figure 3.9: 14.8V 4s 5200mAh Li-Po battery	40
Figure 3.10: Depth sensor MPX5700AP	42
Figure 3.11: Basic ESC	43
Figure 3.12: Thrust of T100 Thruster vs. PWM input to ESC	43
Figure 3.13: Arduino MEGA2560	44
Figure 3.14: Raspberry PI 3 model B+	45
Figure 3.15: Electrical components relations	46
Figure 3.16: Electrical components layout	47

Figure 3.17: Pressure hull before sealing	48
Figure 3.18: Submerging the pressure into the water	49
Figure 3.19: Setup of the depth sensor test	49
Figure 3.20: Portable air compressor	50
Figure 3.21: Iron rods	50
Figure 3.22: The gate	51
Figure 3.23: AUV test underwater	51
Figure 4.1: 3D view of X-wing type frame main body for cylindrical pressu	ire
hull	54
Figure 4.2: 3D view of X-wing type frame main body for rectangular press	ure
hull	55
Figure 4.3: 3D view of X-wing type frame horizontal wing	56
Figure 4.4: 3D view of X-wing type frame vertical wing	57
Figure 4.5: 3D view of cover lid	58
Figure 4.6: 3D view of cover lid with connector holes	59
Figure 4.7: 3D view of cover lock	60
Figure 4.8: 3D view of cylindrical hull	61
Figure 4.9: 3D view of holder plate	62
Figure 4.10: 3D view of holder side 1	63
Figure 4.11: 3D view of holder side 2	64
Figure 4.12: 3D view of assembled AUV cylindrical pressure hull version	65
Figure 4.13: 3D view of assembled AUV rectangular pressure hull version	66
Figure 4.14: 3D view of T100 thruster	66
Figure 4.15: Thrusters placement and details of X-wing type frame	68

Figure 4.16: Centre of mass of the AUV with cylindrical pressure hull design	n
in SolidWorks	71
Figure 4.17: Centre of mass of the AUV with rectangular pressure hull desig	'n
in SolidWorks	71
Figure 4.18: Result of stress test, strain test, displacement test and factor of	
safety test for X-wing type frame main body (PLA)	73
Figure 4.19: Result of stress test, strain test, displacement test and factor of	
safety test for X-wing type vertical wing (PLA)	74
Figure 4.20: Result of stress test, strain test, displacement test and factor of	
safety test for X-wing type frame horizontal wing (Acrylic)	74
Figure 4.21: Result of stress test, strain test, displacement test and factor of	
safety test for X-wing type frame horizontal wing (PLA)	75
Figure 4.22: Result of stress test, strain test, displacement test and factor of	
safety test for cylindrical hull (PVC)	76
Figure 4.23: Result of stress test, strain test, displacement test and factor of	
safety test for cover lid (PLA)	76
Figure 4.24: Result of stress test, strain test, displacement test and factor of	
safety test for cover lid with connector holes (PLA)	77
Figure 4.25: Result of stress test, strain test, displacement test and factor of	
safety test for cover lock (PLA)	77
Figure 4.26: Electrical component block	81
Figure 4.27: The electrical component block fix securely in the pressure hull	81
Figure 4.28: Truth Table for the yaw and pitch control system	82
Figure 4.29: Thrusters' location	83
Figure 4.30: Silicon applied to seal the gap	85

Figure 4.31: Before buoyancy balancing	86
Figure 4.32: After buoyancy balancing	86
Figure 4.33: Analog signal data produce by different methods in constant	
pressure	87
Figure 4.34: Analog signal data produce by different methods in changing	
pressure	88
Figure 4.35: Readings from depth sensors against time with no delays	89
Figure 4.36: Readings from depth sensors against time with 0.1 second	
delays	89
Figure 4.37: Analog sensor readings at different given pressure	90
Figure 4.38: Graph of analog readings against given pressure	91
Figure 4.39: Time taken against distance travel of the AUVs	93
Figure 4.40: Speed against time of the AUVs	94

LIST OF SYMBOLS AND ABBREVIATIONS

UTeM	-	Universiti Teknikal Malaysia Melaka
AUV	-	Autonomous Underwater Vehicle
ROV	-	Remotely Operated Vehicle
IMU	-	Inertial Measurement Unit
ESC	-	Electronic speed controller
FOS	-	Factor of safety
COM	-	Centre of mass
PVC	-	Polyvinyl Chloride
PLA	-	Polylacitc Acid
VON	-	Von Mises Stress
m	-	Mass
V	-	Volume
F_b	-	Buoyant force
ρ	-	density
g	-	Gravitation acceleration
Т	-	Torque
HP	-	Horsepower
RPM	-	Rotation per minute
F_h	-	Hydrostatic force
d	-	Depth
Α	-	Surface area
r	-	Radius
F	-	Force
PWM	-	Pulse Width Modulation

LIST OF APPENDICES

APPENDIX A	Gantt chart	102
APPENDIX B	TUAH 4.0	103
APPENDIX C	Main body for cylindrical pressure hull	104
APPENDIX D	Main body for rectangular pressure hull	105
APPENDIX E	X-wing type frame horizontal wing	106
APPENDIX F	X-wing type frame vertical wing	107
APPENDIX G	Cover lid	108
APPENDIX H	Cover lid with connector holes	109
APPENDIX I	Cover lock	110
APPENDIX J	Cylindrical hull	111
APPENDIX K	Holder plate	112
APPENDIX L	Holder side 1	113
APPENDIX M	Holder side 2	114
APPENDIX N	Electrical components layout	115
APPENDIX O	Center of mass simulation	116
APPENDIX P	Stress and Strain Simulation	117
APPENDIX Q	Pressure hull waterproof test	118
APPENDIX R	Buoyancy balance test	119
APPENDIX S	Depth sensor test	120
APPENDIX T	Speed and heading control test	121
APPENDIX U	Assembled parts for TUAH 4.0	122
APPENDIX V	TUAH 4.0's operation coding	123

CHAPTER 1

INTRODUCTION

1.1 Introduction

Underwater is still not completely explored fully and not easily accessible by humans. Underwater vehicle has been developed and improved for decades in various designs and new innovations. There two major type of underwater vehicle such as remotely operated vehicle (ROV) and autonomous underwater vehicle (AUV). ROV is an unoccupied underwater robot that connected to a ship or terminal via cables. The cables transmit signals and commands for controlling and feedbacks of the ROV allowing remote navigation. AUV is also known as unmanned underwater vehicle which is very suitable for survey missions. AUV is operated with little to no operator intervention. AUV can conducts mission automatically and returns to a preprogrammed location by using integrated program. AUV is a more advanced system compared to ROV. AUV are controlled by onboard sensors such as sonar, depth sensor and inertia measurement unit (IMU). AUV has thrusters, propellers or wings to control its motions. Size of the underwater vehicle is crucial when completing operations in shallow water or constricted environment.

The project main focused on designing new design of AUV (TUAH 4.0) which based on previous products that have been developed by the UTeM Underwater Research Laboratory such as TUAH 1.0 and TUAH 2.0. The improvements are on better thruster placement, speed and motion control. Experimental tests are done to verify the performance of the new AUV (TUAH 4.0).

1.2 Motivations

Underwater vehicle application and development still not widely apply and studied although Malaysia is a nation which surrounded by seas and full with rivers and lacks. In the incident of MH370 crashing into the ocean and currently nowhere to be found, Malaysia is aided by other countries especially Australia for their underwater vehicle technologies to search for the missing plane under the sea because Malaysia

still unable to conduct the searching using its own technology. [1] Although underwater searching can also been done by human divers, accident can be happened that can endanger the life of the divers. For example in the incident of a South Korean ferry that sank in April 2014, one civilian diver died after becoming unconscious as searching for the remains of dozens aboard the ferry under the sea. [2] Six Fire and Rescue Department divers died while on a rescue mission for a teen who was feared drowned after falling into a mining pond in Taman Putra Perdana, Puchong, in October 2018. [3].

An underwater vehicle such as autonomous underwater vehicle (AUV) that can help in underwater monitoring and searching is needed to make the operation easier as well in danger situation. The project is to development an AUV which is small and low cost that can be used for research and competitions such as Malaysia AUV Challenge and Singapore AUV Challenge.

1.3 Problem Statement

Designing and developing underwater vehicle has been improved in term of design and technology through the decades. Studies on AUV in Malaysia are less compare to popular drones and robots. Autonomous Underwater Vehicle (AUV) is has been used in survey operation and underwater monitoring. Power management for an AUV is important so that the underwater operation time will be longer. Developing and buying an AUV is expensive. Sensors used in AUV are costly. [4] Design and analysis on AUV using specific software is not studied in details.

As to improve power management, low power and higher efficient thrusters are needed. Smart placement of thrusters and aerodynamic frame design are important to increase performance such as stabilization. Autonomous motion control of the AUV is aided by the feedback of sensors. The sensors are to let the AUV notice its current environment and react to it by the control system. The AUV should be achieving certain amount of motions such as surge (moving forward and backward on the X-axis), sway (moving left and right on the Y-axis), Heave (Moving up and down on the Z-axis), Roll (tilting side to side on the X-axis), Pitch (tilting forward and backward on the Y-axis) and Yaw (turning left and right on the Z-axis). The AUV should be navigate by itself throughout the task. The disadvantages that TUAH 1.0 and TUAH 2.0 are the lack of pitching control. The lack of pitching control causes TUAH 2.0 pitching is fully maintain by the centre of mass which is very not stable. It will lead to operation failure due to drifting of the heading angle of the AUV. A better rotational motion control has to be introduced to TUAH 4.0 to solve this problem.

Water proofing of AUV is difficult. The structure of the AUV should be able to withstand pressure underwater. Electrical components of the AUV have to be waterproofed or water-resistant to avoid any short circuit that can eventually damage the AUV and render the underwater operation unsuccessful. The size of the AUV should small and transportable.

1.4 Objectives

Three objectives that are required to be achieved during this project

- To design and analysis an autonomous underwater vehicle (AUV) by using SolidWorks software
- To develop and fabricate a stabilization system for the AUV's yaw, roll and pitch control by using microcontroller and integrated sensors for underwater monitoring application.
- 3) To analyze the overall performances of AUV in terms of speed, heading control and depth control.

1.5 Scope and limitations

- The autonomous underwater vehicle (AUV) is controlled by Arduino MEGA which consist of 54 digital I/O pins and 16 analog inputs
- 2) The autonomous underwater vehicle (AUV) consisted of 6 T100 Thrusters. The thruster capable of rotating in minimum speed of 300 rev/min and up to maximum speed of 4200 rev/min. The thruster operates between 6 to 16 volts.

- The stabilization system consists 6 Degree of Freedom (DoF) Inertia measurement unit (IMU) and depth sensor.
- 4) The autonomous underwater vehicle (AUV) is waterproof under 3 meter depth. All components excluding the thrusters are placed inside the pressure hull.
- 5) The autonomous underwater vehicle (AUV) is built with dimension based on Malaysia AUV challenge 2018.
- 6) The autonomous underwater vehicle (AUV) will be tested at controlled environment such as lab tank and swimming pool.

1.6 Organization of Report

Chapter 1 is the introduction and some motivation of the project. The introduction is to introduce the basic feature of an AUV. Motivation are based on current problem statement that needs to be solved. Objectives and scope of the project are given.

Chapter 2 is literature review which described the theory needed to complete the project. Comparison between designs of AUVs are discussed in details. Mechanical, electrical and software descriptions are between described.

Chapter 3 is methodology gives description of the hardware and software design of the project. Details on procedure for simulations and experiments are explained in details.

Chapter 4 is results and discussion that described the overall project outcome in term of design and development of the AUV. Simulations and experiments results are been analysed and discussed in full scale

Chapter 5 is conclusion form the completion of the project. There are additionally suggestions for future work.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Autonomous Underwater Vehicle (AUV) has a big range of application in scientific research, military, commercial and rescue all around the world. AUV are mostly powered by battery which is small and portable and consists of some computer system inside. With this computing power and the aid of sensors, AUV can collects data throughout the mission. AUVs can also make decisions on their own, changing their mission profile based on environmental data they receive through sensors. There are many institutes and companies which is focused on AUV research and development. ECA group from France designs and provides long-endurance AUV solutions for underwater missions up to 3000m depths. Woods Hole Oceanographic Institution (WHOI) which produced many variety of innovative AUV design throughout the years.

2.2 Theories and Principle Apply

There are theories and principles that needed to be discussed and taken into use during the development of the design of the AUV.

2.2.1 Density

Density is the measure of mass per volume of an object or medium shown in (2-1). Density is very important for the material used for the construction on the AUV especially the hull and frame of it. In the medium which has free moving particles, higher density will sink to bottom of the medium and lower density will float to the surface of the medium due to gravity. AUV which mostly operates in the water (p = 1000 kg/m3) and seawater (p = 1030 kg/m3) have to maintain and control its overall density so that the AUV can maneuver without too much resistant caused by the difference in density.