OPTIMIZATION OF FIBER OPTIC FOR SENSING APPLICATIONS USING TAGUCHI APPROACH

KUSHALLINI A/P SIVAJI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

OPTIMIZATION OF FIBER OPTIC USING SENSING APPLICATIONS USING TAGUCHI APPROACH

KUSHALLINI A/P SIVAJI

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > 2019

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek :	Optimization	of	Fiber	Optic	for	Sensing
----------------	--------------	----	-------	-------	-----	---------

Applications using Taguchi Approach

Sesi Pengajian : <u>2018/2019</u>

Saya <u>KUSHALLINI A/P SIVAJI</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
TIDAK TERHAD	
	Disahkan oleh:

(TANDATANGAN PENULIS) (COP DAN TANDATANGAN PENYELIA)

Alamat Tetap: N0.16, Jalan SS

5D/7, 47301 Petaling Jaya, Selangor.

Tarikh: 31 Mei 2019 Tarikh: 31 Mei 2019

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Optimization of Fiber Optic for Sensing Applications using Taguchi Approach" is the result of my own work except for quotes as cited in the references.

Signature:

Author : KUSHALLINI A/P SIVAJI

Date : 31 MAY 2019

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient
in terms of scope and quality for the award of Bachelor of Electronic Engineering with
Honours.

Signature :

Supervisor Name : DR. HAZURA BINTI HAROON

Date : 31 MAY 2019

DEDICATION

This thesis is dedicated specially to my supervisor, DR. Hazura binti Haroon, for guiding me throughout my project and be with me in all ups and downs, my beloved family for moral support and finally my friends who have encouraged me and had a great teamwork in completing this research and thesis.

ABSTRACT

Taguchi approach is a method where statistical analysis is performed to improve the quality of manufactured goods. This method reduce time and cost and gives the optimized analysis same as thousands of experiments' results. In this project, a low cost sensor based on FBG sensor was designed and optimized by Taguchi method. The influence of design parameters variations was analysed and finally, the best setting of design parameters was obtained. This experiment was conducted under wavelength of 1550nm with the aim to studying the relationship of the design parameter to the wavelength shift and also the power received. The most optimized condition was identified and compared with the actual experiment. Confirmation test was performed to check the validity of the proposed optimized parameters and this result was implied using the Minitab Software. Upon completion, it was found to be the best parameter setting is 30°C, 60mm of bending and 1.3331 RI. The highest output power from confirmed experiment is 7.950 µW and wavelength shift of 1550.110nm. From this, the SNR is calculated which is 20.0189 while from the Taguchi, the expected SNR is 21.4346. Thus, the difference between the predicted value from Taguchi and from the actual experiment is 6.83%. Therefore, the Taguchi approach is proven as a great tool, giving great impact on economy, society and environment.

ABSTRAK

Pendekatan Taguchi adalah satu kaedah di mana analisis statistik dilakukan untuk meningkatkan kualiti barangan perkilangan. Kaedah ini mengurangkan masa dan kos dan memberikan analisis yang dioptimumkan dalam pelbagai hasil eksperimen. Dalam projek ini, sensor kos rendah berdasarkan sensor FBG direka dan dioptimumkan. Pengaruh variasi parameter reka bentuk dianalisis dan akhirnya, parameter reka bentuk terbaik diperolehi. Eksperimen ini dijalankan di bawah panjang gelombang 1550nm dengan matlamat untuk mengkaji hubungan antara parameter reka bentuk dengan peralihan panjang gelombang dan kuasa yang diterima. Ujian pengesahan telah dilakukan untuk memeriksa kesahihan parameter yang dioptimumkan yang dicadangkan dan hasil ini tersirat menggunakan Perisian Minitab. Selepas selesai, ia didapati sebagai parameter terbaik ialah 30 °C, 60mm lenturan dan 1.3331 RI. Kuasa keluaran tertinggi daripada percubaan yang disahkan ialah 7.950 µW dan peralihan panjang gelombang 1550.110nm. Dari sini, SNR dikira iaitu 20.0189 manakala dari Taguchi, SNR yang dijangkakan ialah 21.4346. Oleh itu, perbezaan antara nilai ramalan dari Taguchi dan dari percubaan sebenar ialah 6.83%. Oleh itu, pendekatan Taguchi terbukti sebagai alat yang hebat dan memberi impak besar kepada ekonomi, masyarakat dan alam sekitar.

ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to god for his blessings and for giving me strength to complete my Final Year Project, entitled "Optimization of Fiber Optic for Sensing Applications using Taguchi Approach" successfully. I would like to thank my supervisor for the Final Year Project 1 and 2, DR. Hazura binti Haroon, for her special care and attention she has given on me. I am extremely thankful and indebted to her for sharing expertise, and sincere and valuable guidance to me. She has been patience with me, guided fully for this project without any hesitation and helped me whenever I needed her help. The journey of this two semesters with her and my team was meaningful and knowledgeable.

My special gratitude to my beloved parents for supporting me financially and have been giving me moral support throughout this whole project. They have encouraged me when I was in difficulties and have given me space to finish up my project. Their care and attention for me to study in university and finish my studies without any hardships is undefinable. Furthermore, I would like to acknowledge with much appreciation for my friends and seniors of Master and PhD students. They have been very helpful and gave me guidance throughout my project. We have been working hard together in the lab and help each other for our projects.

TABLE OF CONTENTS

Decl	laration	
App	proval	
Ded	lication	
Abs	stract	i
Abs	trak	ii
Ack	anowledgements	iii
Tab	ole of Contents	iv
List	of Figures	vii
List	of Tables	X
List	of Symbols and Abbreviations	xi
List	of Appendices	xiii
CHA	APTER 1 INTRODUCTION	1
1.1	Introduction	1
1.2	Problem Statement	3
1.3	Objectives	4
1.4	Scope of Study	4

		V
1.5	Significance	5
1.6	Project Outline	5
СНА	APTER 2 BACKGROUND STUDY	7
2.1	Light	7
2.2	Optical Fiber Communication System	9
2.3	History of optical fiber	11
2.4	Structure of Optical Fiber	14
2.5	Principle of Operation	15
2.6	Type of Optical Fiber	16
2.7	Optical Fiber Sensors	20
2.8	Taguchi Method	23
	2.8.1 Introduction	23
	2.8.1 Design of Experiment (DOE)	24
СНА	APTER 3 METHODOLOGY	27
3.1	Project Methodology	27
	3.1.1 Flow Chart	28
3.2	Optical Characterization Measurement Flow Chart	32
3.3	Experimental setup	33
	3.3.1 Temperature Measurement Setup	33

35

3.3.2 Refractive index Measurement Setup

	3.3.3 Bending Size Measurement Setup	38
	3.3.4 Optimization Identifying Overall Experiment Procedure	40
3.4	Equipment and tools	41
3.5	Steps in Taguchi Method	44
	3.5.1 Method for response tables	47
3.6	Confirmation Experiment from Predicted Value	48
CHA	APTER 4 RESULTS AND DISCUSSION	49
4.1	Experiment of One Factor at a Time	49
	4.1.1 Effect of Temperature to FBG Sensor Performance Default	49
	4.1.2 Effect of Refractive Index to FBG Sensor Performance Default	52
	4.1.3 Effect of Bending Size to FBG Sensor Performance Default	55
4.2	Optimization Identifying Overall Experiment	57
4.3	Taguchi Technique	59
4.4	Confirmation Experiment from Predicted Value	65
CHA	APTER 5 CONCLUSION AND FUTURE WORKS	67
5.1	Conclusion	67
REFERENCES		70
APPENDICES		74

LIST OF FIGURES

Figure 2.1: The Electromagnetic Spectrum [4]	8
Figure 2.2: Basic Fiber Optic Communication System [5]	11
Figure 2.3: Claude Chappe, Coding Scheme and Mechanical Devices Used for Optical Telegraphs[10]	Making 12
Figure 2.4: The Interbuilding Cabling of Optical Fiber Communication Scenario[5]	System 13
Figure 2.5: Increase in BL Product during the Period 1840-2015[10]	13
Figure 2.6: Structure of Optical Fiber[9]	15
Figure 2.7: Total Internal Reflection Phenomena in Optical Fiber [6]	15
Figure 2.8: Dimensions of the Single-Mode and Multi-Mode Fibers[4]	17
Figure 2.9: Uniform Fiber Bragg Grating [5]	17
Figure 2.10: The Theoretical Loss Spectrum[19]	19
Figure 2.11: Pie Chart of Application of Laser in 2016[29]	21
Figure 3.1: Overall Project Flow Chart	29
Figure 3.2: Project Flow Chart 2	31
Figure 3.3: Block Diagram of Optical Flow	32
Figure 3.4: The Wavelength Shift Measurement Schematic Diagram [39]	33
Figure 3.5: Procedure of Temperature Experiment	34

	viii
Figure 3.6: Experiment Setup using OSA for Temperature	35
Figure 3.7: Enlarge View of the Immersion of FBG in Glycerol	36
Figure 3.8: Procedure of Measuring Refractive Index of Solutions	37
Figure 3.9: Procedure of Bending Size	39
Figure 3.10: Step 1; Creating Taguchi Design	45
Figure 3.11: Step 2; Choosing Type of Design, Number of Factors and Levels	45
Figure 3.12: Step 3; Number of Levels Chosen	46
Figure 3.13: Step 4; Choose 3 Level Values for each Factors	46
Figure 3.14: The Input Parameters for 9 Levels	46
Figure 4.1: The Image of Wavelength Shift from OSA	50
Figure 4.2: Graph of Temperature versus Wavelength Shift	52
Figure 4.3: Graph of Temperature versus Output Power	52
Figure 4.4: Graph of Refractive Index of Solution	53
Figure 4.5: Graph of Refractive Index versus Output Power	55
Figure 4.6: Graph of Bending Size versus Wavelength Shift	56
Figure 4.7: Graph of Bending Size versus Output Power	57
Figure 4.8: Overall Experiment Setup	58
Figure 4.9: Response Table from Minitab	60
Figure 4.10: Descriptive Statistics from Minitab	61
Figure 4.11: Summary of Temperature	61
Figure 4.12: Summary of Refractive Index	62
Figure 4.13: Summary of Bending Size	62
Figure 4.14: Probability Plot	63

	ix
Figure 4.15: Probability Plot of Output Power	63
Figure 4.16: Plot of Signal-to-Noise	64
Figure 4.17: Prediction Analysis	64
Figure 4.18: Predicted Value	65

LIST OF TABLES

Table 2.1: Comparison between LED and Laser[5]	9
Table 2.2: Fiber Optic Transmission Windows[5]	10
Table 2.3: List of Journals of Application of Optical Fiber Sensor	22
Table 2.4: Other Applications using Taguchi Method	23
Table 3.1: Orthogonal Array Arrangement for L9 (33)[40]	30
Table 3.2: Fluid Sample and Refractive Index of Each Sample [13]	36
Table 3.3: Diameter Size	38
Table 3.4: Overall Experiment 3 Factors at a Time	40
Table 3.5: Equipment and Tools	41
Table 4.1: Wavelength Shift and Output Power Result for Temperature	50
Table 4.2: Refractive Index and Brix Scale Reading	53
Table 4.3: Wavelength Shift and Output Power Result for RI	54
Table 4.4: Wavelength Shift and Output Power Result for Bending Size	56
Table 4.5: Overall Experiment Result	58
Table 4.6: Variable and Output Power	59
Table 4.7: SNR and Mean Calculation	60
Table 4.8: Confirmation Experiment Result	65
Table 4.9: Calculation of Percentage Difference	66

LIST OF SYMBOLS AND ABBREVIATIONS

FBG : Fiber Bragg Grating

POF : Plastic Optical Fiber

EMI : Electromagnetic Interference

SRI : Surrounding Medium Refractive Index

UV : Ultraviolet

LED : Light Emitting Diode

LS : Light Source

BL : Bit-rate Length

PMMA : Polymethyl Methacrylate

NA : Numerical Aperture

LAN : Local Area Network

DOE : Design of Experiment

TMB : Tsing Ma Bridge

NASA : National Aeronautics and Space Administration

SNR : Signal to Noise Ratio

S/N : Signal to Noise

OSA : Optical Spectrum Analyzer

OS : Orthogonal Array

L : Level

OPM : Optical Power Meter

RI : Refractive Index

ANOVA : Analysis of Variance

dB : Decibels

μW : microWatt

% : Percentage

°C : Degree Celcius

 λ : Wavelength Shift

B : Brix Scale

DUT : Device Under Test

SDM : Space-division Multiplexing

WDM : Wavelength-division Multiplexing

LIST OF APPENDICES

Appendix A: INOTEK Poster of Optimization of Fiber Optic for Sensing	
Applications using Taguchi Approach.	74
Appendix B: Fiber Bragg Grating Sensor Data Sheet	75
Appendix C: Circulator Test Data Sheet	75

CHAPTER 1

INTRODUCTION

This chapter explains about the introduction of the project background, problem statement and objectives. In this chapter also, scope of work, significance and project outline have been explained briefly.

1.1 Introduction

The practice of trial-and-error approach is no longer sufficient in this volatile competitive international market to meet the challenges of globalization, especially when the disadvantages outweigh its benefits. Therefore, in optimizing the processing parameters which is the Taguchi Method, a systematic methodology is proposed to explore the connection between parameters and identify the optimal process conditions. Taguchi technique has been very successful in integrating powerful

applied statistical methods into engineering process for accomplishing greater capability and stability.

Taguchi technique is often referred to as the technique of Robust Design and is named after Dr. Genichi Taguchi. Genichi Taguchi, born in January 1924, was also an excellent engineer and statistician. Dr. Genichi believes the price is more vital than quality, but perhaps the value of quality will lower the cost automatically. The Taguchi method focuses primarily on increasing the productivity of engineering to develop new goods at lower rates, however. Indeed, it is the most powerful method available to minimize the cost of the product, improve quality and continuously increase the interval of development.

The Robust Design method helps to ensure customer satisfaction by consciously considering the noise factors which is the environmental variation throughout the use of the item, production variation, and component deterioration in the field. Robust Design concentrates on increasing the basic operation of the brand or process, thus facilitating flexible designs and concurrent engineering. Besides, the employment of fiber optics for such applications provides the same advantages as in communication, reduced cost, smaller size, better precision, greater flexibility and greater efficiency. Compared to conventional electrical sensors, fiber optic sensors are immune to external electromagnetic interference and can be used in potentially harmful and explosive environments.

The optic fiber can therefore be used as a parameter sensor but extends to certain limits as it can cause power loss as the value varies in the parameter selected. This is why optic fiber has been researched so that it can be optimized to identify which parameter chosen. During this project, Taguchi approach will be applied for

optimization of optical fiber based on few parameters. By achieving this, time and price were saved by reducing the number of experiment to few solely and the statistical data measured is same as efficient as hundreds of experiments research. Not only that, the optic fiber response will be measured under a few parameters to identify the most optimized condition for fiber optics to work the best.

1.2 Problem Statement

In the development of high potency fiber optic sensor system, the response of such sensors are subject to uncertainties due to variability in several hard-to-control noise factors, that embrace design parameters, material properties, and construction procedures. Efforts are emphasized by design engineers to optimize the design of the sensor itself since alternative uncertainties are internal uncontrollable factors in real condition. However, every design parameters have distinct contributions to the overall device performance. Therefore, the design trade-offs analysis and optimization is crucial in any device design process so as to satisfy design target. Conventional design optimization including trial-and-error and one-factor at a time approach do not seem to be solely long time-consuming, but contributes to higher development cost as many experiments must be conducted and plenty resources wasted. In this project, a structured experimental design by Taguchi were proposed for fiber optic sensor response optimization. The device parameters of interest are the temperature, the refractive index of the test samples and number of turns bending. All of these three design parameters will be optimized and therefore the best parameters setup for sensing applications will be disclosed.

1.3 Objectives

The objectives of this project are:

- To design a low-cost intensity-based liquid concentration sensor based on Fiber Bragg Grating (FBG).
- ii. To analyze the influence of design parameters variations on fiber optic sensor response.
- iii. To optimize the fiber optic sensor design towards the Signal-to-Noise ratio of the sensor using Taguchi Approach.

1.4 Scope of Study

In this project, a method has been developed and implemented to conduct design of experiment using Taguchi technique for the analysis of optimization of optical fiber characteristics for sensing applications. The analysis was carried out using basic concept of Taguchi method, by analyzing the output data to find out the influence of each parameter which is temperature, fiber bending, and refractive index. Experiments and testing will be carried out using Fiber Bragg Grating (FBG). The temperature range that will be used is between 30°C to 100°C with an increment of 5°C per reading. For size of bending, bending diameter from 1mm to 60mm will be tested whereas for refractive index, 10 type of solutions will be selected within range of 1.33 and 1.54.

The response of the fiber will be investigated in terms of output power and wavelength shift. The collected data will be analyzed and need to find out inference for the upcoming results. The relationship between parameter and power loss and wavelength shift is recorded and plotted in graph form. Minitab software version 14 will be utilized to conduct the statistical analysis of the Taguchi method, where the response target for power loss is lower the better and for the sensitivity of the fiber,

higher the better. The experimental measurement will be carried at 1550 nm wavelength at 1 KHz frequency with several other condition according to parameter using FBG fiber. The percentage difference between the predicted value from Taguchi and the actual experimental value is finally calculated to verify the analysis.

1.5 Significance

Experiment design (DOE) under Taguchi Technique is truly an influential observational tool widely employed by engineers and researchers in all areas of study to predict the effects of input variables on output variables. It is the method of organizing experiments for obtaining information through the least series of experiments. That is why Taguchi Methodology seems more efficient than traditional method. How data collected is analyzed is the distinction between DOE using traditional and Taguchi methods. Average and variation of data are used in Taguchi technique whereas the average values of the response data are used in the traditional analysis. Therefore, Taguchi methodology was expected to deliver higher results as it guarantees the highest standards with minimal variance. The Taguchi method is simpler to enforce and does not require special statistical knowledge. Taguchi technique has been effectively used in many research and projects for quantitative analysis of various factors.

1.6 Project Outline

This report consists of five chapters. In Chapter 1, discussed about the introduction of the project with the objectives, problem statement, scope, significance and outline of the project. Chapter 2 discusses on theoretical, background and research knowledge in optimizing optical fiber and usage of Taguchi method. Meanwhile, Chapter 3