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ABSTRACT 

With the coming of the era of industrial revolution 4.0, manufacturers produce 

high-tech products. As the production process is refined, inspection technologies 

become more important. Specifically, the inspection of a printed circuit board (PCB), 

which is an indispensable part of electronic products, is an essential step to improve 

the quality of the process and yield. Image processing techniques are utilized for 

inspection, but there are limitations because the backgrounds of images are different, 

and the kinds of component shape and size parameters are normally various. In order 

to overcome these limitations, methods based on machine learning and deep learning 

have been developed recently. In this project, I have developed an IC components 

locator software to help in inspection process, this software is relying on 2 model of 

most popular object detection on deep learning field (Yolo V3 and Faster RCNN), I 

have trained bot models and preformed a comparison between their results in term of 

mAP, loss, inference time and training time. Yolo V3 and Faster RCNN have been 

trained on a filtered open source dataset of PCB that contains 163 Images, an 

annotation and augmentation tool has been developed in purpose of increasing the 

amount of our dataset. Finally, OPENVINO toolkit has used for optimization process 

and infer both models on various Intel CPU to run our deep learning network on edge. 
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CHAPTER 1  

INTRODUCTION 

1.1 Project Background 

 The machine-controlled inspection of Printed Circuit Boards (PCBs) serves a 

purpose that is long-established in technology. the aim is to alleviate human inspectors 

of the tedious and inefficient task of trying to find those defects in PCBs that could 

lead on to electrical failure. As an example, circuit breaks have rather obvious 

implications for electrical failure, and human inspectors typically miss those defects. 

It is merely arduous to visually examine many thousands of printed wires with parts 

placement, every couple of thousandths of a feet across, for several hours each day 

without any mistakes or misses that can cause a lot of problem in production line. Such 

mistakes, whereas dead perceivable, also are pricey. The time is anticipated once the 

print circuit boards are going to be thus fine that human inspectors should use 
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microscopes instead of the magnifying glasses currently in use. With the rapid-

movement limitations of microscopic viewing, the unskillfulness of human scrutiny is 

going to be intolerable. Automated, machine based mostly, scrutiny relieves this 

drawback by providing a machine computer vision solution. Obviously, there square 

measure employment, and wide-ranging economic implications of such technology 

that should be thought of alongside the technology itself. So, Inspection automation 

has become a unique and important tool to boost quality in printed circuit board (PCB) 

manufacturer factories. Nowadays Manufacturing Industries needs machine-

controlled inspection since, within the fabrication processes, there square measure 

uncertainties, tolerances, defects, relative position and orientation errors, which may 

be analyzed by vision sensing, Machine algorithms and Deep Neural Networks.  

This project proposes an approach for printed circuit board (PCB) component 

locator using the power of most recent deep learning networks that could achieve an 

impressive result in purpose of inspection automation, the main function of this project 

is generating data that includes the location, dimensions and categories of each 

component, this data can help in generating inspection board recipe. Currently this 

recipe is created for each new board in production line manually by operator using a 

custom-made bounding box drawing mechanism and type selection for each 

component. 

During my project, a comparison between YoloV3[8] and Faster R-CNN [9] 

object detection networks will be made as a component locator by training both 

networks on provided electronics board datasets [10]. 



3 

 

1.2 Problem Statement 

Stage 1                                                    Stage 2 

 
Figure 1.1: Part of PCB Inspection Process 

As shown in figure 1, stage 1 shown the procedures that operators follow for a 

new board in their production line. The operator needs to draw a bounding box around 

each component and select component’s family, type and other parameters that can 

help in specifying suitable inspection algorithm. This operation is time costly and need 

much efforts and concentration of the operator. So, my project will be focusing in 

generating new board recipe or even help in automating part of this inspection stage 

by allocating, localizing each component and classify some this component, on the 

other hand the second stage is nearly automated by a lot of popular algorithms in 

imaging processing fields, and it is nearly stable and required less operator efforts and 

time. 

 

1.3 Objectives of the Research 

i. To develop annotation and augmentation software for dataset preparation. 

ii. To train, test and compare IC component locator based on object detection 

network (YoloV3 vs Faster R-CNN) 

iii. To deploy our IC component locator on Intel CPU computer using 

OPENVINO software development kit.  



4 

 

1.4 Scope of Work 

 In purpose of automated inspection, a problem statement has been issued 

about operator manually select and draw bounding box around ROI for each 

component once there is a new board design and choose the suitable inspection 

algorithm, so by developing an automated component locator using DNN and CNN, 

we will be able to save the operator time and effort by automatically identify the ROI 

for each component, that will help operator in choosing the suitable inspection 

algorithm in faster way. My network will be developed on Tensorflow or caffe2 

framework using python programming language in purpose of reaching ±10 px 

localization of component body size. Finally, we will optimize our network and deploy 

it on intel CPU computer using OPENVINO software development kit. 

1.5 Report Structure 

 This thesis is organized and arranged into 5 major chapters. In chapter 1, the 

overview of PCB inspection is discussed in the project background. In addition, the 

problem statement, objective and scope of work will be outlined clearly in this section. 

In chapter 2, the past studies related to PCB automated inspection will be included in 

this chapter. In chapter 3, all relevant experiments and techniques used in this project 

will be mentioned in detail. As well as a flowchart of system will be discussed. In 

chapter 4, the performance of our system will be recorded and interpreted in term of 

accuracy, computation time and reliability. In last chapter, a conclusion will be drawn 

from this project. In addition, the recommendation for the future plan which related to 

the project will be made in this section.



 

 

 

CHAPTER 2  

BACKGROUND STUDY 

2.1 INSPECTION CATEGORIES 

In PCB manufacturing industries, Optical inspection has been grownup 

quickly in past few decades. It is currently serving a very important role in fabrication 

and mass production process. Most PCB manufacturing players are currently relying 

on AOI machines to detect and report different kind of defects on boards when photo-

printing or etching. Notwithstanding, AVI (Automated Vision Inspection) that 

generally additionally referred to as FVI (final vision inspection) is growing in an 

exceedingly comparatively quick pace, however not nevertheless wide used in the 

market. AOI and AVI machines are different categories of inspection machines with 

different function, however their operating concept still similar. several technologies 

of AVI are designed from AOI. The PCB makers are currently using AOI and AVI 


