DEVELOPMENT OF INTERACTIVE AR PLAYBOOK USING UNITY 3D FOR OCULUS RIFT WITH LEAP MOTION

MUHAMMAD ATHIF SYAMIM BIN MOHD SALLEH

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

;

DEVELOPMENT OF INTERACTIVE AR PLAYBOOK USING UNITY 3D FOR OCULUS RIFT WITH LEAP MOTION

MUHAMMAD ATHIF SYAMIM BIN MOHD SALLEH

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2019

FAKULTI KEJUTE	ITI TEKNIKAL MALAYSIA MELAKA raan elektronik dan kejuruteraan komputer rang pengesahan status laporan PROJEK SARJANA MUDA II
PLAYBO	PMENT OF INTERACTIVE AR OK USING UNITY 3D FOR OCULUS ITH LEAP MOTION 9
	AMIM BIN MOHD SALLEH mengaku Muda ini disimpan di Perpustakaan dengan it:
	at salinan untuk tujuan pengajian sahaja. buat salinan laporan ini sebagai bahan
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
V TIDAK TERHAD	
(AAP)	Disahkan oleh:
(TANDATANGAN PENULIS) Alamat Tetap: <u>4D-T1 BLOK MAWAR.</u> KUARTERS_KASTAM AYER_KEROH.75450 MELAKA	(COP DAN TANDATANGAN PENYELIA)
Tarikh : <u>31 MAY 2019</u>	Tarikh : <u>31 MAY 2019</u>

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "DEVELOPMENT OF INTERACTIVE AR PLAYBOOK USING UNITY 3D FOR OCULUS RIFT WITH LEAP MOTION" is the result of my own work except for quotes as cited in the references.

AA
MUHAMMAD ATHIF SYAMIM BIN
MOHD SALLEH

Signature :

Author

ţ

Date

:

: 31 MAY 2019

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:	
Supervisor Name	:	PROF. MADYA DR. NURULFAJAR BIN ABD MANAP
Date	:	31 MAY 2019

ç

DEDICATION

Specially dedicated to my beloved family and friends for helping me a lot. Giving me the motivation and courage to complete this project. Thank you to my supervisor, Prof. Madya Dr. Nurulfajar bin Abd Manap and my mentor, Yap June Wai for teaching me a lot of things related to the project.

ç

ABSTRACT

Augmented Reality is a new technology to blend the digital computer-generated information such as audio, text, video, animation and 3D models seamlessly to the real-world environment. It is believed that this awesome technology is going to change the way how people imagine, see and learn in the future. This project aims to design and develop an interactive object for augmented reality by integrating Oculus Rift, Leap Motion and Webcam. A video-display augmented reality device will be created to work together with an augmented reality book. A leap Motion Controller is essential as a peripheral input device for the user to interact with the system. The application of Leap Motion Controller in this project further enhance the interactivity with different hand gestures such as thumbs up, pinching and pointing finger direction. This project is greatly potential because it is not just for educational purpose, but also applicable in business, architecture and medical field. This project successfully implemented an Interactive Augmented Reality Playbook that can be interact with the Augmented Reality Headset.

ABSTRAK

Realiti Augmented adalah teknologi baru untuk menggabungkan maklumat yang dijana oleh komputer digital seperti audio, teks, video, animasi dan model 3D dengan lancar ke persekitaran dunia sebenar. Teknologi ini dipercayai akan mengubah cara orang membayangkan, melihat dan belajar di masa hadapan. Projek ini bertujuan untuk merekabentuk dan membangun objek interaktif untuk realiti diperkukuhkan dengan mengintegrasikan Oculus Rift, Leap Motion dan Kamera Web. Peranti Paparan Video Realiti Augmented akan direka untuk berfungsi Bersama dengan buku Realiti Augmented. Peranti Leap Motion adalah penting sebagai peranti input periferi bagi pengguna untuk berinteraksi dengan sistem. Penerapan Peranti Leap Motion dalam projek ini secara lansung dapat meningkatkan interaktiviti dengan gerak-geri tangan yang berbeza seperti ibu jari, mencubit dan menunjuk arah jari. Projek ini sangat berpotensi kerana ia bukan hanya untuk tujuan pendidikan, tetapi juga berkaitan dalam bidang perniagaan, seni bina dan bidang perubatan. Projek ini berjaya melaksanakan Buku Interaktif Realiti Augmented yang boleh berinteraksi dengan Peranti Realiti Augmented.

ACKNOWLEDGEMENTS

I would like to express my gratitude to Universiti Teknikal Malaysia Melaka (UTeM) for accepting me as one of their students. I acknowledge with thanks to Faculty of Electronic and Computer Engineering for the support on my final year project. It is a blessing to express the deep sense of appreciation to my supervisor and mentor. I am very grateful for their guidance and assistance throughout the project.

ç

TABLE OF CONTENTS

Declaration		
Approval		
Dedication		
Abstract	i	
Abstrak	ii	
Acknowledgements	iii	
Table of Contents	iv	
List of Figures	viii	
List of Tables	x	
List of Symbols and Abbreviations	xi	
List of Appendices xiii		
CHAPTER 1 INTRODUCTION	1	
1.1 Project Background	2	
1.2 Problem Statement	2	
1.3 Objectives of the Research	3	
1.4 Scope of Work	3	

		v
1.5	Report Structure	4
CHA	PTER 2 LITERATURE REVIEW	5
2.1	First Development of Augmented Reality	5
2.2	Augmented Reality Definition	7
	2.2.1 Milgram Reality-Virtually Continuum/ Mixed Reality Continuum	8
	2.2.2 Ronald Azuma Augmented Reality Definition	9
	2.2.3 Mann's Reality-Virtually-Mediality Continuum	10
	2.2.4 Comparison between Virtual Reality and Augmented Reality	11
2.3	Video-Display Augmented Reality Device Operations	12
2.4	Oculus Rift	13
2.5	Augmented Reality Software Development Kit	15
	2.5.1 Qualcomm Vuforia Software Development Kit	16
	2.5.2 Wikitude Software Development Kit	17
	2.5.3 ARToolKit Software Development Kit	18
	2.5.4 Metaio Software Development Kit	19
	2.5.5 Comparison of Augmented Reality Software Development Kit	20
2.6	Leap Motion Sensor	23
2.7	Previous Project and Research	25
	2.7.1 An Augmented Reality System for Biology Science Education in Malaysia	25

	2.7.2 Hand Gesture Controller in Augmented Reality by Using Oculus R	ift
	and Leap Motion	26
2.8	Summary	27
СНА	APTER 3 METHODOLOGY	28
3.1	Project Overview	28
3.2	Description of the Project Implementation	31
	3.2.1 Stage 1: Hardware Integration	31
	3.2.2 Stage 2: Software Development	33
/	3.2.3 Prototyping and Improvement of System	34
3.3	Installing and Setting Up of Oculus Rift	35
3.4	Setting Up Leap Motion Controller	39
3.5	Integration of Leap Motion and Oculus Rift DK2	42
3.6	Integration of Logitech Camera and Oculus Rift using Vuforia SDK	43
3.7	Image Recognition using Vuforia SDK	44
3.8	Development of Hand Gesture Recognition using Leap Motion	45
3.9	Summary	47
CHA	APTER 4 RESULTS AND DISCUSSION	48
4.1	The Prototype Overview	48
	4.1.1 Interactive Augmented Reality Playbook – "The Space Explorer"	49
	4.1.2 A Video-Display Augmented Reality Headset	50
4.2	The Simulation of the Augmented Interactive Playbook and Headset	52

	4.2.1 Content Page	52
	4.2.2 Earth 53	
	4.2.3 Sun 54	
	4.2.4 Moon 55	
4.3	Questionnaire	57
	4.3.1 Personal Information Section	57
	4.3.2 Augmented Reality Knowledge Section	59
	4.3.3 The Space Explorer Feedback	62
4.4	Summary	66
CHA	APTER 5 CONCLUSION AND FUTURE WORKS	67
5.1	Conclusion	67
5.2	Future Works	68
REFERENCES 6		
APP	ENDICES	72

ţ

vii

LIST OF FIGURES

Figure 2.1: Milgram's Continuum	8
Figure 2.2 : Mann's Reality-Virtuality-Mediality Continuum	10
Figure 2.3: Steve Mann's Mediated Reality Model	10
Figure 2.4 : Video-Display Augmented Reality Device Operations	12
Figure 2.5: The Internal Structure of Oculus Rift Developer Kit 2	15
Figure 2.6: The coverage angle of Leap Motion Controller	23
Figure 3.1: Overview of Project	29
Figure 3.2: Block Diagram of the system	30
Figure 3.3: Workflow of Project Implementation Stage 1	31
Figure 3.4 : Workflow of Project Implementation Stage 3	34
Figure 3.5 : Connection of PC, Oculus Rift, Leap Motion and Webcam	35
Figure 3.6 : Oculus Rift Installer Interface	36
Figure 3.7 : Oculus manager icon appear after the installation	37
Figure 3.8 : Oculus Configuration Utility Window	37
Figure 3.9 : Calibration of Oculus Rift	38
Figure 3.10 : Head-Mounted Leap Motion Controller	39
Figure 3.11, : Warning Message of Leap Motion Controller	40
Figure 3.12 : Calibration of Leap Motion Sensor	41

viii

Figure 3.13: Thumb Up Algorithm	47
Figure 4.1: Augmented and Real World View	49
Figure 4.2: Cover of the Augmented Reality playbook	49
Figure 4.3: Final Prototype Front View	50
Figure 4.4: Augmented Reality Mode 1 using Logitech Camera	51
Figure 4.5: Augmented Reality Mode 2 using embedded Leap Motion camera	51
Figure 4.6: Content Page	52
Figure 4.7: Earth Content Page	53
Figure 4.8: Pointing to the Earth Rotation Direction	53
Figure 4.9: Sun Content Page	54
Figure 4.10: Two-Handed Gesture Feature	54
Figure 4.11: Moon Content Page	55
Figure 4.12: Pointing Gesture in Virtual World	56
Figure 4.13: Halt Gesture to Stop Movement	56
Figure 4.14: Personal Information Layout	57
Figure 4.15: Results for Personal Information Section	58
Figure 4.16: Augmented Reality Knowledge Layout	59
Figure 4.17: Results for Augmented Reality Knowledge (Part 1)	60
Figure 4.18: Results for Augmented Reality Knowledge (Part 2)	61
Figure 4.19: The Space Explorer Feedback Layout	62
Figure 4.20: Feedback of The Space Explorer (Part 1)	63
Figure 4.21: Feedback of The Space Explorer (Part 2)	64
Figure 4.22: Feedback of The Space Explorer (Part 3)	65

ix

LIST OF TABLES

Table 2.1: Comparison between Augmented Reality and Virtual Reality	11
Table 2.2: The Specifications of Oculus Rift	13
Table 2.3: The supported platform of Augmented Reality SDK	20
Table 2.4: The comparison of Augmented Reality SDK	21

ł

LIST OF SYMBOLS AND ABBREVIATIONS

AR	:	Augmented Reality
VR	:	Virtual Reality
SDK	:	Software Development Kit
3D	:	Three-dimension
C#	:	C Sharp
MR	:	Mixed Reality
IDE	:	Integrated Development Environment
DOF	:	Degree of Freedom
DK	:	Development Kit
DVI	:	Digital Visual Interface
USB	:	Universal Serial Bus
HDMI	:	High-Definition Multimedia Interface
IR	:	Infrared
CMOS	:	Complementary Metal-Oxide Semiconductor
OLED	:	Organic Light-Emitting Diode
API	:	Application Programming Interface
QR	:	Quick Response
XML	:	Extensible Markup Language

HTML	:	Hyper Text Markup Language
IOS	:	iPhone Operating System
CSS	:	Cascading Style Sheets
RGB	:	Red-Green-Blue
YUV	:	Luminance (Y) Chrominance (U, V)
LED	:	Light-Emitting Diode
RAM	:	Random Access Memory
AMD	:	Advanced Micro Devices

ł

.....

LIST OF APPENDICES

Tirtual Button Script (Part 1)		72
Virtual Button Script (Part 2)		73
Hand Factory Script for Leap Motion	÷ .	73

ł

CHAPTER 1

INTRODUCTION

Augmented Reality (AR) is an emerging form of experience in which the real world is enhanced by computer-generated content. AR supplements reality augmenting one's immediate surroundings with electronic data or information and digital assets such as audio and video files, textual information, and even old factory or tactile information can be incorporated into users' perceptions of the real world.

Augmented reality uses technology to make such a layer of information accessible to people to blend one's perception of the actual world with digital content about it generated by computer software. This technology comes in a myriad of forms: from wearables and smart glasses that use retinal projection to put a display in the wearer's eyeball (e.g., Google Glass was a very noticeable AR Headset, the Vaunt by Intel is much less conspicuous) to the more commonly used smartphones.

1.1 Project Background

This project will be separated into 3 stages which are Hardware Integration, Software Development, and Test Run for further improvement. The Hardware Integration is to design and implement an Augmented Reality display device by integrating Oculus Rift DK2, C310 Logitech Webcam, and Leap Motion Controller. After that, Augmented Reality Playbook is designed which each marker will be assigned for specific functions. Next, for the Software Development this project will be using Vuforia and Unity3D as platforms to run the Augmented Reality Program. These programs will be used to mark the markers for the location of Augmented Reality objects to appear on the screen. The AR playbook will be tested with the Augmented Reality device. User will have to interact with the virtual objects according to the program. Lastly, the interaction of the user and virtual objects will be analyzed for the further improvement.

1.2 Problem Statement

Oculus Rift Virtual Reality Goggles are not fully utilized. It is only limited to immersive learning in virtual environment. Virtual Reality has its own limitation and one of them is user will be isolated in the VR world. User will be 'teleported' to another world which only the user can experience it. The interaction is restricted to the real environment because user can only engage with objects inside the VR world. The attached webcam on the Oculus Rift will enhance its feature by enabling immersive learning in Augmented Reality environment, with the Oculus Rift itself to be a display screen for the user. In addition, the performance of the Oculus Rift is improved by adding the function of leap motion controller. Now users can interact with the virtual objects using specific hand gestures.

1.3 Objectives of the Research

The aim of this project is to develop an interactive Augmented Reality playbook that can be useful for modern technologies. The following objectives of this project as following:

- To design and develop Augmented Reality device by integrating Oculus Rift, C310 Logitech webcam, and Leap Motion Controller.
- ii. To develop a hand gesture for interactive Augmented Reality playbook that compatible with the Augmented Reality device.
- iii. To analyze the interaction performance of Augmented Reality Headset with the AR playbook.

1.4 Scope of Work

ţ

This project will be conducted mostly in the Research Lab 3. This project focused mainly on implementing Augmented Reality playbook for Oculus Rift with Leap Motion Controller. For the first stage, design and develop an Augmented Reality display device by integrating Oculus Rift and webcam. The functionality of Leap Motion Controller is add-on to improve the interactivity system of the project. Next, design Marker Based Augmented Reality will be programmed in Unity 3D. Lastly, the implementation of hand gestures interaction such as pinch to grab and stretch to zoom in/out.

1.5 Report Structure

The thesis is organized and arranged into 5 chapters. In Chapter 1, the development of Augmented Reality device and its overview is discussed in the project background. In addition, the problem statement, objective and scope of work will be outlined clearly in this chapter. In Chapter 2, the past studies related to Augmented Reality and reviewed and analyzed. The theory of Augmented Reality will be included in this chapter. In Chapter 3, all methods and techniques that are related to the development of AR playbook will be used and discussed the outcomes. The methods will be explained in block diagrams and flowcharts accordingly. For Chapter 4, the performance of the project will be analyzed and recorded during the test run. The obtained results and data will be determined the project strengths and weaknesses. By this result, the project will be improved to achieve the objectives. In the last chapter, a conclusion will be drawn from the project. In addition, the recommendation for future implementation for this project will be in this section.

CHAPTER 2

LITERATURE REVIEW

This chapter presents the background studies from the related journals and papers on the theoretical background of Augmented Reality. The differences between Augmented Reality and Virtual Reality is analyzed in this chapter. The background and introduction of Oculus Rift and Leap Motion Controller also will be explained in this section.

2.1 First Development of Augmented Reality

A Harvard professor and computer scientist named Ivan Sutherland invented what he called the Sword of Damocles in 1968. With his student, Bob Sproull, he invented this first kind of augmented reality device. Damocles ' Sword featured a head-mounted