A CHARACTERIZATION OF THERMOELECTRIC ENERGY HARVESTING FROM ELECTRIC KETTLE

NG YEONG SIANG

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

C Universiti Teknikal Malaysia Melaka

A CHARACTERIZATION OF THERMOELECTRIC ENERGY HARVESTING FROM ELECTRIC KETTLE

NG YEONG SIANG

This report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

> Faculty of Electronic and Computer Engineering Universiti Teknikal Malaysia Melaka

> > **MAY 2019**

FAKULTI KEJUTEF اونيور،سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	TI TEKNIKAL MALAYSIA MELAKA Raan elektronik dan kejuruteraan komputer Rang pengesahan status laporan PROJEK SARJANA MUDA II ACTERIZATION OF THERMOELECTRIC		
	HARVESTING FROM ELECTRIC KETTLE		
	Saya <u>NG YEONG SIANG</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:		
 Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi. Sila tandakan (✓): 			
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)		
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.		
TIDAK TERHAD			
	Disahkan oleh:		
(TANDATANGAN PENULIS) Alamat Tetap: <u>Universiti Teknikal</u> <u>Malaysia Melaka,</u> <u>Hang Tuah Jaya,</u> <u>76100,Durian</u> <u>Tunggal, Melaka.</u>	(COP DAN TANDATANGAN PENYELIA)		
Tarikh : $31/5/2019$	Tarikh : <u>31 MEI 2019</u>		

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "A Characterization of thermoelectric energy harvesting from electric kettle" is the result of my own work except for quotes as cited in the references.

Signature:

Author: NG YEONG SIANG

Date: 31/5/2019

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with Honours.

Signature	:
Supervisor Name	: DR AZDIANA BINTI MD YUSOP
Date	: 31/5/2019

DEDICATION

I would like to dedicate my work to my supervisor, family and lecturers who willing to guide me and support me throughout this final year project and thanks to my beloved friends to help me along my final year projects.

ABSTRACT

Thermoelectric energy harvesting defined as the energy conversion of waste heat energy to electrical energy without grid connection. This project conducted by using the electric kettle as a heat source to produce heat from a surface electric kettle. In this project, a module named as a thermoelectric generator (TEG) utilized heat energy from a surface electric kettle to produce electrical energy in 0.4V. The voltage gradient produced by TEG is insufficient to power up the application and it required a boosting circuit to boost the input voltage to 5V. Since the output power is an unstable condition, a supercapacitor and battery are used to store energy in order to power a small application such as USB fan and smartwatch. Finally, the Arduino hardware is used to capture the voltage data from the circuits and analysed their results in LABVIEW software. Overall, TEG can be used to improve charging in thermoelectric technology by recycling the heat from electric kettle.

ABSTRAK

Penuaian tenaga haba merupakan satu proses untuk mengumpulkan tenaga haba dan tenaga haba buangan tanpa sambungan grid. Penuaian tenaga haba diperlukan untuk memberi kuasa kepada peranti elektronik dan aplikasi kecil yang berkuasa rendah. Projek ini dicipta dengan menggunakan cerek elektrik sebagai tenaga haba lalu menghasilkan haba daripada permukaan cerek elektrik. Di dalam projek ini, satu peranti bernama pengara thermoelektrik (TEG) menggunakan tenaga haba buangan dengan menyerap haba daripada cerek untuk diubah menjadi tenaga elektrik. Pengeluaran voltan daripada TEG tidak cukup untuk menampung kuasa kepada peranti elektronik dan memerlukan satu litar pengajak bagi meningkatkan voltan dari voltan masukan kepada 5V. Dalam ketidakstabilan keluran voltan, superkapasitor dan bateri diperlukan untuk menyimpan tenaga daripada litar dan memperbaiki kuasa kepada aplikasi kecil dalam keadaan norma seperti kipas USB dan jam pintar. Akhirnya, perkakasan arduino digunakan untuk mengambil data voltan daripada perisian proteus.Semua data voltan akan ditangkap daripada perkakasan Arduino dan keputusan dianalisis daripada perisian LABVIEW. Keseluruhannya, pengara thermoelektrik boleh memperbaiki pengecasan dalam thermoelektrik technology dengan mengitar semula haba daripada cerek elektrik.

ACKNOWLEDGEMENTS

First of all, I would like to express an expression to people who supporting and aiding me to complete this study and report and also give a special thanks to my family members for encouragement and support me in term spiritual and advises to complete my project with any concern.

Furthermore, a thousand thanks to my supervisor, Dr. Azdiana Binti Md Yusop who contributes in suggestion and my opinion in term of knowledge and experience, she helped me along with my final year project and give me more motivation and suggestion to complete this project.

Lastly, a big thanks to my friends Chin Chia Siang for sharing the ideas and knowledge about the circuit design and provide guideline to finish my project in time. He had given me a lot of encouragement and tips to improve my project. Next, I would like to thanks Encik Imran Bin Mohamed Ali, PSM lab assistant, to help and guide me during etching and fabrication process of my designed circuit.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	i
Abstract	
Abstrak	
Acknowledgements	iii
Table of Contents	iv
List of Figures	ix
List of Tables xii	
List of Symbols and Abbreviations	xiii
List of Appendices	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Project Background	2
1.2 Problem Statement	4
1.3 Objective	5

1 /	Seens of Work	5	
1.4	Scope of Work	5	
1.5	Brief Methodology 6		
1.6	Report Overview	8	
CHA	APTER 2 literature review	9	
2.1	Kettle Charger	10	
2.2	Power Pot charger	11	
2.3	Thermoelectric effect	12	
	2.3.1 Peltier Effect	13	
	2.3.2 Seeback Effect	14	
	2.3.3 Thomson Effect	15	
2.4	DC step-up converter circuit	17	
	2.4.1 DC Relay control circuit	17	
	2.4.1.1 Electromagnetic Relay	18	
	2.4.1.2 Transistor	19	
	2.4.1.3 Resistor	20	
	2.4.2 Mechanism of relay control circuit	20	
2.5	Types of Energy storage	21	
	2.5.1 Supercapacitor	21	
	2.5.1.1 Electric Double-Layer Capacitors (EDLC)	22	
	2.5.2 Rechargeable battery	23	

v

2.6	Data Acquisition System (DAQ)	24
	2.6.1 Real-time data acquisition	25
	2.6.1.1 Arduino	25
	2.6.1.2 LABVIEW	26
2.7	Conclusion	27
CHA	APTER 3 METHODOLOGY	28
3.1	Overview Project Thermoelectric Charger	29
3.2	Flowchart of Project	30
3.3	Brief Methodology of Project	31
3.4	Material description in Project	32
	3.4.1 Thermoelectric Generator	32
	3.4.2 Relay 5V	33
	3.4.3 Supercapacitor	34
	3.4.4 18650 Lithium-ion battery	35
3.5	Characterization of TEG from the electric kettle	35
3.6	Design a control relay circuit	37
	3.6.1 Measure the output of voltage from the DC circuit	38
3.7	Testing the circuit onto the breadboard	39
3.8	Mini Power bank construction	40
3.9	LABVIEW software installation	40

	3.9.1 Installation of Arduino driver in LABVIEW	41
3.10	Simulation block project function	42
3.11	Conclusion	42
СНА	PTER 4 RESULTS AND DISCUSSION	43
4.1	Boiling time of electric kettle	43
4.2	Characterization the output of TEG from electric kettle	46
4.3	Characterization of series connection between TEG device	49
4.4	Design an Arduino Control relay circuit	51
4.5	Development of Hardware prototype circuit	53
4.6	Testing the small application	55
	4.6.1 Testing the USB fan	56
	4.6.2 Testing the smartwatch	56
4.7	Project simulation in DAQ system	57
	4.7.1 Uploading the coding in arduino hardware	57
	4.7.2 Settings the panel of block diagram	59
4.8	Running the simulation project thermoelectric charger	59
4.9	Conclusion	60
СНА	PTER 5 CONCLUSION AND FUTURE WORKS	61
5.1	Conclusion	61
5.2	Future Recommendation	62

REFERENCES	63
appendices A	68
APPENDIX b: DATASHEET SINGLE RELAY 5V	73
APPENDIX C : DATASHEET SUPERCAPACITOR 5F,2.7V	74
APPENDIX D : DATASHEET TRANSISTOR 2N2222A	76

LIST OF FIGURES

Figure 1.1: Electrical energy recovered from waste heat energy	3
Figure 1.2: Block diagram of TEG to power the application	5
Figure 1.3: Flowchart of Brief methodology	7
Figure 2.1: Biolite Kettle Charger	10
Figure 2.2 : Operation of power pot charger	11
Figure 2.3: Fermi level of the thermoelectric	12
Figure 2.4: Principle of Peltier effect	13
Figure 2.5: Seeback effect from TEG	14
Figure 2.6: Thomson Effect in the thermoelectric effect	16
Figure 2.7: Construction in an energy harvesting system	17
Figure 2.8: Arduino relay control circuit to power the motor	18
Figure 2.9: Relay structure in the diagram	18
Figure 2.10: Transistor act as switching circuit	19
Figure 2.11: Construction of Supercapcitor	22
Figure 2.12: Construction of EDLC between two electrodes	23
Figure 2.13: The harvested material with Li-ion battery	24
Figure 2.14: Block diagram of the DAQ system	25
Figure 2.15: Arduino UNO R3 and software IDE	26

Figure 2.16: Interfacing between LABVIEW and Arduino IDE	27
Figure 3.1: Block diagram to conduct thermoelectric kettle charger	29
Figure 3.2: Diagram of thermoelectric in the charging system	29
Figure 3.3: Thermoelectric Generator (TEG)	32
Figure 3.4: Mechanism and operation of TEG	32
Figure 3.5: Electromagnetic relay 5V	33
Figure 3.6: Concept of the relay to operate the load	33
Figure 3.7: Supercapacitor 5F	35
Figure 3.8: 1ithium ion battery	35
Figure 3.9: TEG contacted from surface electric kettle	36
Figure 3.10: Set up the thermoelectric TEG kettle	36
Figure 3.11: Arduino control relay circuit	37
Figure 3.12: code programming to switch on relay in Software IDE	37
Figure 3.13: Arduino sketch to get the output reading	38
Figure 3.14: Arduino relay module to light up the bulb	39
Figure 3.15: Breadboard testing with arduino hardware	39
Figure 3.16: Mini power bank connected to the relay circuit	40
Figure 3.17: Virtual Instrument between two panels	40
Figure 3.18: LABVIEW interfacing with Arduino	41
Figure 3.19: Visa installed inside LABVIEW software	41
Figure 3.20: Simulation block diagram project	42
Figure 4.1: Result of the boiling process of electric kettle	45
Figure 4.2: Result of voltage TEG from temperature gradient	48

Figure 4.3: Result flow between current and temperature gradient	49
Figure 4.4: Series connection of TEG at surface electric kettle	49
Figure 4.5 : Result of series voltage TEG based on temperature gradient	51
Figure 4.6: Switch ON LED after the simulation	52
Figure 4.7: Result of data voltage and battery voltage	52
Figure 4.8: PCB layout in ARES software	53
Figure 4.9: Fabricated the relay PCB circuit	53
Figure 4.10: Comparison between input and output voltage	54
Figure 4.11: Set up the project Prototype with kettle	55
Figure 4.12: Smartwatch charging	56
Figure 4.13: Debugging the coding in software Arduino IDE	57
Figure 4.14: Uploading successful code to arduino hardware	58
Figure 4.15: The waveform and display in the other block diagram	59
Figure 4.16: Oscilloscope displayed at the panel block diagram	59
Figure 4.17: the front panel of block diagram	60

LIST OF TABLES

Table 2-1: Comparison between the energy storage element	21
Table 3-1.1: Specification of TEG	33
Table 3-2.1: Specification of relay 5V	34
Table 4-1.1: Data of boiling process from electric kettle	44
Table 4-2: Data collection from output TEG	47
Table 4-3: Data collection between temperature and voltage TEG	50
Table 4-4: Output voltage circuit within the temperature	54

LIST OF SYMBOLS AND ABBREVIATIONS

For examples:

TEG	:	Thermoelectric generator
EH	:	Energy Harvesting
PCB	:	Printed Circuit Board
WSN	:	Wireless Sensor Network
DAQ	:	Data Acquisition System
LABVIEW	:	Laboratory Virtual Instrument Engineering Workbench
Тн	:	Hot side Temperature
Тс	:	Cold side Temperature
LIFA	:	LABVIEW Interface for Arduino
VISA	:	Virtual Instrument Software Architecture

xiii

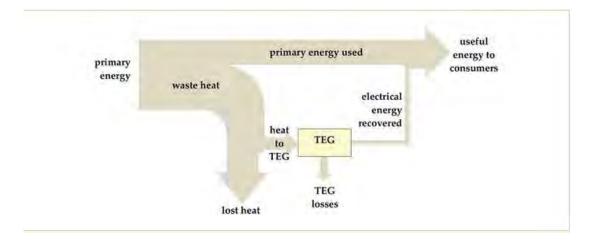
LIST OF APPENDICES

Appendices A		68
Appendix	B: Datasheet Single relay 5V	73
Appendix	C: Datasheet Supercapacitor 5F, 2.7V	74
Appendix	D: Datasheet transistor 2N2222A	76

CHAPTER 1

INTRODUCTION

. Thermoelectric energy harvesting utilized the waste heat energy from the electric kettle as a heat source to supply heat after reached boiling point. This technique is used to create alternative energy to power the small application and electronics devices by using the thermoelectric concept to provide electricity. Different types of waste energy had been harvested by using different energy harvesting materials. However, it is quite challenging for the green technology to power up small applications. The condition to power up the small application by using the energy harvesting circuit is to harvest heat from harvested materials and boosted to the desired output in the circuit[1]. It required an energy storage to store the energy and provide a steady current flow to supply the small application & electronic device.



1.1 **Project Background**

In the modern globalization, most of the electronic devices and systems are utilized electrical source and batteries to power up the electronic system. It had the shortest life span of batteries and provide limited charging to electronic devices. When the battery depleted and finished usage, it needs to replace the another battery and found the electrical socket to recharge the electronic devices. The energy harvesting technique represented an external energy to replace the batteries and electrical socket to create free electricity in order to power up the small application. It created the environmentally friendly to replace the traditional source of multifunction wood stove and gases and solve the depletion resources in our planet.

Energy harvesting system generated the free electricity from the unused energy sources such as radio waves, solar power, kinetic energy, and temperature gradients to charge up the application such as wearable electronic devices, Wireless Sensor Nodes (WSN), long term low power sensor and electronic devices[2]. In the innovation technology, the researcher found the various way to replace the electrical source to power the devices such as mobile computers, smartphone, tablet, USB fan, and other electronic gadgets.

The thermal energy harvesting is the selected type from the energy harvesting system and is also known as energy searching technique. The module known as thermoelectric generator (TEG) to convert heat directly to free electricity from the surface electric kettle. TEG is the one type of Peltier module to create the thermoelectric energy harvester system and provides power generation from hundreds of microwatts to milliwatt in different sensor and transmitter.

Figure 1.1: Electrical energy recovered from waste heat energy

Figure 1.1 shows the primary energy to represent electric kettle to supply waste heat energy and converted to electrical energy in seeback effect. The consumers used electricity to power up electronic devices and WSN from TEG module[3]. The TEG is a low-cost device project to produce energy without using fossil fuels and greenhouse effect gases emission to surrounding environment. Furthermore, the energy storage is to represent the useful energy such as rechargeable battery and supercapacitor to store the energy and provide steady current flow to power up the electronic device to consumers in energy harvesting system [4].

The thermal energy harvesting provides various advantages such as high reliability and high efficiency produced from waste heat elements. The waste heat elements must applied with electric kettle to improve the thermal process in stable condition to create temperature gradient. The operation of temperature can reached to maximum temperature until 250°C after applied primary energy and heat source such as electric kettle. The condition of heat source must have in high temperature

1.2 Problem Statement

Nowadays, there are a lot of researchers found the various ways to charge up the small application & electronic devices due to electrical source can produce high power consumption in the usage and short lifespan for process battery charging. But when having battery depletion, it needs to replace another battery to continue charging. Furthermore, the low power produced from thermoelectric generator (TEG) is unable to power up the application after absorbed heat supply. Different temperature gradient produces different output power of TEG in seeback effect mechanism and the result is analyzed to prove the work of TEG.

An energy harvesting is required to step up the voltage to power the small application. Furthermore, the heat source needs to achieve in higher temperature and it required taking a long time to get the heat easily from heat source. Due to the TEG must achieve in high-temperature gradient to produce high voltage gradient. The low temperature gradient of waste heat produced, the low power produced from TEG in theory and knowledge. The suitable condition to provide heat conversion is required a high stable temperature and taking a short time heating process to achieve high temperature. After done some experiment from other heat sources, the electric kettle can solve the problem in a long time heating process and provides the stable in heat conduction between TEG and surface electric kettle. Next, the electric kettle was unable to dissipate heat easily from the surface area to surroundings area after done the boiling process.