PERFORMANCE ANALYSIS OF PATH PLANNING ALGORITHM FOR AUTONOMOUS MOBILE ROBOT.

ALI SYAHIRAN BIN ATAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

PERFORMANCE ANALYSIS OF PATH PLANNING ALGORITHM FOR AUTONOMOUS MOBILE ROBOTS.

ALI SYAHIRAN BIN ATAN

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering with Honors'

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2019

C Universiti Teknikal Malaysia Melaka

*CATATAN: Jikalaporanini SULIT atau TERHAD, silalampirkansuratdaripadapihakberkuasa/organisasiberkenaandenganmenyatakansekalitempohlaporaninip erludikelaskansebagai SULIT atau TERHAD

DECLARATION

I declare that this report entitled "**Performance analysis of Path Planning Algorithm for Autonomous Mobile Robot.**" is the result of my own work except for quotes as cited in the references.

Signature	:	
Author	:	
Date	:	

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	
Date	:	

DEDICATION

This project is wholeheartedly dedicate to my beloved parents, who have been my source of inspiration and give me the strength when I almost give up, who continually provide their moral, emotional, spiritual, and financial support.

To my brothers, sisters, mentor, friends, and classmates who shared their words of advice and encouragement to finish this project.

And lastly, I truly thankful to the Almighty ALLAH for giving me the strength, protection and health.

ABSTRACT

This project relates to the fundamental problem of the autonomous mobile robot are localization, mapping, and path planning or motion planning. This project, analysis one of the problems related to path planning that affects the performance of the mobile robot. Three objectives that had been done from this project which is: first is to analyze the performance of the path planning algorithm (Probabilistic Roadmap and Dynamic) by changing the distance between a node and the number of node parameter. The second objective of this project is to implement the result that the algorithm had calculated and using the data as the optimum parameter for Thymio mobile robot. The final objective of the project is to validate the PRM P.P algorithm by comparing between simulation and experiment result with respect to accurate measurement. Because of the limitation of time and resource, the scope of the project is finding a suitable algorithm by simulation and the best result will be chosen to run it on the real world experiment. The mobile robot that uses on the project is differential drive robot Thymio. The software that uses on this project are Matlab 2015 version is to run and simulate the path planning and mobile robot while Aseba Studio uses to program Thymio mobile robot. What this project was able to find is the parameter of the path planning does affect the character of the mobile robot.

ABSTRAK

Projek ini memkaji masalah berkaitan dengan asas robot autonomi adalah penyetempatan, pemetaan, dan perancangan jalan. Oleh itu, terdaptt tiga objective yang telah dilakukan dalam project ini: pertama ialah menganlisis prestasi lagorithm perancangan jalan dengan menukar jarak antara dua nod dan jumlah bilangan nod. Kedua ialah mengimplementasikan hasil kira yang dapat dari algorithma dan masukan data parameter kepada robot Thymio. Terakhir ialah mengesahkan membandingakan antara hasil simulasi dan eksperimen dunia dengan menukarkan ketepatan titik sampai. Skop project bertujuan mencari algroithma yang sesuai melalui simulasi dan mencari hasil terbaik untuk menjadikan sebagai rujukan kepada robot mudah alih. Skop yang lain ialah mengunakan Thymio robot dan mengunakan keadah global algroithma. Persisian yang digunakan dalam projek ini adalah Matlab versi tahun 2015 untuk menjalankan simulasi antara algorithma dan robot mudah alih manakala Aseba Studio digunakan untuk memprogramm Thymio robot. Apa yang dapat ditemuai oleh projek ini ialah paramter perancang jalan algorithma ada mempengaruhi sifat perjalanan robot mudah alih.

ACKNOWLEDGEMENTS

In the Name of ALLAH the Most Gracious, Most Merciful,

I am grateful to ALLAH because give me this opportunity to complete my Final Years Project in Faulty of Electronics and Computer Engineering Universiti Teknikal Malaysis Melaka (UTeM). This project is complete by His permission.

I would like to thank my supervisors Dr. Norhidayah Binti Mohamad Yatim for her continuous encouragement and support during this research project. I really appreciate the knowledge and wisdom that she give to me. May ALLAH bless you and your family.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	
Abstract	i
Abstrak	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	viii
List of Tables	X
List of Symbols and Abbreviations	xii
List of Appendices	xiii
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Problem Statement	5

1.3	Objectives	5	
1.4	Scope of Project	6	
1.5	Thesis Organization	7	
CHA	CHAPTER 2 BACKGROUND STUDY		
2.1	Introduction	9	
2.2	The world environment that mobile robot see.	11	
	2.2.1 Discrete Mapping	13	
	2.2.2 Continuous Mapping	13	
2.3	The mobility of the mobile robot	15	
	2.3.1 Moving the Mobile Robot differential drive using Odometry	17	
2.4	Path planning.	20	
	2.4.1 Probabilistic Roadmap (PRM)	21	
2.5	Class of path planning	26	
2.6	Summary	28	
CHA	APTER 3 METHODOLOGY	29	
3.1	Introduction	29	
	3.1.1 Simulation section	30	
	3.1.2 Real environment	32	
3.2	Design algorithm using Robotics System Toolkit	33	
	3.2.1 Applying path planning on Map (grid)	35	

v

	3.2.2 Differential drive robot following the path	36
3.3	Occupancy Grids	39
	3.3.1 Grid coordinates and world coordinates inputs	40
	3.3.2 Inflation the coordinates	41
3.4	Dynamic path planning	43
3.5	Thymio software tools set	44
3.6	Summary	47
CHA	PTER 4 RESULTS AND DISCUSSION	48
4.1	Introduction	48
4.2	The relationship between number of nodes (vertex) and computation time	50
	4.2.1 Effect computation time when test on simple grid map.	50
	4.2.2 The effect computation time on a complex grid map	52
	4.2.2.1 Improving the computation time on a complex grid map	55
4.3	The connection distance between node (edge) effect computation time	57
	4.3.1 Effect on computation time by changing edge value on simple grid n	nap 58
	4.3.2 Effect computation time on complex grid map where edge is variable	e59
4.4	The number of nodes (vertex) and connection distance (edge) effect of the path	61
4.5	Continuous mapping and Discrete mapping	63
4.6	The real world test 'measure the error'	64

4.7	Environment and sustainability	66
4.8	Summary	67
СНА	PTER 5 CONCLUSION AND FUTURE WORKS	68
5.1	Conclusion	68
5.2	Future work	69
REF	ERENCES	70
APPI	ENDICES A	72
APPI	ENDICES B	74

LIST OF FIGURES

Figure 2.1 The basic components of a mobile robot.	11
Figure 2.2 Types of mobile robot (left is AGV and right is AMR)	11
Figure 2.3 (a left and b right) graph between discrete mapping and mapping.	continuous 14
Figure 2.4 Honda Asimo climbing stair	16
Figure 2.5 Type of joints.	17
Figure 2.6 Formula for differential drive robot	18
Figure 2.7 Controlling differential drive robot	19
Figure 2.8 Function of differential drive robot.	19
Figure 2.9 a and b Graph Theory	20
Figure 2.10 Map representation the real environment	21
Figure 2.11 Configuration sampled part 1	22
Figure 2.12 Configuration sample part 2	22
Figure 2.13 Test collision	23
Figure 2.14 Collision free	23
Figure 2.15 Draw link	24
Figure 2.16 Remove link that have collision	24
Figure 2.17 All link connect to node	25

Figure 2.18 Start and Goal	25
Figure 2.19 Path is created	26
Figure 3.1 The step of simulation procedure	30
Figure 3.2 The step of real experiment procedure.	32
Figure 3.3 Grid cell	39
Figure 3.4 Result of Grid display	41
Figure 3.5 Result enlarge the object	43
Figure 3.6 Thymio simulation	45
Figure 3.7 Thymio software interface.	46
Figure 4.1 Result of simple grid map, vertex equal to 300	51
Figure 4.2 Result of simple grid map, vertex equal to 60	52
Figure 4.3 Result of complex gird map test 1	54
Figure 4.4 Result of complex grid map test 2	55
Figure 4.5 result of complex grid map test 3	56
Figure 4.6 (a) on the left large grid map (b) on the right small map	57
Figure 4.7 Simple grid map, edge value is variable.	59
Figure 4.8 Complex grid map, edge value is variable.	61
Figure 4.9 (a) left is PRM, (b) right is Dynamic algorithm	64
Figure 4.10 The real grid map environment	65
Figure 4.11 The simulation grid map	66

LIST OF TABLES

Table 1.1 Conveyor Belt and Mobile Robot	3
Table 1.1 Continue	4
Table 2.1 coordinates of each grid cell	13
Table 2.2 Discrete map vs Continuous map	14
Table 2.3 Local vs Global path planning	27
Table 3.1 Function for algorithm design	34
Table 3.2 Classes for algorithm design	35
Table 3.3 Coding for PRM on grid map (simple map)	36
Table 3.4 Coding for path following	37
Table 3.4 Continue	38
Table 3.5 Grid character	40
Table 3.5 Continue	38
Table 3.6 create the map	40
Table 3.7 To display the graph	41
Table 3.8 Enlarge the size of object.	42
Table 3.9 coding for dynamic	43
Table 3.9 Continue	44

Table 3.10 Itera coding for Thymio	46
Table 4.1 Overview of experiment	49
Table 4.2 Simulation Grid map one 'simple map'. Input fix: start location [2 2],
end location [12 12], link (edge) = 2	51
Table 4.3 Simulation Grid map one "complex map" Input fix: start location	[3 3],
end location [45 35], link (edge) = 2, test 1	53
Table 4.4 Simulation Grid map one "complex map" Input fix : start location	ı [3 3],
end location [45 35], link (edge) = 2, test 2	54
Table 4.5 Improving computation time Grid map one "complex map" Input	fix:
start location [3 3], end location [45 35], link (edge) = 200 test 3.	55
Table 4.6 computation time between large and small size grid map Input fix	: start
location [2 2], end location [3 3], link (edge) = 2	56
Table 4.7 Result Grid map one "simple map" Input fix : start location [2 2],	end
location [12 12], Number of node (vertex) = 60	58
Table 4.8 Grid map one ''complex map'' Input fix : start location [3 3], end	location
[45 35], Number of node (vertex) = 100	60
Table 4.9 the comparison between experiment results	62
Table 4.10 the different distance between PRM and Dynamic	64
Table 4.11 The difference between real world and simulation end position	65

LIST OF SYMBOLS AND ABBREVIATIONS

AGV	:	Automated Guided Vehicle
AMR	:	Autonomous Mobile robots
SLAM	:	Simultaneous Localization and Mapping
UAV	:	Unmanned Aerial Vehicle
DOF	:	Degrees of freedom
NASA	:	The National Aeronautics and Space Administration
HIV	:	Human Immunodeficiency Virus Infection
A.I	:	Artificial Intelligence
VPL	:	Visual Programming Language

xii

LIST OF APPENDICES

Appendix A:	72
Appendix B:	74

CHAPTER 1

INTRODUCTION

The new era of Industry 4.0 has come with new and improve technology [1]. Internet of thing is related to Industry 4.0 and developing application that there are uses today [1]. There are many types of applications, tools, machines, and systems involved in the industry for their production. One of it's a robot, so this research paper study about part of the key factor of mobile robots. There a lot to discuss this robot as continues in chapter to come.

1.1 Introduction

Sustainability and green technology has become a term for all modern research and project. It becomes a term and objective for new era tools because to reduce the usage of energy. The idea is that when the usage of energy is reduced, the source like oil, water, and coal can be used for the future generation. The alternative way to reduce energy is by creating a device that can harness the power of wind and sun (wind energy, solar energy). But the imported aspect of all this saves money.

Majority of industry want to save money on buy energy and cut the cost of the working hour. Use less energy are equals to less money. So the next question is how to reduce energy but still have a big output or production? By reducing working hours and increases production by using a robot as their alternative operators. The advantages of the robot are that it can do repeating work with less error, it will not have self-motivation issue, it does not need sleep and does according to the program. However, the disadvantage of a robot is that: to do complex work, it first needs to be pre-programmed intelligently. The robot is not like a human who can think for themselves. The old model robot that been used consumed a large amount of energy. Thus there are some advantages of using a robot and some disadvantages of using it.

The usage of energy is one of the issues in a robot or any machines when they work for long hours. In fact, engineer and researcher are focusing on this area to improving the utilization of resources. Another alternative is by reducing motion or movement the robot has to take. For example, there are two points the beginning point, and the endpoint. If the engineer is able to reduce the travel distance between two points, it should be able to reduce the energy used by the robot. Hence in theory, less traveling distance will result in less energy use.

At industry, there are many shape and size of robots, so basely there are two types: articulated robot and wheel robot. Articulated robot for example arm robot used as the assembly line, welding, spray painting and a lot more. For the second part, the wheeled robot (mobile robot) use to deliver items and component to its final destination. The type of robot used on this research is a mobile robot.

2

The mobile robot is made of two words: mobile and robot. The definition of mobile is one's ability to move freely. While a robot is a machine that has a movement like a human depend on their design. So those two words combine made a robot that can move freely without need any help or aid form anyone [2]. The design of the mobile robot are endless, but the two basic types of movement are wheel robot and leg robot [12]. The wheeled robot has resembled of an automobile which the movement they made just like a car. The legged robot can be the referent of animal, so they travel by using their legs.

In industry conveyor belt is commonly used to transport object. Similarly, the base function of using a mobile robot is for traveling or transporting device. In addition, the main advantages of a mobile robot are flexible, it can navigate on the working space following a path and changing path according to situations [4][5][6]. Furthermore, the mobile robot can work with any scale and working space. Another advantage of the mobile robot, it can deliver multiple areas [8]. So one robot can cover more ground at the workspace. If one mobile robot broke down, it does not affect the working area. Table 1.1 shows the difference between the conveyor belt and the mobile robot.

Conveyor Belt	Mobile Robot
Use a large of space for installs	Does not need large space to move
Cannot change direction when it already	Can easily change direction
installs	
When one breaks down, the operation must	Will not stop operations even one break
stop	down

Table 1.1 Conveyor Belt and Mobile Robot

A large cost of maintenance	Low cost of maintenance
It takes a long time to service one big	It takes less time to service a mobile robot
conveyor belt.	
Non intelligence device	Intelligence device
Operate with loud noise	It does not produce loud operating noise
Nonflexible	It a flexible device

 Table 1.1 Continue

There a lot of services that a mobile robot can do for example transporting and exploration. The issue of transporting has been explained in the above section and continues in the next chapter. The exploration is a very interesting topic because it already been used at NASA for planetary exploration [9][15][18]. It uses an intelligent algorithm that also will be explained in the next chapter.

Overall, as exploring mobile robot can bring a lot of benefits. This understanding is important to improve key feature on a mobile robot. The ideas of green technology are important for the benefit of the industry. By reducing the working hour and reducing the movement duration can save time and energy. By doing that, this will enhance industry capacity for delivering maximum output and minimize budget and time consumption. Several industries maximize usage of the robot in the production line because of the production process need to be precise, accurate and precision. With mobility and flexibility of certain mobile robot design. It can withstand multiple varieties of task and function that needed to be done with high accuracy. Because of that, the mobile robot and path planning is a wide area of research. More on that will explain in the problem statement, the objective of this project or thesis paper, scope and so on.

1.2 Problem Statement

First, Path planning is tightly dependent on the map representation method. The second statement is: Majority of the path planning algorithms are developed for a robot to traverse using a graph map or graph theory such as A* algorithm, Dijakstra algorithm, and Probabilistic roadmap algorithm. The last part: A metric map or occupancy grid map is a map representation that is commonly used in an autonomous mobile robot with low-cost sensors.

Overall, a their key issue on need to be solved or at least understand the concept of why it hard to overcome the problem that mobile robot had to face and its relationship to path planning.

1.3 Objectives

The objective of this paper and project are:

- To analyse the performance of path planning algorithm (Probabilistic Roadmap and Dynamic algorithm) by changing the distance between node and number of node parameter.
- 2. To implement the optimum parameters for PRM algorithm and implement it with Thymio mobile robot.
- 3. To validate a PRM path planning algorithm by comparing between simulation and experiment result with respect to accurate measurement.