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ABSTRACT 

Gestures are another type of communication tool which can be used to express idea, 

thought and feeling. It is usually used by those who have hearing and speech disability 

as mother language. This project was about implementation of a deep learning-based 

recognitions system for 30 MSL static hand gestures and evaluation of the 

performance of the system designed in term ofrecognition accuracy. This project was 

designed for those users who using the recognition system in front of an USB camera 

and the system designed was capable to recognize 30 MSL hand gesture sonly. The 

recognition system designed was made up by two hierarchical CNN architectures, in 

which YOLOV2 model was used for hand detection while MobileNet pretrained 

model was used for gestures classification ofthis project. Throughout this project, the 

hand gestures recognition system designed achieved 98% average testing accuracy on 

self-generated testing dataset. Given the limitations of the datasets and the 

encouraging results achieved, a fully generalizable translator for all 30 MSL static 

hand gestures can be produced with further research and inclusion of more dataset for 

MobileNet classification training. 
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ABSTRAK 

Gerak isyarat adalah satu alat komunikasi yang boleh digunakan untuk menyatakan 

idea, pemikiran dan perasaan. Ia biasanya digunakan oleh mereka yang mempunyai 

kecacatan pendengaran dan pertuturan sebagai bahasa ibu. Projek ini adalah mengenai 

pelaksanaan sistem pengiktirafan berasaskan pembelajaran mendalam untuk 30 

tangan gerak isyarat statik MSL dan penilaian prestasi sistem yang direka dari segi 

ketepatan pengiktirafan. Projek ini direka untuk pengguna yang menggunakan sistem 

pengiktirafan di hadapan kamera USB dan sistem yang direka mampu mengiktiraf 30 

tanda tangan MSL sahaja. Sistem pengiktirafan yang direka dalam project ini terdiri 

daripada dua seni bina CNY hierarki, di mana model YOLOV2 digunakan untuk 

pengesanan tangan manakala model MobileNet digunakan untuk pengkelasan gerak 

isyarat. Melalui projek ini, sistem pengenalan gerak isyarat tangan direka mencapai 

98% ketepatan ujian purata atas data yang dikumpulkan sendiri. Memandangkan 

batasan data yang ada dan hasil dicapai yang menggalakkan, penterjemah yang 

sempurna dan umum untuk semua 30 gerak isyarat tangan statik MSL dapat dihasilkan 

dengan penyelidikan lanjut dan memasukkan lebih banyak data untuk latihan 

klasifikasi MobileNet. 
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CHAPTER 1: 

INTRODUCTION 

This chapter consists of five sections. The overview of the project is firstly 

introduced in this chapter. The problem statement regarding to the study are described 

in section 1.2. The objectives for this study are stated in section 1.3. Section 1.4 

discusses the scope and limitations of work while section 1.5 describes the project 

significant. The thesis outline is presented in the final section of this chapter. 



2 

1.1 Project Overview 

Gestures are another type of communication tool which can be used to express idea, 

thought, feeling and even for devices controlling. Meanwhile, hand gestures or 

gestures performed by one or two hands is the largest category of gestures due to large 

number of signs can be performed by varying the fingers or hands orientation or 

position. 

From the past, the researches on hand gestures recognition for both static and hand 

gestures had been applied in many fields for example entertainment, automotive 

device controlling, communication and etc. Hand gestures recognition system can be 

implemented using various approaches in which deep learning approach is currently 

the most popular. Authors in studies [ 1] and [2] were conducted their researches on 

hand gestures recognition using different deep learning approaches. 

Although there are lot ofresearch had been conducted on hand gestures recognition 

for sign language users, there is still difficult to construct a robust sign language 

recognition system due to the numerous sign languages that are used in the world and 

for a sign language, there are a lot of different hand gestures. Communication between 

those who have speech or hearing disability and normal people is still becoming an 

issue. 

In light of this, a deep learning-based hand gestures recognition system had been 

proposed to solve the communication issue between disabled and normal people to 

certain level. 

1.2 Problem Statement 

According to World Federation of the Deaf, 70 million deaf people are using sign 

language as their first language or mother tongue. Sign language is one of the effective 
' 

communication tools for the people who are not able to speak and hear anything. It is 
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also useful for the person who are able to speak but not able to hear or vice versa[3]. 

However, due to the disabilities, deaf and dumb people are having difficulty to 

communicate with the normal people. This cause a communication gap or ideas 

sharing obstacle and collaboration problem for the deaf -mute community and people 

who can speak and hear since not everyone learns sign language. 

In addition, from previous studies, most of Malaysian Sign Language (MSL) static 

hand gestures recognition systems were implemented using conventional approach. 

Deep learning is a trending technology in image recognition which had been proven 

its successful in several studies. Thus, this project is aims to implement a hand gestures 

recognition system based on deep neural network (DNN) to recognize 30 Malaysian 

Sign Language (MSL) static hand gestures. 

1.3 Objectives 

The objectives of this project are: 

1) To construct a deep learning-based recognition system for 30 static hand 

gestures. 

2) To evaluate and analyze the performance of system designed in term of 

accuracy. 

1.4 Scope of Project 

In this project, a hand gesture recognition system is designed to recognize 30 static 

hand gestures only. This is due to dynamic hand gestures recognition system requires 

longer period of time, more complex network architecture and higher computation 

power to train. Static hand gestures are considered less useful than dynamic hand 

gestures in daily communibation since most of static hand gestures are alphabets and 
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numbers. However, static hand gestures are effective in expressing certain word such 

as a person' s name, place name and others. In addition, this system is designed for 

those users who sat in front of a camera. The hand gestures look different when a user 

shows the gestures in front of a camera in sitting or standing pose. The angle and 

orientation of hand gestures shown in front of camera will influence the recognition 

result of the system designed. 

Besides, the system is designed to recognize Malaysia Sign language (MSL) hand 

gestures only since this is the most commonly used in Malaysia. In addition, the 

software for the system will be developed by using KERAS in Python language. 

KERAS is a high-level interface for deep learning and Python is a high-level 

programming language that easily to understand. The syntax in python helps the 

programmers to design coding in fewer steps as compared to Java and C++. Moreover, 

an USB camera is used to capture raw images for hand gestures due to it is cheap and 

within the budget of project. 

1.5 Project Significant 

This system can be used during communication between deaf dumb and normal 

people. With this system, the translation of gestures or sign language to text form will 

be carried out immediately after the system detected a hand gesture. This can help in 

reducing the communication gap between these disabled people and normal people. 

Through this system, these disabled people can adapt to normal people lifestyle and 

not just live in their small group. 

Apart from that, hand gestures or sign language not only used by people who are 

unable to speak. It is also used by deaf, people who have trouble with spoken language 
1 

due to disability, people who have problem in hearing and those with deaf family 


