OPTIMIZATION OF 19 NM SOI MOSFET WITH HIGH-K MATERIAL AS GATE SPACER USING STATISTICAL METHOD

SYAZWANI HUSNA BINTI SAHUL HAMEED

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

:

OPTIMIZATION OF 19 NM SOI MOSFET WITH HIGK-K MATERIAL AS GATE SPACER USING STATISTICAL METHOD

SYAZWANI HUSNA BINTI SAHUL HAMEED

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2019

:

UNIVERSI FAKULTI KEJUTE اونيوترسيتي تيريكو مليسياً ملاك	ITI TEKNIKAL MALAYSIA MELAKA Raan elektronik dan kejuruteraan komputer rang pengesahan status laporan PROJEK SAR JANA MUDA U		
UNIVERSITI TEKNIKAL MALAVSIA MELAKA Optimizat Tajuk Projek . . Materials . . Sesi Pengajian . .	tion of 19 nm SOI MOSFET with High-k as Gate Spacer using Statistical Method		
Saya SYAZWANI HUSNA BINTI S laporan Projek Sarjana Muda ini disi kegunaan seperti berikut:	SAHUL HAMEED mengaku membenarkan mpan di Perpustakaan dengan syarat-syarat		
 Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (✓): 			
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)		
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.		
TIDAK TERHAD			
	Disahkan oleh:		
(TANDAPANGAN PENULIS) Alamat Tetap: 364. Lorong Kemuning 6. Taman Kemuning. 09000 Kulim, Kedah Tarikh 31 Mei 2019	(COP DAN TANDATANGAN PENYELIA) Profesor Madya Dr. Fauziyah Salehuddin Profesor Madya Fakulti Kejuruteraan Elektronik & Kejuruteraan Komputer Universiti Teknikal Malaysia Melaka Hang Tuah Jaya, 76100 Durian Tunggal, Melaka Tarikh 31 Mei 2019		

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

ĩ

DECLARATION

I declare that this report entitled "Optimization of 19 nm SOI MOSFET with High-k Materials as Gate Spacer using Statistical Method" is the result of my own work except for quotes as cited in the references.

Signature	:	Stor N
Author	:	SYAZWANI HUSNA BINTI SAHUL HAMEED
Date	:	31 MEI 2019

4

•

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	Parf-C
Supervisor Name	:	P.M. DR. FAUZIYAH BINTI SALEHUDDIN
Date	•	31 MEI 2019

;

DEDICATION

I dedicated this thesis to my beloved parents, Sahul Hameed Bin Raj Mohamed and Saniyah Binti Junid and my siblings whom always support and encourage me.

4

ABSTRACT

i

As scaling down MOSFET device degrade the device performance in term of leakage current and short channel effect (SCE). To overcome the problem, the SOI MOSFET device with high-k material such as titanium dioxide (TiO2) as gate spacer has been introduced. However, the fluctuation and variation of ion implantation process will impact the overall power dissipation and performance. Therefore, analysis of variability has become a very important tool to predict the response variation very early in the design cycle due to process parameter spreads. This project execution is based on simulation and program development of the device. Simulation of this device fabrication will be performed by using ATHENA module while for simulation of electrical characteristics will be implemented by using ATLAS module from semiconductor TCAD tools. Semiconductor TCAD tools are computer programs which allow for the creation, fabrication and simulation of semiconductor devices. These 2 modules will be combined with Taguchi method to aid in design and optimizer the process parameter. The parameters that will be considered in this project are the drive current (Ion), leakage current (Ioff), threshold voltage (Vth), current state ratio (Ion/Ioff ratio), subthreshold swing (SS), halo implant energy, halo implant dose, Source/Drain (S/D) implant dose and S/D implant energy. These parameters must achieve the most optimum value that accepted by Low Power (LP) technology by International Technology Roadmap for Semiconductor (ITRS).

z

ABSTRAK

Pengecilan peranti MOSFET merendahkan prestasi peranti dari segi kebocoran arus dan kesan saluran pendek (SCE). Untuk mengatasi masalah ini, peranti SOI MOSFET dengan bahan high-k seperti Titanium dioksida (TiO2) sebagai "gate spacer" telah diperkenalkan. Walau bagaimanapun, turun naik dan variasi proses implantasi "ion" akan memberi kesan kepada pelesapan kuasa dan prestasi kuasa keseluruhannya. Oleh itu, analisis kebolehubahan telah menjadi alat yang sangat penting disebabkan oleh penyebaran parameter proses. Pelaksanaan projek ini berdasarkan kepada simulasi dan pembangunan program peranti. Simulasi fabrikasi peranti ini akan dilakukan dengan menggunakan modul Athena sementara untuk simulasi ciri-ciri elektrik akan dilaksanakan dengan menggunakan modul Atlas dari alat TCAD semikonduktor. Peralatan TCAD semikonduktor adalah program komputer yang membolehkan penciptaan, fabrikasi dan simulasi peranti semikonduktor. Kedua-dua modul ini akan digabungkan dengan kaedah Taguchi untuk membantu dalam reka bentuk dan pengoptimum parameter proses. Parameter yang akan dipertimbangkan dalam projek ini ialah arus pemacu (Ion), kebocoran arus (loff), voltan (Vth), nisbah Ion/Ioff, sub-ambang voltan (SS), tenaga implan halo, dos implan halo, Imun implan (S/D) implan dan tenaga implan S/D. Parameter ini mesti mencapai nilai paling optimum yang diterima oleh teknologi Kuasa Rendah (LP) oleh Roadmap Teknologi Antarabangsa untuk Semikonduktor (ITRS).

z

ACKNOWLEDGEMENTS

All praise to Allah S.W.T, the Almighty for giving me His blessings, strength, ability and patience to complete this project. I would like to express my deepest gratitude and appreciation to my supervisor Associate Professor Dr. Fauziyah Binti Salehuddin for her time, continuous support, patience, encouragement and immense knowledge for the completion and success of this project.

I would also like to thank Ameer Farhan for helping me installed the Silvaco TCAD software and guidance throughout the project. I would like to express my sincere gratitude to both Dr. Hanim and Dr. Zaiton for their constructive comments that help me to improve my project.

Nevertheless, my greatest appreciation is dedicated to my beloved families and friends for their support and encouragements. Lastly, I would like to extend my deepest appreciation to all members in Faculty of Electronic and Computer Engineering for kind support and providing the facilities. May Allah S.W.T bless them all and reward them for their generosity.

z

TABLE OF CONTENTS

Decla	aration	
Арр	roval	
Dedi	cation	
Abst	ract	i
Abst	rak	ii
Ackr	owledgements	iii
Tabl	e of Contents	iv
List	of Figures	ix
List	of Tables	xi
List	of Symbols and Abbreviations	xiv
List	of Appendices	xvi
CHA	PTER 1 INTRODUCTION	1
1.1	Background of Project	1
1.2	Problem Statement	6
1.3	Objectives	6
1.4	Scope of Project	7

		v
1.5	Project Significance	7
1.6	Thesis Outline	8
СНА	APTER 2 BACKGROUND STUDY	10
2.1	Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET)	10
2.2	Electrical Characteristics of NMOS Transistor	12
2.3	MOSFET Downscaling Issues	13
2.4	Short Channel Effect (SCE)	13
2.5	Silicon-on-Insulator (SOI) MOSFET	13
2.6	High-k Dielectric Material	14
2.7	Optimization of the MOSFET	14
2.8	Previous Research or Findings	15
СНА	APTER 3 METHODOLOGY	17
3.1	Flowchart of the Overall Process	17
3.2	Flowchart for virtual fabrication	18
	3.2.1 Mesh Initialization	19
	3.2.2 P-type Silicon Substrate	19
	3.2.3 Well Oxidation	20
	3.2.4 Box Formation	21
	3.2.5 Sacrificial Oxidation	21
	3.2.6 Gate Oxide Growth	22

		vi
	3.2.7 Threshold Voltage Implantation	23
	3.2.8 Polysilicon Gate Deposition	24
	3.2.9 Halo Implantation	24
	3.2.10 Gate Spacer Growth	25
	3.2.11 Source/Drain Implantation	26
	3.2.12 Silicide Growth	27
	3.2.13 PECVD and BPSG Oxide Deposition and Annealing	28
	3.2.14 Compensate Implantation	29
	3.2.15 Aluminum Metallization and Etching	29
	3.2.16 Mirror NMOS Structure	31
3.3	Optimization approach using Taguchi method.	31
	3.3.1 Identification of Input Process Parameters and Levels	32
	3.3.2 Selection of Orthogonal Array	33
	3.3.3 Analysis of Variance (ANOVA)	34
СНА	APTER 4 RESULTS AND DISCUSSION	37
4.1	Characterization of the nMOSFET device	37
4.2	Optimization of Output Responses using L9 Design of Taguchi Method	41
	4.2.1 Optimization of V _{TH} , 10N, I _{OFF} , SS and I _{ON} /I _{OFF} ratio using L9 design Taguchi Method	n of 42
	4.2.2 L ₉ Array Design of Taguchi Method	43
	4.2.3 V _{TH} , I _{ON} , I _{OFF} , SS and I _{ON} /I _{OFF} ratio values Acquisition	43

	4.2.4	Taguchi Method Analysis on Single Output Response, $V_{TH,}I_{ON,}I_{OFF,}$ and I_{ON}/I_{OFF} ratio	SS 46
	4.2.5	Signal-to-Noise Analysis	47
	4.2.6	Analysis of Variance (ANOVA)	52
	4.2.7	Prediction S/N Ratio for Nominal-the-better (VTH)	54
	4.2.8	Prediction S/N Ratio for Mean (VTH)	56
	4.2.9	Prediction of S/N Ratio for Smaller-the-better (IOFF)	57
	4.2.10	Prediction of S/N Ratio for Smaller-the-better (SS)	58
	4.2.11	Prediction of S/N Ratio for Larger-the-better (ION)	60
	4.2.12	Prediction of S/N Ratio for Larger-the-better (ION/IOFF Ratio)	62
	4.2.13	Confirmation Test for Optimization of Single Output Responses	63
4.3	Overal	ll Optimization of 19nm SOI MOSFET Device	66
	4.3.1	Comparison of the Best Level Parameters and the Factor Effects on SNR 66	
	4.3.2	Confirmation Test of Overall Optimization	67
4.4	Re-sin	nulation of Optimized 19nm SOI MOSFET Device	68
CHA	PTER (5 CONCLUSION AND FUTURE WORKS	72
5.1	Conclu	usion	72
5.2	Recom	mendation and Future Work	73
REFE	ERENC	TES	74
APPE	ENDIX	A	78

APPENDIX B			79
APPENDIX C			80
APPENDIX D			81
APPENDIX E			82
APPENDIX F			83

110

:

viii

LIST OF FIGURES

Figure 1.1: Leakage current mechanism in nanoscale MOSFET	2
Figure 1.2: Variation in IOFF with SOI thickness (T _{SOI})	3
Figure 1.3: Drain current versus voltage gate for HfO ₂ , Al ₃ O ₂ and SiO ₂	3
Figure 1.4: PD-SOI MOSFET structure	5
Figure 1.5: FD-SOI MOSFET structure	5
Figure 2.1: Basic structure of MOSFET	11
Figure 3.1: Flowchart for the optimization approach	18
Figure 3.2: Flowchart for Virtual Fabrication of SOI MOSFET	19
Figure 3.3: Silicon Bulk	20
Figure 3.4: Well – oxidation	20
Figure 3.5: Buried-oxide Formation Structure	21
Figure 3.6: Sacrificial Oxidation	22
Figure 3.7: Gate Oxide Growth	22
Figure 3.8: Threshold Voltage Implantation	23
Figure 3.9: Polysilicon Gate Deposition	24
Figure 3.10: Halo Implantation	25
Figure 3.11: Gate Spacer Growth	26
Figure 3.12: Source/Drain Implantation	27

ix

Figure 3.13: Silicide Grown on Top of Polysilicon Gate	28
Figure 3.14: PECVD and BPSG Oxide Deposition and Annealing	28
Figure 3.15: Compensate Implantation	29
Figure 3.16: Aluminium Metallization	30
Figure 3.17: Aluminium is etched	30
Figure 3.18: Mirror NMOS Structure	31
Figure 3.19: Flowchart for Taguchi method	32
Figure 4.1: S/N Graph of V _{TH}	55
Figure 4.2: S/N Graph of I _{OFF}	57
Figure 4.3: S/N Graph of SS	59
Figure 4.4: S/N Graph of I _{ON}	60
Figure 4.5: S/N Graph of Ion/IoFF	62

4

LIST OF TABLES

Table 2.1: Research of related projects	16
Table 3.1: Variation of Input Process Parameters for 19nm NMOS Device	33
Table 3.2: Experimental Layout using L ₉ Orthogonal Array	33
Table 4.1: Process Parameters and Levels	42
Table 4.2: Noise Factors and Levels	42
Table 4.3: Taguchi Experimental Layout using L ⁹ Orthogonal Array	43
Table 4.4: V _{TH} Values for NMOS device	44
Table 4.5: I _{OFF} Values for NMOS device	45
Table 4.6: I _{ON} Values for NMOS device	45
Table 4.7: SS Values for NMOS device	46
Table 4.8: I _{ON} /I _{OFF} Ratio Values for NMOS device	46
Table 4.9: Mean, Variance and S/N ratios for V_{TH}	49
Table 4.10: Mean Sum of Squares and S/N Ratios for IOFF	49
Table 4.11: Mean Sum of Squares and S/N Ratios for SS	50
Table 4.12: Mean Sum of Squares of Reciprocals and S/N Ratios for $I_{\rm ON}$	50
Table 4.13: Mean Sum of Squares of Reciprocals and S/N Ratios for I_{ON}/I_{OFI}	F Ratio 51
Table 4.14: S/N Responses for V _{TH}	51
Table 4.15: S/N Responses for IOFF	51

C Universiti Teknikal Malaysia Melaka

xi

	xii
Table 4.16: S/N Responses for I _{ON}	52
Table 4.17: S/N Responses for I _{ON} /I _{OFF} Ratio	52
Table 18: Result of ANOVA for V _{TH}	53
Table 19: Result of ANOVA for I _{OFF}	53
Table 20: Result of ANOVA for SS	53
Table 21: Result of ANOVA for ION	54
Table 22: Result of ANOVA for I _{ON} / I _{OFF}	54
Table 4.23: Prediction S/N Ratio for Nominal-the-better of V_{TH} .	55
Table 4.24: Prediction S/N Ratio for Mean of V _{TH}	56
Table 4.25: Prediction S/N Ratio for Smaller-the-better of I _{OFF} .	58
Table 4.26: Prediction S/N Ratio for Smaller-the-better of SS	59
Table 4.27: Prediction S/N Ratio for Larger-the-better of I_{ON}	61
Table 4.28: Prediction S/N Ratio for Larger-the-better of ION/IOFF Ratio	63
Table 4.29: Best setting of process parameter for V_{TH}	63
Table 4.30: Best setting of process parameter for I _{OFF}	64
Table 4.31: Best setting of process parameter for SS	64
Table 4.32: Best setting of process parameter for I _{ON}	64
Table 4.33: Best setting of process parameter for I _{ON} /I _{OFF} Ratio	64
Table 4.34: Result of Confirmation Test for V _{TH}	65
Table 4.35: Result of Confirmation Test for I _{OFF}	65
Table 4.36: Result of Confirmation Test for SS	65
Table 4.37: Result of Confirmation Test for I _{ON}	65
Table 4.38: Result of Confirmation Test for ION/IOFF Ratio	66

Table 4.39: Comparison of Best Level Parameters and Factor Effects on SNR	67
Table 4.40: Best setting of process parameter for Overall Optimization	67
Table 4.41: Result of the Confirmation Test for Overall Optimization	68
Table 4.42: Comparison between Before and After Optimization results with I 2013 Prediction.	TRS 71

:

LIST OF SYMBOLS AND ABBREVIATIONS

Al ₃ O ₂		Aluminium oxide
ANOVA	:	Analysis of Variance
BJT		Bipolar junction transistor
BOX	:	Buried oxide
BPSG	:	Boron Phosphor Silicate Glass
CMOS	:	Complementary Metal Oxide Semiconductor
CVD	:	Chemical Vapor Deposition
D	:	Drain
DIBL		Drain-Induced Barrier Lowering
FD		Fully depleted
FET		Field effect transistor
ID		Drain current
Ioff		Leakage current
I _{ON}		Drive current
Ion/Ioff	:	Current state ratio
ITRS		International Technology Roadmap for Semiconductor
HfO ₂	:	Hafnium oxide
k		Dielectric constant
La_2O_3		Lanthanum Oxide

xiv

L _G	Gate Length
MOSFET :	Metal Oxide Semiconductor Field Effect Transistor
nm	Nanometer
NMOS	N-channel MOSFET
PECVD	Plasma Enhanced Chemical Vapor Deposition
PD	Partially depleted
S :	Source
SCE :	Short Channel Effect
Si ₃ Ni ₄	Silicon nitride
S/N	Signal-to-noise
SNR	Signal-to-noise ratio
SiO ₂	Silicon dioxide
SOI	Silicon-on-insulator
SS	Sub-threshold voltage
STI	Shallow trench isolation
TCAD	Technology Computer Aided Design
TiO ₂	Titanium Dioxide
$TiSi_2$:	Titanium Silicide
VD	Drain voltage
V _{DS}	Drain-to-source voltage
V_{G}	Gate voltage
V _{GS}	Gate-to-source voltage
V_{TH}	Threshold voltage
Y ₂ O ₃	Yttrium Oxide
ZrO ₂	Zirconium Dioxide

C Universiti Teknikal Malaysia Melaka

XV

LIST OF APPENDICES

APPENDIX A: Predict S/N Nominal-the-better L9 Orthogonal Array

Taguchi Method (VTH)

APPENDIX B: Predict S/N Mean L9 Orthogonal Array Taguchi Method

(V_{TH})

APPENDIX C: Predict S/N Nominal-the-better L9 Orthogonal Array

Taguchi Method (IOFF)

APPENDIX D: Predict S/N Nominal-the-better L9 Orthogonal Array

Taguchi Method (SS)

APPENDIX E: Predict S/N Nominal-the-better L9 Orthogonal Array

Taguchi Method (I_{ON})

APPENDIX F: Predict S/N Nominal-the-better L9 Orthogonal Array

Taguchi Method (I_{ON}/ I_{OFF} Ratio)

ł

CHAPTER 1

INTRODUCTION

This chapter presents the brief introductory of project background which contains the problem statement, objectives, scope and significance of the project.

1.1 Background of Project

As technology is advancing by years, demand of high performance and accuracy of digital chips is increasing as well. Faster the switching rate can indicate the performance of the transistor is at its best and the microprocessor able to operate at a high speed. This could be achieved by scaling the dimension of MOSFET by using nanometer technology [1]. However, minimization of the gate dimensions increases the short channel effect (SCE) and the extension for drain (D) and source (S) junctions. A major obstacle of SCE is the gate current leakage that occurs when channel attached together as drain (D) and (S) are too near due to scaling the MOSFET dimension. This resulting a static power current leaks through transistor even when device is turned off. Besides, scaling limits the driving current of MOSFET device because increased in parasitic resistances and capacitances.

Figure 1.1: Leakage current mechanism in nanoscale MOSFET

Through a study of leakage reduction techniques for CMOS in 2015, a 22nm NMOS was designed and simulated by using ATHENA and the electrical characteristics were simulated by using ATLAS modules from Silvaco software [2]. Here, they emphasized the use of high-k materials as the dielectric metal gate in improving the current state ratio (I_{ON}/I_{OFF} ratio). Higher I_{ON}/I_{OFF} ratio indicates the device is suitable for low power application. Titanium silicide (TiSi₂) has been used as the metal gate while silicon nitride (Si₃Ni₄) and hafnium oxide HfO₂ are chosen as the gate dielectrics. The simulation result has shown that HfO₂ was the best dielectric material when TiSi₂ became the metal gate, which indicates that high-k dielectric is a possible candidate to replace SiO₂. Hence, it is proven that high-k materials could be one of the best mechanisms to limit leakage current in CMOS devices. Figure 1.2 shows the variation in I_{OFF} with SOI thickness (T_{SOI}).

C) Universiti Teknikal Malaysia Melaka